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Purroske. Functional changes have been observed between diseased and healthy subjects,
and functional brain atlases derived from healthy populations may fail to reflect func-
tional characteristic of the diseased brain. Therefore the aim of this study was to gener-
ate a visual atlas based on functional connectivity from primary open-angle glaucoma
(POAG) patients and to prove the applicability of the visual atlas in functional connec-
tivity and network analysis.

MertHoDS. Functional magnetic resonance images were acquired from 36 POAG patients
and 20 healthy controls. Two data-driven approaches, K-means and Ward clustering algo-
rithms, were adopted for visual cortices parcellation. Dice coefficient and adjusted Rand
index were used to assess reproducibility of the two approaches. Homogeneity index,
silhouette coefficient, and network properties were adopted to assess functional validity
for the data-driven approaches and frequently used brain atlas. Graph theoretical anal-
ysis was adopted to investigate altered network patterns in POAG patients based on
data-driven visual atlas.

Resurts. Parcellation results demonstrated asymmetric patterns between left and right
hemispheres in POAG patients compared with healthy controls. In terms of evaluating
metrics, K-means performed better than Ward clustering in reproducibility. Data-driven
parcellations outperformed frequently used brain atlases in terms of functional homo-
geneity and network properties. Graph theoretical analysis revealed that atlases gener-
ated by data-driven approaches were more conducive in detecting network alterations
between POAG patients and healthy controls.

Concrusions. Our findings suggested that POAG patients experienced functional alter-
ations in the visual cortices. Results also highlighted the necessity of data-driven atlases
for functional connectivity and functional network analysis of POAG brain.

Keywords: primary open-angle glaucoma, functional connectivity, brain parcellation,
visual cortex, network analysis

B rain atlases that provide network node for functional
connectivity and network analysis are crucial, and many
atlases could achieve this process.! There are mainly two
types of brain atlas. One is based on anatomic landmarks
or structural connectivity?; traditional brain atlases, such
as the Brodmann atlas and automated anatomic labeling
atlas, which are based on cerebral structural characteris-
tics (e.g., cytoarchitecture), belong to this type of atlas.’~>
The other is the functional brain atlas,> which uses infor-
mation derived from functional images to parcellate the
brain into several subregions.>”> Functional magnetic reso-
nance imaging (fMRI) acquired during resting-state, known
as resting-state fMRI, could reveal both functional homo-

Copyright 2020 The Authors
iovs.arvojournals.org | ISSN: 1552-5783

geneity and functional connectivity.?~> Brain regions based
on functional connectivity profiles could provide credible
evidence for the establishment of network nodes.? Several
state-of-the-art studies have used functional connectivity
profiles derived from resting-state fMRI to generate a func-
tional brain atlas.®~'° Data-driven techniques that have been
used to generate functional brain atlases include indepen-
dent component analysis,''~'> Gaussian mixture model,'*
and clustering algorithms.!®

Visual cortices, which consists of the primary visual
cortex (also known as the striate cortex) and higher visual
cortex (also known as the extrastriate cortex), are located
in the occipital cortex on both sides of the talus fissure
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of the brain.'® Parcellation of visual cortices is crucial for
neuroscience studies of varies visual diseases.!> A visual
atlas based on brain function rather than cytoarchitecture
may provide an efficient way to study disease-related func-
tional changes in the brain.!>'7:18 In addition, the functional
atlas is more likely to be generated from resting-state fMRI
data.'”''® As a result, more and more studies on parcellation
of visual cortices have used functional connectivity profiles
from resting-state fMRI to yield subregions instead of using
structural information.'®-1°

Primary open-angle glaucoma (POAG) is a progressive
optic neuropathy associated with retinal ganglion cell loss
and optic nerve damage.?’"? Gupta et al.>* have discov-
ered that POAG not only leads to optic nerve atrophy,
but also changes the visual cortices and lateral geniculate
body. Subsequently, several studies have proved that POAG
is a degenerative disease of the central nervous system,
analogous to Alzheimer disease and Parkinson disease.?>~%7
There are a growing number of studies on POAG patients’
central nervous system via neuroimaging techniques, espe-
cially fMRI.?>%7-3% However, previous studies on functional
connectivity and network analysis of POAG have mainly
used atlases generated from healthy populations, which
may fail to reflect functional characteristics of the diseased
brain.?®?° To date, there has been no functional atlas of the
visual cortices generated from POAG patients and for the
study of the POAG brain.

Data-driven parcellation approaches based on resting-
state fMRI could assess functional variation across differ-
ent subjects, or between healthy and diseased subjects,
which are suitable means for generating functional brain
atlases for diseased subjects.? Therefore we aim to generate
a functional atlas of the visual cortices for POAG patients,
which reflects functional characteristics of the POAG brain.
We further investigated altered network patterns of POAG
patients using the proposed atlas to prove the applicability
of such atlas in functional connectivity and network analy-
sis. Due to relatively high performance reported by previous
studies,'>3! two data-driven approaches, K-means and Ward
algorithm, were selected to generate the atlas.

MATERIALS AND METHODS
Subjects

The protocol of this study was approved by the institutional
review board of Shandong First Medical University and Taian
City Central Hospital according to the tenets of the Decla-
ration of Helsinki. All subjects gave their written, informed
consent before participating in this study.

Participants were recruited with the following criteria: (1)
right-handed; (2) more than 12 years of formal education;
(3) age 40 to 60 years old; (4) and were POAG patients
based on a clinical diagnosis of primary glaucoma, and
at least one eye with elevated intraocular pressure (IOP)
(higher than 21 mm Hg); healthy controls (HCs) were
included if they had normal IOP. Exclusion criteria were:
(1) advanced-stage glaucoma, secondary glaucoma, or other
oculopathies; (2) hypertension, impaired glucose tolerance,
diabetes, or other metabolic disease; (3) history of psychi-
atric or neurologic diseases; and (4) MRI contraindications.
Finally, 36 POAG patients and 20 age- and gender-matched
HCs were recruited. All POAG patients were in the early-
and intermediate-stage. POAG patients underwent a detailed
ophthalmology examination, including IOP measurement,

IOVS | July 2020 | Vol. 61 | No.8 | Article 33 | 2

retinal nerve fiber layer (RNFL) thickness measurement,
and optic disc evaluation. Supplementary Table S1 lists the
demographic and clinical information of the POAG group
and HCs.

Connectivity Matrix and Parcellation Approaches

The fMRI acquisition and preprocessing are shown in
Supplementary material section 1. After data preprocessing,
a connectivity matrix was constructed before data-driven
parcellations. The rows of the connectivity matrix denote
voxels in the visual cortices, the columns denote voxels in
the gray matter. In this study, the visual cortices, which
contained primary and higher visual cortices, were deter-
mined as follows: primary visual cortex was defined as Brod-
mann area 17, higher visual cortex was defined as the region
that contained Brodmann area 18 and 19. Masks of the visual
cortices and whole brain were generated.

The connectivity matrix characterizes functional connec-
tivity between visual cortices and the brain gray matter.
To construct the matrix, we used visual cortices as the
first mask. Each time course within the visual cortices was
normalized to have zero mean and unit length 83233 This
process was implemented by the following formula'”-3%:

v —;
— 2 i=1,2,...N D
Hvi—villz

where v; denotes the time course of the ith voxel in the
visual cortices, v; denotes the mean value of this time course,
[I.Il. denotes L2-norm of a vector. Then we used the brain
gray matter as the second mask and normalized the time
courses of each voxel in the second mask using Equation (1).
Assume v; is the ith voxel in the visual mask, and wj is the
jth voxel in the gray matter mask. The Pearson correlation
coefficient between the two time courses v; and w; could be
simply calculated by multiplication of the two normalized
time courses!”34;

corr (v, w;) = v; - w; @)

Assume V is the fMRI data within the visual cortices with
normalized time courses, and W is the fMRI data in the
gray matter with normalized time courses. The individual
connectivity matrix could be calculated by VW as shown in
Equation (2).

Then we used individual connectivity matrices to gener-
ate a group-averaged connectivity matrix. We first converted
the individual connectivity matrices into z maps by Fisher
r-to-z transformation to increase the normality of the distri-
bution of the correlations,'”-3* then all the individual z-maps
were averaged to yield the averaged z-map. In the end, we
converted the averaged z-map back to the averaged connec-
tivity matrix via inverse Fisher r-to-z transformation.

To improve the spatial contiguity of the parcellation,
spatial coordinates (with spatial information in three direc-
tions) of each voxel in the visual cortices were combined
with the group-averaged connectivity matrix. State-of-the-
art studies have reported that K-means and Ward algo-
rithm outperformed alternative approaches in terms of func-
tional homogeneity and reproducibility.!>3! Therefore the
two data-driven approaches, K-means and Ward cluster-
ing, were applied to the combined matrix to get the final
parcellations. Supplementary Table S2 lists the details of the
two approaches, and Figure 1 demonstrates the parcella-
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Ficure 1. The procedures of two data-driven parcellation approaches.

tion procedures of each approach. It was worth mentioning
that no threshold was applied to control negative and weak
correlations as in previous studies®>* because a hard thresh-
old might yield clusters with comparable shapes and sizes,
which were unlikely to be functional subregions.>* In addi-
tion, negative correlation also contained useful information,
especially for disease-related parcellation.

Evaluation Metrics

To assess reproducibility and homogeneity of data-driven
parcellation approaches, we adopted four metrics including
dice coefficient, adjusted Rand index (ARI), homogeneity
index, and silhouette coefficient (SC).3>3> Dice coefficient
and ARI were applied for assessing reproducibility, homo-
geneity index and SC were applied for evaluating functional
homogeneity. In addition, we evaluated functional network
characteristics constructed by the underlying approaches
using nodal and global properties.

The detailed description of dice coefficient and ARI is
given in Supplementary material section 2. To calculate these
two metrics, the total 36 POAG subjects were randomly
divided into two groups, with one group containing 18
subjects and the other containing the remaining subjects.
The group-averaged connectivity matrices of the two groups
were calculated as introduced earlier. After that, we parcel-
lated the combined matrices and generated parcellation
results (X and Y) of the two groups. The parcellation results
X and Y from the two groups were used to compute dice
coefficient and ARI. This random division was repeated
10 times, and dice coefficient and ARI were calculated
10 times. The final dice coefficient and ARI were then calcu-
lated as the mean value of these 10 random repeats.

Function homogeneity of subregions was crucial for
functional network analysis, so homogeneity index and SC
were used to evaluate functional homogeneity. The detailed
description of homogeneity index and SC is given in Supple-
mentary material section 3. To compare functional homo-
geneity between data-driven approaches and frequently
used brain atlases, we selected four brain atlases, namely, the
Brodmann atlas, and three functional atlases from Craddock
et al..’ Dosenbach et al.,'° and Power et al” Homogeneity
index and SC were calculated for the underlying approaches
in the POAG group.

To compare network properties between data-driven
approaches and the four frequently used brain atlases, we
followed the procedure by Arslan et al.'®> Once group-
level parcellation for POAG patients was done, functional

exp(22)+1

connectivity was then estimated among the time courses
by calculating Pearson correlation coefficient. An N x N
correlation matrix for each subject was generated, where
N is the parcellation number. Fisher 7-to-z transformation
was performed to improve the normality of the correla-
tion matrices. A weighted network for POAG patients was
obtained and sparsity threshold was used to preserve the
top 20% of the edges and to reduce threshold effects on
network properties.”” Then a graph theoretical analysis
was performed to investigate topological properties of the
network using GRETNA (version 2.0, http://www.nitrc.org/
projects/gretna/).>> Due to granularity of parcellation,’® we
only applied nodal degree, efficiency to evaluate nodal char-
acteristics, and small-world index and rich club index to
evaluate global characteristics when the parcellation number
was more than 3. The detailed description of network prop-
erties is shown in Supplementary material section 4.

Graph Theoretical Analysis Between POAG
Patients and HCs

Overall, the main purpose of data-driven parcellation is
to define nodes for functional connectivity and network
analyses.'? Therefore we evaluated the underlying parcel-
lation approaches and frequently used brain atlas using
a standard graph theoretical analysis of brain functional
networks between POAG and HCs. The visual atlas gener-
ated from POAG patients via K-means algorithm and the
four frequently used brain atlases were used. Network
construction was the same as introduced earlier. Four topo-
logical properties, namely nodal degree, efficiency, small-
world index, and rich club index, were used to assess brain
network alterations in POAG patients at both global and
nodal levels. Two sample t-test was used to assess the differ-
ence of network properties between the two groups.

REsuULTS
Visual Cortices Parcellation

To observe functional reorganization between POAG
patients and HCs, we also parcellated the visual cortices for
HCs. Figure 2 displays parcellation results of POAG patients
and HCs when parcellation number was 3, 6, and 9.

Figure 2 illustrates that both algorithms could achieve
parcellation of visual cortices. It was found that the func-
tional subregions of POAG patients’ visual cortices were
more fragmented than HCs, and POAG patients’ parcella-
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Ficure 2. Parcellation results of the two data-driven approaches when the parcellation number is set to be 3, 6, and 9. (a) Parcellation

results for 36 POAG patients. (b) Parcellation results for 20 HCs.

tion patterns were asymmetric compared with those of HCs.
The visual cortices could be parcellated into the anterior
and posterior subregions, which was different from the tradi-
tional boundaries between primary visual cortex and higher
visual cortex.

Evaluation Metrics

Reproducibility and functional homogeneity results are
shown in Figure 3. In terms of reproducibility, we found
that K-means algorithm yielded better results than Ward
algorithm in both dice coefficient and ARI. Moreover, repro-

ducibility results evaluated by dice coefficient and ARI of
these two approaches decreased with the increase of parcel-
lation numbers. For homogeneity index, K-means and Ward
clustering obtained comparable results. When it comes to SC,
K-means algorithm had a better performance. Both SC and
homogeneity index increased with the increase of parcella-
tion number.

For comparisons between data-driven approaches and
frequently used brain atlases, functional atlases of Dosen-
bach et al.'® and Power et al.’ had the best performances
in homogeneity index, but had the worst performances in
SC. In addition, both SC and homogeneity value of the
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Ficure 3. Group-level reproducibility and homogeneity results in POAG group (mean + SD). (a) Dice coefficient for 10-time repeats.

(b) ARI for 10-time repeats. (¢) Homogeneity index. (d) SC.

Brodmann atlas and the Craddock et al® functional atlas
were smaller than those of the two data-driven parcellation
approaches. Homogeneity results for HCs using parcella-
tions from the POAG group is demonstrated in Supplemen-
tary Figure S1.

The results of network properties are given in Figure 4.
In terms of nodal degree and nodal efficiency, the two data-
driven parcellation approaches prevailed over frequently
used brain atlases. As for global metrics, K-means and Ward
approaches performed better than the three atlases in terms
of small-world index and rich club index.

Results of Graph Theoretical Analysis

Figure 5 shows the results of graph theoretical analy-
sis using data-driven atlas generated from POAG patients
via K-means algorithm and the four frequently used atlases.
The comparisons between data-driven atlas and the four
frequently used atlases were conducted under the same reso-
lution.

POAG patients showed decreased nodal degree and rich
club index, and increased nodal efficiency and small-world
characteristic compared with HCs. Furthermore, in most
cases, the differences of network properties between POAG
patients and HCs were more significant using data-driven
atlas than using frequently used atlases. A detailed compari-
son between POAG patients and HCs using data-driven atlas
across all resolutions is shown in Supplementary Figure S2.

DiscussION

Brain parcellation of healthy subjects has been carried
out by many research groups worldwide® and several

patterns have been already learned.!”> However, knowledge
on parcellation of different brains, such as diseased brain,
has been limited. Because parcellation of diseased brain
can reveal functional characteristics of the diseased brain,"
in this study, we parcellated visual cortices of the POAG
brain to generate a visual atlas for POAG subjects for the
first time to our knowledge. Parcellation results revealed
functional reorganization in the visual cortices of POAG
patients. Graph theoretical analysis demonstrated altered
network patterns of POAG patients, and also suggested
that data-driven approach was necessary for studies of
functional connectivity and functional network of POAG
patients.

Functional Alterations in the Visual Cortices

In the present study, parcellation results revealed that HCs
had a symmetric parcellation pattern in the bilateral hemi-
spheres with large and equal clusters, which indicated
normal brain function. POAG patients’ parcellation patterns
were asymmetrical, some subregions were small and frag-
mented clusters. Two mechanisms could explain this, one
is lateralization of brain functional changes, in other words,
changes in the central visual cortices does not simply mirror
the peripheral damage in a one-to-one manner.’3” The
other is the difference between the two eyes in terms of IOP,
RNFL thickness, in other words, functional changes of the
visual cortices may not be controlled by exact same factors.

Visually assessed results showed that V1 could be
roughly identified by data-driven approaches, especially
when parcellation number was greater than or equal to 6.
The boundaries of subregions in the higher visual cortex
were not consistent with cytoarchitecture. The results also
showed that visual cortices, including V1 and higher visual
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Ficure 4. Network properties of the two data-driven parcellation approaches and frequently used brain atlas. (a) Nodal degree. (b) Nodal

efficiency. (¢) Small-world index. (d) Rich club index.

cortex, could be functionally divided into anterior and poste-
rior subregions, which was consistent with previous stud-
ies.”’18:38 State-of-the-art studies have demonstrated that the
visual cortices could be divided into peripheral and foveal
areas belonging to different resting-state networks with
eccentricity-dependent functional connectivity.!’!® In line
with previous findings, our results might reflect distinctively
biased processes in the peripheral and foveal networks.!!
From the sagittal view, we found that the visual cortices of
HCs could be roughly divided into two parts: the superior
part near the parietal lobe and the inferior part near the
temporal lobe, which might reflect the dorsal and ventral
pathway in visual information transmission.'® However, the
parcellation patterns of POAG patients could not be clearly
divided into superior and inferior parts, which might be due
to some defects in the process of visual information trans-
mission.

Graph theoretical analysis demonstrated differences in
network properties between the two groups. Studies have
revealed that in the POAG brain, several visual areas
had decreased spontaneous brain activities and decreased
connectivities with the rest of the brain compared with
HCs.?-?7 This might account for the decreased nodal degree
and rich club index in POAG patients compared with
HCs. Previous studies have reported functional reorgani-
zation in the visual cortex in the POAG brain?>%% in
other words, the original functional connections might be
blocked and some long-range connections might be gener-
ated in the visual networks, leading to small-world topology
for the visual network and enhancement of network effi-
ciency. In addition, several studies have reported functional
compensation in the POAG brain with increased functional
connectivities between normally functioning regions.?®?°

The increased small-world index and nodal efficiency may
also be attributed to functional compensation.

Evaluating Metrics

In terms of evaluating metrics, K-means clustering had better
performance than Ward clustering in terms of reproducibil-
ity, which was consistent with the previous study.!” The func-
tional atlas of Dosenbach et al.!® and Power et al.” achieved
better scores in homogeneity index, which was because
these two atlases defined each subregion as a sphere region-
of-interest (ROI) with a radius of 5 mm; smaller subregions
tended to have a higher homogeneity index. In other words,
these two atlases were discontinuous atlases. This could also
be seen from the results of SC. Because SC not only assesses
within-parcel similarity but also assesses interparcel dissim-
ilarity, making it more sensitive to spatial contiguity.'”> The
worst performance of the Dosenbach et al.'® and Power et
al? atlases were attributed to their discontinuity. Besides,
it was easy to find that data-driven approach performed
better than Brodmann atlas and the Craddock et al® atlas in
SC and homogeneity index, which implied that data-driven
approach could better characterize functional organization
of the POAG brain than traditional brain atlases that were
generated from healthy populations.?

Among different network properties, nodal degree is
the number of edges attached to the node, which reflects
nodal information communication ability in the network.>®
Nodal efficiency characterizes the efficiency of parallel infor-
mation transfer in the network.?> Data-driven parcellation
approaches had higher nodal degree and efficiency, which
reflected higher information communication and transmis-
sion in the network. Based on the earlier described results, it
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Ficure 5. Graph theoretical analysis between POAG patients and HCs using data-driven atlas and frequently used brain atlases. We were
not able to calculate the small-world index and rich club index for the two groups using Brodmann atlas due to granularity of parcellation.

could be concluded that functional features captured by the
data-driven atlas may be more representative of the POAG
brain.!®

Applicability of Data-Driven Atlas in fMRI Studies
of POAG

In graph theoretical analysis, all atlases revealed the same
type of differences (POAG < HC or POAG > HC) in network
properties between the two groups. Also, the application of
data-driven visual atlas facilitated the differences in graph
theoretical analysis, which is important for future studies.
However, under certain circumstances the brain ROIs by
Dosenbach et al.'’ and Power et al.” showed more significant
results between the two groups. As discussed earlier, these
two types of brain ROIs possessed high functional homo-
geneity inside each ROI, which might help to facilitate the
differences in graph theoretical analysis.

Data-driven approaches parcellated voxels with similar
functional connectivity profiles into the same cluster.!>:3!
Because POAG patients showed functional alterations in the
visual cortices,” %’ data-driven algorithm would detect the
heterogeneity and assigned relevant voxels into a different
cluster. As for HCs, brain functions during resting-state were
more homogeneous. Therefore data-driven atlas could char-

acterize functional reorganization of the POAG brain, and
by using data-driven atlas generated from diseased patients,
it was easier to locate differences in functional connectiv-
ity and network properties between diseased and healthy
subjects. In addition, the intrasubject variability for POAG
patients and HCs using the data-driven atlas were compara-
ble to those utilizing frequently used brain atlas, indicating
its generalization ability. Therefore it is suggested that the
data-driven atlas has potential use in the population-based
studies of functional connectivity and functional network of
POAG patients.

There are several limitations needed to be addressed.
First, we only parcellated the visual cortices of POAG
patients because visual cortices were the main ROI for
visual diseases. Second, small sample size, age variability,
and disease severity may affect the generalization of the
data-driven approaches. Future studies should focus on a
larger sample size. Third, the current study was not able to
provide a recommended parcellation number for the visual
cortices.

CONCLUSIONS

In this study, we parcellated the visual cortices of POAG
patients via data-driven parcellation algorithms and found
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visual cortices could be functionally divided into subregions
different from anatomic boundaries. We also demonstrated
functional reorganizations and altered network patterns in
the visual cortices in the POAG brain compared with HCs,
which may provide insight into the pathology of the disease.
Data-driven parcellation prevailed over frequently used
brain atlas in functional homogeneity and network proper-
ties. In addition, our findings suggest that data-driven parcel-
lation approaches with varying resolution, higher network
properties, and higher homogeneity may be more suitable
for studies of functional connectivity and functional network
of the POAG brain than brain atlases generated from healthy
populations.
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