
Vol.:(0123456789)

Clinical Pharmacokinetics (2023) 62:67–76 
https://doi.org/10.1007/s40262-022-01185-4

ORIGINAL RESEARCH ARTICLE

Evaluation of Neonatal and Paediatric Vancomycin Pharmacokinetic 
Models and the Impact of Maturation and Serum Creatinine Covariates 
in a Large Multicentre Data Set

Jasmine H. Hughes1  · Dominic M. H. Tong1  · Jonathan D. Faldasz1 · Adam Frymoyer2 · Ron J. Keizer1 

Accepted: 20 October 2022 / Published online: 21 November 2022 
© The Author(s) 2022

Abstract
Background and Objective Infants and neonates present a clinical challenge for dosing drugs with high interindividual vari-
ability due to these patients’ rapid growth and the interplay between maturation and organ function. Model-informed preci-
sion dosing (MIPD), which can account for interindividual variability via patient characteristics and Bayesian forecasting, 
promises to improve individualized dosing strategies in this complex population. Here, we assess the predictive performance 
of published population pharmacokinetic models describing vancomycin in neonates and infants, and analyze the robustness 
of these models in the face of clinical uncertainty surrounding covariate values.
Methods The predictive precision and bias of nine pharmacokinetic models were compared in a large multi-site data set  
(N = 2061 patients, 5794 drug levels, 28 institutions) of patients aged 0–365 days. The robustness of model predictions to 
errors in serum creatinine measurements and gestational age was assessed by using recorded values or by replacing covari-
atevalues with 0.3, 0.5 or 0.8 mg/dL or with 40 weeks, respectively.
Results Of the nine models, two models (Dao and Jacqz-Aigrain) resulted in predicted concentrations within 2.5 mg/L or 
15% ofthe measured values for at least 60% of population predictions. Within individual models, predictive performance 
often 2 differed in neonates (0–4 weeks) versus older infants (15–52 weeks). For preterm neonates, imputing gestational age 
as 40 weeks reduced the accuracy of model predictions. Measured values of serum creatinine improved model prediction-
scompared to using imputed values even in neonates ≤1 week of age.
Conclusions Several available pharmacokinetic models are suitable for MIPD in infants and neonates. Availability and 
accuracy of model covariates for patients will be important for guiding dose decision-making.
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Key Points 

Of the nine pharmacokinetic models evaluated in a large, 
real-world data set (N = 2061 patients), two models 
(Dao, Jacqz-Aigrain) were found suitable for guiding 
vancomycin dosing decisions for infants and neonates for 
patients aged 0–52 weeks, defined as producing predic-
tions within a clinically tolerable window for at least 
60% of patients for population model predictions.

For preterm neonates, imputing gestational age reduced 
the accuracy of model predictions.

Despite clinical wisdom suggesting serum creatinine 
levels are not informative of renal clearance early in 
life, our results confirm that measured serum creatinine 
values improve model predictions.
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1 Introduction

Dosing in neonate and infant patients is challenged by their 
dynamic physiology, high inter-patient variability in body 
size and organ function, and the difficulty in conducting 
pharmacokinetic (PK) studies in this vulnerable popula-
tion. Dosing guidelines for this patient population often 
extrapolate from studies in older paediatric or adult popula-
tions, and attainment of pharmacological exposure targets 
is poor for many drugs [1–3]. One approach for improving 
exposure target attainment is model-informed precision 
dosing (MIPD), in which doses are tailored to an individual 
based on their demographic, anthropometric, genetic and/
or biomarker information using a PK model [4–6]. These 
model predictions can be tailored to the patient based on 
drug serum concentrations or pharmacodynamic markers 
using Bayesian estimation of the patient’s PK parameters 
[7, 8].

Optimised application of MIPD requires a PK model 
that adequately describes the drug PK in the intended 
population [9]. PK models typically explain some of the 
inter-individual variability using patient-specific covari-
ates. For infants and neonates, maturation and size are 
key predictors of drug PK. Maturation-related PK vari-
ation is usually modelled using age [e.g. postmenstrual 
age (PMA) or chronological age], and variation related to 
body size is typically modelled using body weight [10]. 
Biomarkers of organ function, such as serum creatinine 
for renally cleared drugs, can provide further patient-
specific PK information about a patient [11].

Translating MIPD to clinical care has unique challenges. 
In addition to errors introduced into the dose selection pro-
cess through use of a mis-specified PK model, there may be 
uncertainty or errors in the clinical data fed into the model. 
For example, in neonates and infants, the precise gesta-
tional age (GA) of a patient may be unknown or errone-
ously estimated [12], yet this information is needed for PK 
models that use PMA to model maturation. For newborns 
in the first few days of life, there is conflicting evidence 
regarding the relationship between serum creatinine and 
renal function. Serum creatinine at birth is partially reflec-
tive of maternal levels due to placental transfer [13–17], 
yet serum creatinine has still been found to be predictive 
of kidney function and drug PK during this time period 
[18–20].

Here, we investigate the impact of uncertainty in 
maturation and serum creatinine on the performance of 
PK models in an MIPD context, using a large data set of 
neonatal and young paediatric patients treated with van-
comycin. We first compare the ability of nine literature 
PK models to predict vancomycin serum concentrations. 
We then repeat this analysis using either the measured 
values or imputed values for serum creatinine or GA. We 

interpret these findings in the context of the mathemati-
cal structure of these models to relate serum creatinine or 
PMA to vancomycin pharmacokinetics. Together, these 
experiments aim to guide model selection decisions for 
MIPD of vancomycin in infants specifically, but also pro-
vide practical clinical guidance for interpretation of PK in 
infant populations more generally.

2  Patients and Methods

2.1  Ethics

Data forming the basis of this analysis were collected as part 
of routine health care operations at contracted health care 
entities, and were deidentified prior to analysis. Therefore, 
this study is exempt from federal Human Research Subjects 
regulations as defined in the federal regulations 45 CFR 
46.102(f).

2.2  Data Collection

Data were collected retrospectively from data entered into 
the InsightRX Nova precision dosing platform over the 
course of routine clinical care at 28 institutions located 
within the United States of America. These data included 
patient sex, height and weight; chronological age at the time 
of the first dose of vancomycin (AGE); GA at birth; serum 
creatinine measurement times and measured values; serum 
vancomycin measurement times and measured levels; and 
the quantity, timing and infusion duration of vancomycin 
administered. From these quantities, PMA was calculated 
as follows:

Patient records were included if the patient was < 365 
days of age, received at least two doses of vancomycin 
within a 1-week period, and had at least one vancomycin 
therapeutic drug monitoring sample collected during that 
period. Patient records were excluded if medication adminis-
tration records could not be unambiguously interpreted (i.e., 
multiple simultaneous doses, dose quantities that could not 
be converted to milligrams, gaps in dosing > 1 month, van-
comycin drug concentrations prior to the first medication 
administration), if serum creatinine or weight measurements 
were unavailable or if data entry errors were suspected (e.g., 
physiologically implausible drug concentrations or covari-
ate values). Some of these data were previously used in a 
separate model validation study [21]. For patients where GA 
was unavailable, it was imputed to be 40 weeks. The impact 
of this imputation was assessed by repeating the analysis 
for patients for whom GA was known with an imputed GA.

PMA[weeks] = AGE[weeks] + GA[weeks].
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2.3  Pharmacokinetic Analysis

Nine population pharmacokinetic models [22–30] were 
selected from the literature based on availability of covari-
ates in the data set, their suitability for describing pharma-
cokinetics in neonates and infants, and their current use in 
MIPD clinical routines (Supplementary Table 1, see elec-
tronic supplementary material [ESM]). This was a non-
exhaustive literature search, but produced a set of models 
with considerable variability in model development popula-
tion size and patient characteristics (Supplementary Table 1, 
see ESM) and covariate models (Supplementary Table 2, see 
ESM). All selected models used weight as a covariate. All 
models except the Germovsek model used serum creatinine 
as a predictor of vancomycin clearance. All models used 
either GA or PMA as predictors of clearance, except for the 
Le model, which was developed on a data set containing 
children ≥ 90 days old.

These models were implemented into PKPDsim software 
[31] and are available open-source at github.com/InsightRX/
PKPDsim. For each model and for each patient treatment 
course, drug concentrations were iteratively predicted using 
maximum a posteriori (MAP) Bayesian estimation as pre-
viously described [32]. Briefly, population PK parameters 
were used to simulate drug concentration–time curves to 
predict the first drug level for each patient, referred to here 
as a priori predictions. For subsequent drug levels, MAP 
Bayesian estimates of PK parameters informed by the first 
n drug levels were used to predict the (n + 1)th drug level, 
referred to here as a posteriori predictions. The Jacqz-
Aigrain model uses creatinine assay type as a covariate; due 
to ambiguity in how to implement this covariate based on 
the publication description, this covariate effect was ignored. 
Please refer to the supplementary files for R code to repro-
duce parts of the analysis.

2.4  Impact of Serum Creatinine and Gestational 
Age on Model Predictions

To assess the impact of inaccuracies in covariate measure-
ments, the iterative prediction process described above was 
repeated with all serum creatinine lab results replaced with 
an imputed value (0.3, 0.5 or 0.8 mg/dL) or with a GA of 
40 weeks. Only patients for whom GA was recorded were 
included in the assessment of the impact of imputing GA.

2.5  Statistical Analysis

Prediction precision was evaluated using root mean square 
error (RMSE), which penalises highly erroneous predictions 
by squaring residuals. Prediction bias was evaluated using 
mean percent error (MPE). These metrics were calculated 
by comparing the iteratively predicted drug concentrations 

(pred) relative to the measured concentrations (obs) across 
N concentrations as follows:

Clinical suitability was evaluated by quantifying the pro-
portion of predicted drug concentrations that fell within an 
error margin of 15% or 2.5 mg/L of the measured concen-
trations. This error margin was determined based on clini-
cal judgment regarding what margin of error may be likely 
to impact clinical decision making [32], and corresponds 
to half the width of a target trough range of 15–20 mg/L. 
Models were deemed to be suitable for clinical use if at least 
60% of predictions fell within this error margin for a priori 
predictions.

Variability in these error metrics was assessed by boot-
strapping samples and computing the error metric across 
these samples. The 5th and 95th percentiles of these error 
metrics were compared, with overlapping confidence inter-
vals demonstrating statistical significance. For comparison 
of two distributions, Shapiro tests for normality were per-
formed to assess normality, and parametric or non-paramet-
ric tests were used as appropriate.

3  Results

3.1  Patients and Data Collection

There were 2061 patients who met the inclusion criteria 
(Table 1). Although few of the vancomycin serum levels 
available (< 5%) were peak samples, defined here as being 
collected within 3 h of the end of infusion, 32% of the lev-
els were collected 3–6 h post-infusion, which was found to 
be particularly informative for Bayesian forecasting in adult 
vancomycin patients [33, 34]. The remaining samples were 
collected a median of 11 h (range 6–70 h, mean 14 h) after 
the preceding dose.

3.2  Comparison of Model Predictive Performance

Model prediction precision (Fig. 1a) was highest for patients 
within the first 4 weeks of life using the Jacqz-Aigrain 
model. For patients aged 5–14 weeks, predictive precision 
showed less variation across the models evaluated, with the 
Jacqz-Aigrain model producing the lowest RMSE but statis-
tically significantly lower only compared with the Anderson 
and Germovsek models. For patients aged 15–52 weeks, the 
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Jacqz-Aigrain model produced the most precise predictions 
a priori and the Kloprogge model produced the most precise 
predictions a posteriori.

Model prediction bias (Fig. 1b) was lowest for patients 
aged 0–4 weeks using the Le model for a priori predictions 
and using the Germovsek model for a posteriori predictions. 
For patients aged 5–14 weeks, a priori bias was minimised 
using the Frymoyer model and a posteriori bias was mini-
mised using the Le model. For patients aged 15–52 weeks, a 
priori bias was minimised using the Germovsek model and a 
posteriori bias was minimised using the Jacqz-Aigrain model.

As a metric of the clinical impact of these prediction 
accuracies, we also examined the proportion of predictions 
that were within 15% or 2.5 mg/L of the measured concen-
trations (Fig. 1c), error bounds deemed to be appropriate for 
informing dosing decisions. For patients aged 0–14 weeks, 
the Dao model was the most suitable for a priori predic-
tions while the Kloprogge model was the most suitable for 
a posteriori predictions. For patients aged 15–52 weeks, the 
Jacqz-Aigrain model was the most suitable for a priori pre-
dictions while the Kloprogge model was the most suitable 
for a posteriori predictions. Across all age groups, the Dao 
and the Jacqz-Aigrain models resulted in prediction accu-
racies of over 60% for a priori predictions. Accuracy also 
exceeded 60% for the Frymoyer model for the 5–14 weeks 
age group and for the Germovsek model for the 0–4 weeks 
age group.

Overall, the Jacqz-Aigrain and Dao models performed 
the best in patients 0–4 weeks old. For patients 15–52 weeks 
of age, the Jacqz-Aigrain and Kloprogge models performed 
best. For patients between 5 and 14 weeks of age, predictive 
performance was similar across all but the Anderson model.

The Jacqz-Aigrain model’s good predictive performance 
in children older than 15 weeks (105 days) was particularly 
interesting, since it was developed on a data set of patients 
under 13 weeks of age (Supplementary Table 1, see ESM). 
One possible explanation is that this model also allows for 

interoccasion variability, that is, variation in an individual’s 
PK parameters over the course of therapy.

Given the high proportion of patients for whom GA was 
not available, the above results were disaggregated according 
to whether GA was known or imputed (Fig. S1, see ESM). 
Overall trends between models were similar. Significant dif-
ferences observed between the imputed and known popula-
tions may be due to differences in age distributions between 
the two groups. The median postnatal age of patients miss-
ing GA in the 5–14 weeks age group was 87 days versus 
49 days for patients with known GA (Wilcoxon rank sum p 
value < 0.0001) while for the 15–52 weeks age group the 
difference in age was 190 versus 177 days (Wilcoxon rank 
sum p value < 0.01).

3.3  Predictive Value of Serum Creatinine Early 
in Life

Given the uncertainty in the relationship between neonatal 
serum creatinine and neonatal renal function, we investi-
gated how informative serum creatinine measurements were 
for predicting vancomycin pharmacokinetics in patients 
0–28 days of age. Iterative predictions were repeated using 
either measured serum creatinine values or standard values, 
and error metrics were calculated across age groups selected 
to capture the biphasic dynamics in serum creatinine over 
the first 7 days of life, as reported by Allegaert et al. [18]. 
The Germovsek model was excluded from this analysis since 
it does not use serum creatinine as a covariate (Supplemen-
tary Table 1, see ESM).

For all age groups examined and for all models—except 
for the Anderson model, which showed poor predictive per-
formance (Fig. 1)—using measured serum creatinine values 
either minimised prediction errors or was statistically indis-
tinguishable from the imputed serum creatinine value that 
minimised precision (Fig. 2a) regardless of serum creati-
nine measurement assay used (Fig. S2a, see ESM). Trends in 

Table 1  Summary of patient 
characteristics across age 
groups. Unless otherwise 
indicated, values represent 
median (range)

Metric Unit Age Overall

0–4 weeks 5–14 weeks 15–52 weeks

Patients N 625 516 920 2061
Sites N 23 17 17 28
Levels N 1859 1394 2541 5794
0–3 h post-infusion N 59 54 75 188
3–6 h post-infusion N 189 366 1273 1828
Gestational age Weeks 38 (22–43) 37 (22–42) 38 (23–42) 38 (22–43)
Gestation age missing N (%) 11 (1.8%) 63 (12%) 751 (82%) 824 (40%)
Sex: female/male N 259/366 206/310 355/565 820/1241
Baseline weight kg 2.8 (0.3–5.6) 3.3 (0.5–7.2) 6.3 (1.2–15.1) 4.1 (0.3–15.1)
Baseline serum creatinine mg/dL 0.5 (0.1–8.8) 0.3 (0.1–10) 0.2 (0.1–4) 0.3 (0.1–10)
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minimising bias were less clear, and varied by age group and 
model (Fig. 2b) but not according to reported serum creati-
nine assay (Fig. S2b, see ESM). For a posteriori predictions, 
the benefit of measured versus imputed serum creatinine 
was muted (Fig. S3, see ESM), reflective of MAP Bayesian 
estimates adapting to moderate covariate model misspecifi-
cations by using informative drug concentrations. Together, 
these results confirm that measured serum creatinine values 
are informative of vancomycin pharmacokinetics, even in 
the first few days of life.

3.4  Effect of Imputing Gestational Age on Model 
Predictions

Although GA or PMA, which is calculated from GA and 
postnatal age, are consistently found to be predictive of 
neonatal vancomycin pharmacokinetics (Supplementary 
Table 1), GA is not always available at the point of care. 
In these instances, some typical value is conventionally 

imputed [35]. To assess the impact of imputing GA on 
predicting vancomycin pharmacokinetics, we compared 
model predictions made using either the recorded GA or an 
imputed value of 40 weeks for patients for whom GA was 
known. The Le model, which uses neither GA nor PMA, was 
excluded from this analysis.

Prediction error was statistically significantly higher 
when GA was imputed for patients of PMA ≤ 37 weeks for 
the Dao, Colin, Frymoyer, Germovsek and Kloprogge mod-
els (Fig. 3a). Prediction bias was broadly minimised using 
recorded GA except for patients with PMA of 37–42 weeks 
modelled using the Dao or Germovsek models (Fig. 3b). For 
the patients with PMA ≥ 43 weeks, the impact of imputed 
gestational age was not significantly different from using the 
recorded GA. Trends were similar for a posteriori predic-
tions, although the effect sizes of imputed GA were reduced 
(Fig. S4, see ESM). Together, these results suggest that for 
patients of PMA ≥37 weeks, imputing GA as 40 weeks is 
generally suitable in MIPD of vancomycin.

Fig. 1  Model predictive performance by patient age. a Root mean 
square error (RMSE), b mean percent error (MPE), c proportion of 
predictions within 15% or 2.5  mg/L of the observed value for the 
first or second drug level for each treatment course. Variability was 
assessed across 1000 bootstraps: points indicate the  median metric 

and vertical lines indicate the 5th to 95th percentile of bootstrapped 
metrics. Solid triangles indicate the lowest (a, b) or highest (c) abso-
lute value for a particular age group. Open triangles indicate values 
statistically indistinguishable from values marked with a solid trian-
gle.
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4  Discussion

MIPD holds particular promise for improving drug expo-
sure target attainment in neonatal and infant patients since 
PK models can account for some of the dramatic interindi-
vidual variability through the use of covariates like GA or 
serum creatinine and through Bayesian forecasting. Here, we 
compare the predictive performance of nine vancomycin PK 

models in a large multi-site dataset of patients aged 0–365 
days, examining the contributions of maturation and renal 
function covariates to the predictive performance of these 
PK models. A strength of our approach is that we iteratively 
predict the next serum drug concentration using previous 
levels. This approach assesses model fit-for-purpose for 
MIPD in clinical practice, in which clinical decisions must 
be made without knowing future lab results.

Fig. 2  Effect of imputed versus measured serum creatinine (CR) by 
pharmacokinetic model and patient age for a priori predictions. a 
Root mean square error (RMSE) and b mean percent error (MPE). 
Variability was assessed across 1000 bootstraps: points indicate 
the median metric and vertical lines indicate the 5th to 95th percen-
tile of bootstrapped metrics. Imputed CR values are shown in units 

of mg/dL. Solid triangles indicate CR values with the lowest absolute 
RMSE or MPE per model and per age group. Open triangles indicate 
CR values that produce RMSE or MPE statistically indistinguishable 
from conditions marker with a solid triangle. Number of patients per 
age group, respectively from left to right: 7, 36, 46, 584
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We identified the Jacqz-Aigrain and Dao models as clini-
cally suitable for model-informed precision dosing, based 
on at least 60% a priori predictions falling within a clinically 
acceptable error margin. We also found that MAP Bayes-
ian estimation of individual PK parameters attenuates the 

differences in prediction error between different models and 
between covariate misspecifications. Where a PK model is 
thought to be a poor fit for a patient, or where uncertainty in 
covariate values is suspected, clinicians could collect earlier 
drug levels to improve model prediction precision.

We further found that neonatal serum creatinine, which 
may partially reflect maternal serum creatinine early in life, 
still provides valuable information on the neonate’s drug 
clearance (CL) and improves model prediction precision. 
Our work here supports the findings by others that serum 
creatinine concentrations can be interpreted and provide 
insight into neonate kidney function during the first few 
days of life [19]. Previously, our group showed that limit-
ing serum creatinine to a minimum value of 1 mg/dL in 
vancomycin patients over the age of 65 years, a common 
clinical practice at some institutions, reduces the precision of 
PK model predictions [36]. Together, these studies provide 
evidence that observed, unadjusted biomarker values inform 
and improve pharmacokinetic model predictions, even if the 
link between these biomarkers and other clinical outcomes is 
more complex. It underscores the need to consider biomark-
ers on a per-application basis.

Pharmacokinetic models vary in how they model the 
relationship between a covariate value and a pharmacoki-
netic parameter. Figure 4 illustrates the mathematical model 
between serum creatinine or PMA and CL, holding con-
stant all other covariates, for the nine models investigated 
here (see Supplementary Table 2 in the ESM for equations 
describing these relationships). The relationships between 
serum creatinine and CL plotted in Fig. 4 provide insight 
into our findings reported in Fig. 2a; models that show high 
variability in prediction error based on the value of serum 
creatinine imputed (Anderson, Capparelli) include a strong 
relationship between serum creatinine and CL in their covar-
iate models. Conversely, models that show little variability 
in prediction error across values imputed for serum creati-
nine (e.g., Frymoyer, Colin) include weaker effects of serum 
creatinine on CL in their covariate models. Similarly, the 
relationships between PMA and CL plotted here are consist-
ent with Fig. 3, in that the models most sharply adversely 
impacted by imputing GA (e.g., Kloprogge) include a strong 
relationship between PMA and CL in their covariate mod-
els while those less sensitive to imputed GA (e.g., Jacqz-
Aigrain) show a weaker relationship between PMA and CL 
in their covariate models. Examination of covariate relation-
ships in this way generalises to other drugs and patient popu-
lations, for example, to provide clinical guidance in using 
a model with drug–drug interaction effects or pharmacog-
enomic effects when a patient’s medical history or phar-
macogenomic status is unknown. Small deviations in a PK 
parameter may not lead to clinically meaningful differences 
in model predictions or dose selections, while larger devia-
tions in parameter values may indicate that an alternative 

Fig. 3  Effect of using patient’s true gestational age (GA) compared 
with imputing a GA of 40 weeks on model a priori predictive accu-
racy by pharmacokinetic model and patient postmenstrual age. a Root 
mean square error (RMSE) and b mean percent error (MPE). Varia-
bility was assessed across 1000 bootstraps: points indicate the median 
metric and vertical lines indicate the 5th to 95th percentile of boot-
strapped metrics. Solid triangles indicate a significant difference 
between imputed and recorded gestational age for the given model 
and age group. Number of patients per postmenstrual age group, 
respectively from lowest age to highest age: 334, 449, 218, 336
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PK model or dosing algorithm should be selected, or that 
the clinician should exercise particular caution and collect 
additional therapeutic drug monitoring samples if feasible.

Clinical guidelines are often based on discrete age catego-
ries, but maturation is, of course, a physiologically continu-
ous process. In our analysis here, we found that very young 
neonate patients (0–4 weeks of age) are best described by 
one set of models while older patients (15+ weeks of age) 
are described best by another set of models, with patients in 
the middle age group showing less clear trends. For patients 
of PMA ≥ 37 weeks, imputing GA as 40 weeks does not 
impede model predictive performance. Here, we used a 
relatively crude method of imputation of GA for patients 
in which GA was unknown. More sophisticated methods of 
imputation, such as predicting GA based on birth weight or 
preterm status, could improve model predictive precision 
in instances where uncertainty in this covariate may impact 
clinical decision making [35]. Maturation is typically mod-
elled as a sigmoidal effect on CL (Supplementary Table 2, 
see ESM), with CL increasing rapidly over the last trimester 
and first few weeks of life and then tapering off (Fig. 4). 
Deviations in estimated PMA therefore have a smaller effect 
on PK parameters as a patient ages.

A limitation of our approach is that we could not assess 
the ability of the models to accurately estimate area under 
the concentration–time curve (AUC), the primary drug 
exposure metric of clinical interest in vancomycin [37]. 
Without dense sampling, it is not possible to estimate the 
true AUC experienced by a patient. Here, we assessed the 
predictive ability of models by their ability to accurately 
predict the next serum concentration, allowing comparison 
of a predicted quantity to a known value. We have previously 
shown that the ability to predict trough concentrations cor-
relates well with the ability to estimate AUCs [21].

5  Conclusion

Overall, this research provides guidance for the selection 
and interpretation of PK models in MIPD of vancomycin in 
neonatal and infant patient populations, as well as provid-
ing additional insight into the impact of serum creatinine 
and maturation on pharmacokinetics in neonatal populations 
more broadly.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40262- 022- 01185-4.
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