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Abstract

Background: Previous anatomical and behavioral studies have shown that melanin-concentrating hormone is involved 
in the modulation of emotional states. However, little is known about brain regions other than the dorsal raphe nucleus 
that relate the melanin-concentrating hormone-ergic system to depressive states. Numerous studies have shown that the 
locus coeruleus is involved in the regulation of depression and sleep. Although direct physiological evidence is lacking, 
previous studies suggest that melanin-concentrating hormone release in the locus coeruleus decreases neuronal discharge. 
However, remaining unclear is whether the melanin-concentrating hormone-ergic system in the locus coeruleus is related 
to depressive-like behavior.
Method: We treated rats with an intra-locus coeruleus injection of melanin-concentrating hormone, intracerebroventricular 
injection of melanin-concentrating hormone, or chronic subcutaneous injections of corticosterone to induce different 
depressive-like phenotypes. We then assessed the effects of the melanin-concentrating hormone receptor 1 antagonist 
SNAP-94847 on depressive-like behavior in the forced swim test and the sucrose preference test.
Results: The intra-locus coeruleus and intracerebroventricular injections of melanin-concentrating hormone and chronic 
injections of corticosterone increased immobility time in the forced swim test and decreased sucrose preference in the 
sucrose preference test. All these depressive-like behaviors were reversed by an intra-locus coeruleus microinjection of 
SNAP-94847.
Conclusions: These results suggest that the melanin-concentrating hormone-ergic system in the locus coeruleus might play 
an important role in the regulation of depressive-like behavior.
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Introduction
Melanin-concentrating hormone (MCH) is a 19-amino-acid cyc-
lic neuropeptide that functions as a neuromodulator in rats. 
It was shown to be fully conserved in mammals, including 

humans (Forray, 2003; Saito and Nagasaki, 2008), and regu-
lates feeding, energy homeostasis, mood, and the sleep-wake 
cycle (Verret et  al., 2003; Monti et  al., 2013). Neurons that 
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synthesize MCH are located mainly in the lateral hypothalamus 
and incerto-hypothalamic area and project throughout the cen-
tral nervous system (Bittencourt et al., 1992; Saito et al., 2001; 
Torterolo et al., 2006).

MCH activates 2 types of receptors: MCH receptor 1 (MCH-
R1) and MCH-R2. MCH-R1 is the only receptor subtype that is 
found in rodents (Tsunematsu et al., 2014). Because of the dense 
expression of MCH-R1 in areas of the brain that are involved 
in stress, reward, and emotional regulation (Saito et al., 2001), 
MCH signaling was suggested to regulate depressive-like 
behavior. Pharmacological support for this hypothesis was 
found when the MCH-R1 antagonist SNAP-7941 reduced immo-
bility time in rats in the forced swim test (FST), and this effect 
was similar to fluoxetine (Borowsky et al., 2002). Additionally, 
the MCH-R1 antagonist N-[3-(1-[(4-[3,4-difluorophenoxy]phe-
nyl)methyl]-4-piperidinyl)-4-methylphenyl]-2- methylpropan-
amide hydrochloride (SNAP-94847) was recently reported to 
effectively reverse the decrease in sucrose intake in an animal 
model of chronic mild stress-induced anhedonia (Smith et al., 
2009). The MCH-R1 antagonist SNAP-94847 was shown to have 
a more rapid onset of action in the novelty-suppressed feed-
ing test than a traditional antidepressant (David et  al., 2007). 
The genetic deletion of MCH-R1 in female mice also resulted in 
antidepressant effects in the FST (Roy et al., 2007), highlighting 
a potential advantage of MCH-R1 as a target for the treatment 
of depression. However, the genetic inactivation of MCH-R1 
in male mice did not result in an antidepressant-like effect 
(Roy et al., 2007). SNAP-7941 and 3 other MCH-R1 antagonists 
(T-226296, A-665798, and A-777903) did not have antidepres-
sant efficacy in other paradigms (Basso et al., 2006). Thus, still 
debatable are the roles of MCH in depression-related behaviors. 
Moreover, the detailed mechanisms by which neuropeptide sys-
tems, including MCH, regulate depressive-like states are com-
plex. Such complexity might be partially attributable to findings 
of studies that pharmacologically or genetically manipulated 
the MCH-ergic system and observed systemic effects, whereas 
MCH-ergic systems in specific brain regions may have distinct 
functions. Previous studies showed that microinjections of MCH 
in the dorsal raphe nucleus increased the duration of rapid-eye-
movement (REM) sleep (Lagos et al., 2009) and increased immo-
bility time in the FST (Lagos et al., 2011), thus demonstrating its 
pro-depressive effects.

Noradrenergic LC neurons are an important component 
of the sleep-wake cycle and have wake-promoting and REM-
suppressive properties (Lu et  al., 2006; Saper et  al., 2010). The 
moderate innervation of MCH-containing neurons in tyrosine 
hydroxylase (TH)-positive cells has been identified in the LC (Del 
Cid-Pellitero and Jones, 2012). When injected directly in the LC, 
MCH increased the time spent in REM sleep (Monti et al., 2015). 
MCH has been suggested to silence LC neurons during REM sleep 
(Saper et al., 2010) while MCH-expressing neurons remain active 
(Hassani et al., 2009). Although direct physiological evidence is 
lacking, MCH release in the LC has been suggested to decrease 
neuronal discharge (Del Cid-Pellitero and Jones, 2012).

Numerous studies have indicated that the LC is involved 
in the regulation of depression. A minimal loss of LC neurons 
induced depressive-like behavior (Szot et  al., 2016). However, 
unknown is whether the MCH-ergic system in the LC is func-
tionally relevant to depressive-like behavior. The present study 
tested the hypothesis that the MCH-ergic system in the LC 
contributes to depressive-like behavior and that the pharma-
cological inhibition of MCH-R1 in the LC ameliorates depres-
sive-like behavior. Rats received a direct intra-LC microinjection 
of MCH or intracerebroventricular (i.c.v.) injection of MCH, and 
depressive-like behavior was assessed in the sucrose preference 
test (SPT) and FST. We then examined whether an intra-LC injec-
tion of the MCH-R1 antagonist SNAP-94847 blocks depressive-
like behavior that is induced by MCH or repeated corticosterone 
(CORT) administration.

Methods

Animals

Male Sprague-Dawley rats (250–300 g, Grade I, purchased from 
the Animal Center of Peking University, Beijing, China) were 
individually housed in plastic cages and maintained under an 
artificial 12-h-light/-dark cycle (lights on 9:00 am to 9:00 pm) 
at 23°C ± 1°C and 50% ± 10% humidity. The rats had ad libitum 
access to food and water. All the experiments were conducted in 
accordance with the European Communities Council Directive 
(2010/63/EU) for the use of experimental animals and were 
approved by the Peking University Committee on Animal Care 
and Use.

Drugs

Corticosterone (Tokyo Chemical Industry Co., Ltd, Tokyo, Japan) 
was dissolved in 0.9% saline with 2% Tween 80 and adminis-
tered s.c. MCH was purchased from Phoenix Pharmaceutical 
(Burlingame, CA) and dissolved in saline. The MCH-R1 antago-
nist SNAP-94847 was obtained from Tocris (Minneapolis, MN) 
and dissolved in 30% dimethylsulfoxide. We did not observe any 
adverse effects of dimethylsulfoxide in rats at this concentra-
tion, which is consistent with a previous report (Xu et al., 2009).

Experimental Design

In the first experiment, different doses of MCH (50 and 100 ng 
in 0.2  μL of saline/site) were bilaterally microinjected in the 
LC 30 minutes before the behavioral tests. SNAP-94847 (0.2 μL 
of 30  μg/μL) or vehicle was bilaterally microinjected in the LC 
30 minutes before the microinjection of MCH (Figure  1A). The 
microinjections were performed with a Hamilton syringe that 
was connected to a 33-gauge injection cannula (Plastics One, 
Roanoke, VA). Drug or vehicle was delivered through the injec-
tion cannula that extended 1 mm beyond the guide cannula in a 
0.2-μL volume for 2 minutes. The 0.2-μL volume is not excessive 

Significance Statement
Melanin-concentrating hormone (MCH) is claimed to be involved in the regulation of sleep and depressive-like behavior, and 
microinjecting MCH in the locus coeruleus (LC) could increase time spent in rapid-eye-movement sleep. In the present study, 
we found an intra-LC microinjection of MCH-Receptor 1 antagonist SNAP-94847 could block the depressive-like behavior of rats 
produced by repeated subcutaneous injection of corticosterone (CORT), i.c.v. injection of MCH, and intra-LC microinjection of 
MCH. Our results demonstrated that the MCH-ergic system in the LC is involved in the development of depressive-like behavior.
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for the LC, as demonstrated by previous reports (Felippotti et al., 
2011; Monti et al., 2015; Wang et al., 2015). The injection cannula 
was kept in place for another 2 minutes to allow the drug to 
completely diffuse from the tip. After the behavioral tests, 18 
rats were perfused and prepared for further histological verifica-
tion of the cannula placements. Data from 2 rats were excluded 
because of cannula misplacements, and 2 rats were excluded 
because of death during surgery. The dose of MCH was based on 
a previous study (Monti et al., 2015) with minor modification. At 
least 7 days elapsed between experiments.

In the second experiment (Figure 1B), different doses of MCH 
(0.4, 0.8, and 1.6 μg) and vehicle were dissolved in 5 μL saline and 
microinjected in the lateral ventricle (i.c.v. injection) 30 minutes 
before the behavioral test. SNAP-94847 or vehicle was bilaterally 
microinjected in the LC 30 minutes before the i.c.v. injection of 
MCH. The i.c.v. injections were performed with a polyethylene 
tubing (RWD Life Science, Shenzhen, China) that was connected 
to a 28-gauge injection cannula (RWD Life Science, Shenzhen, 
China). Drug or vehicle was administered through the injection 
cannula in a 5-μL volume for 3 minutes. The injection cannula 
was kept in place for another 2 minutes to allow the drug to 
completely diffuse from the tip. After the behavioral tests, 18 
rats were perfused and prepared for further histological verifi-
cation of cannula placements. Data from 2 rats were excluded 
because of cannula misplacements. The doses of MCH, SNAP-
94847, and vehicle were based on previous reports (Verret et al., 
2003; Xu et  al., 2011; Sun et  al., 2013). At least 7  days elapsed 
between experiments.

In the third experiment, 58 rats received vehicle or 40 mg/kg 
CORT (2 mL/kg) s.c. at 9:00 am daily for 21 days (Figure 1A). SNAP-
94847 (0.2 μL of 30 μg/μL) or vehicle was bilaterally microinjected 
in the LC 30 minutes before the CORT injection from day 15 to 
day 21 for 7 consecutive days. Our previous results indicated 

that rats receiving repeated CORT injections exhibit depressive-
like behavior beginning on day 15 (Cui et al., 2018 ). All the rats 
underwent the behavioral tests 30 minutes after CORT admin-
istration on day 21. After the behavioral tests, the rats were 
perfused and prepared for further histological verification of 
cannula placements. Data from 2 rats were excluded because of 
cannula misplacements. The dose of CORT was based on a pre-
vious study (Wang et al., 2015) with minor modification.

Intracerebroventricular Injection Surgery

Anesthetized rats were positioned in a stereotaxic apparatus 
(Aguilar et al., 2014; Lipski et al., 2017). A single guide cannula 
(23 gauge, RWD Life Science) was implanted in a hole that was 
drilled in the skull above the appropriate targeted structures 
according to the following coordinates: anterior/posterior, 
-0.9  mm; lateral, 1.5  mm; dorsal/ventral, -0.33  mm (Paxinos 
and Watson, 2005). The cannula was secured to the skull with 4 
stainless-steel screws and dental acrylic. After surgery, the rats 
were injected with penicillin for 3 days and allowed to recover 
for 7 days before the behavioral experiments.

Intra-LC Microinjection Surgery

Similar to the i.c.v surgery, for the intra-LC microinjections, 
anesthetized rats were positioned in a stereotaxic apparatus, 
and a double-guide cannula (26 gauge, C/C dist. 2.4 mm, Plastics 
One, Roanoke, VA) was implanted with the tip 1 mm above the 
LC at the following coordinates (distance from lambda): anter-
ior/posterior, -3.4 mm; lateral, ±1.2 mm; dorsal/ventral, -6.0 mm 
below the brain surface (15° inclination of vertical stereotaxic 
bar). After the experiment, the cannula placements were his-
tologically verified by light microscopy in 50-μm sections. The 

Figure 1.  Time course of the experiment and histological identification of the microinjection sites. (A–C) The time courses of the first, second, and third experiments. 

(D) Photomicrograph scan of a coronal section illustrating the localization of locus coeruleus (LC). Arrows indicate the site of bilateral injection. 4V, fourth ventricle.
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injection placements were verified according to Paxinos and 
Watson (2005). All the data that are presented in this study were 
derived from animals whose injection sites were within the LC 
(Figure 1D). A total number of 6 rats were excluded because of 
cannula misplacements.

Behavioral Tests

All the animals were randomly divided into 2 separate cohorts 
for the behavioral tests. One cohort underwent only the FST, and 
the other cohort underwent the open field test (OFT) and SPT.

Forced Swim Test
The FST was performed according to a modified version of the 
paradigm (Wang et  al., 2014; Fenton et  al., 2015). On the pre-
test day, each rat was individually placed for 15 minutes into a 
25-cm-diameter × 60-cm-high Plexiglas cylinder that was filled 
with 23°C to 25°C water to a depth of 40 cm. On the test day, the 
rat was placed into the same cylinder again and recorded for 
5 minutes, 30 minutes after CORT administration on day 21 in 
the first experiment, 30 minutes after the i.c.v. MCH injection in 
the second experiment, and 30 minutes after the intra-LC MCH 
microinjection in the third experiment. Behavior was recorded 
by 2 video cameras (1 on top and 1 on the side). After the experi-
ment, the rat was removed from the water, dried with a towel, 
and returned to its home cage. The videotapes were analyzed 
by a researcher who was blind to each rat’s treatment condi-
tion. Behavior in the last 4 minutes of the test was classified 
into 3 types. Immobility was defined as the minimum move-
ment that was necessary to keep the rat’s head above the water. 
Climbing was defined as vigorous vertical forepaw movements. 
Swimming was defined as large and horizontal forepaw move-
ments that displaced water to move the rat’s body around the 
cylinder.

Open Field Test
Locomotor activity was measured in the OFT, which was per-
formed according to a modified version of the paradigm (Wang 
et  al., 2014). The OFT was conducted 30 minutes after CORT 
administration on day 21 in the first experiment, 30 min-
utes after the i.c.v. MCH injection in the second experiment, 
and 30 minutes after the intra-LC MCH microinjection in the 
third experiment. The rats were placed in a Plexiglas chamber 
(40 cm × 40 cm × 65 cm), and behavior was recorded by an auto-
mated video tracking system (DigBehv-LM4, Shanghai Jiliang 
Software Technology, Shanghai, China). The video files were 
later analyzed using DigBehv analysis software. Locomotor 
activity is expressed as the total distance traveled in 10 minutes 
(supplementary Figure 2; Harrell et al., 2013). After the OFT, the 
rats underwent the SPT.

Sucrose Preference Test
The SPT was used to determine anhedonia-like behavior, which 
is considered a core symptom of clinical depression. In the pre-
sent study, the rats were habituated to drink from 2 bottles for 
48 hours. One bottle was filled with water, and the other bottle 
was filled with 1% sucrose solution. The position of the bottles 
was changed every 4 hours to avoid side preference. After train-
ing, the rats were water deprived for 12 hours before the SPT. 
On the test day, after the OFT, the water and 1% sucrose bottles 
were placed in the rat’s home cages, and rats were allowed to 
drink freely from both bottles for 1 hour. Water and sucrose con-
sumption were measured by comparing the weight difference 
of the bottles before and after the test. Anhedonia was assessed 

as sucrose preference, which was calculated according to the 
following formula: sucrose preference = sucrose intake (g) /  
(sucrose intake [g] + water intake [g]) × 100%. To assess the non-
specific suppression of drinking, total fluid consumption was 
calculated as the sum of sucrose intake and water intake.

Immunofluorescence Staining

Anesthetized rats were perfused with 250 mL of phosphate buff-
ered saline (PBS) and 250  mL of 4% paraformaldehyde. Whole 
brains were immediately removed, post-fixed in the same fixa-
tive at 4°C for 24 hours, and then immersed in 30% sucrose at 
4°C for cryoprotection. The brains were rapidly frozen in liquid 
n-hexane that was cooled with a mixture of solid carbon dioxide 
and ethanol. Coronal sections (20 μm) that encompassed the LC 
(Bregma: -9.7 to -10.2 mm) were cut using a freezing microtome 
(Leica CM1850, Leica Microsystems UK, Milton Keynes, UK).

 Each slide-mounted tissue section was double stained 
with TH and MCH according to standard procedures (Cao et al., 
2016; Wang et al., 2017). The sections were first washed in PBS 
(3 × 5 minutes) and then incubated in cold acetone for 30 min-
utes, followed by washing in PBS (3 × 5 minutes). The antigen 
retrieval procedure was conducted in citrate buffer in a micro-
wave (0.01 mol/L, pH = 6.0, 100°C). After cooling to room tem-
perature, the sections were blocked with 5% donkey serum at 
room temperature for 1 hour. The sections were then incubated 
with a mixture of 2 primary antibodies overnight at 4°C. The 
primary antibodies were mouse anti-TH (SantaCruze, 1:1000) 
and rabbit anti-pro-MCH antibody (Phoenix Pharmaceuticals, 
1:500). After washing in PBS (3 × 5 minutes), the sections were 
incubated with respective fluorophore-conjugated secondary 
antibodies (donkey anti-rabbit IgG Alexa Fluor 488, Abcam, 
1:1000; Cy3 donkey anti-mouse IgG, Jackson Laboratories, 
1:1000) for 120 minutes at room temperature, followed by 
washing in PBS (3 × 5 minutes). For negative control, another 
set of brain sections was processed without any anti-MCH 
antibody, and its secondary antibody was retained. Images of 
negative control were captured with te same settings as the 
sections with primary antibody for MCH. Finally, the sections 
were mounted with fluorescent mounting medium with 4’, 
6-diamidino-2-phenylindole.

The sections were examined under a TCS SP8 confocal 
microscope (Leica Microsystems, Wetzlar, Germany). The bright-
ness and contrast of the captured images were adjusted using 
ImageJ software. Tyrosine hydroxylase was labeled red and MCH 
was labeled green.

Statistical Analysis

The data are expressed as mean ± SEM and were analyzed using 
SPSS 21.0 software (SPSS Inc., Chicago, IL). The data were ana-
lyzed using 1-way ANOVA followed by the Bonferroni posthoc 
test or 2-way ANOVA. In all the tests, P < .05 was considered sta-
tistically significant.

Results

Microinjection of SNAP-94847 in the LC Blocked 
Depressive-Like Behavior That Was Induced by an 
Intra-LC Microinjection of MCH

In the first experiment, we examined the effects of a dir-
ect microinjection of MCH in the LC. Different doses of MCH 
were microinjected in the LC. Melanin-concentration hormone 

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyy088#supplementary-data
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at a dose of 100  ng significantly increased immobility time 
(F2,17 = 24.685, P < .001; Figure  2A) and decreased climbing time 
(F2,17 = 12.401, P < .001; Figure  2B). The microinjection of 100  ng 
MCH in the LC also significantly decreased sucrose preference 
in the SPT (F2,17 = 13.397, P < .001; Figure 2D) compared with the 
vehicle group. No significant effects of intra-LC microinjection 
of different doses of MCH on swimming time were observed in 
the FST (P > .05, Figure 2C).

The MCH-R1 antagonist SNAP-94847 was then microin-
jected in the LC before the intra-LC injection of MCH to deter-
mine whether MCH-R1 in the LC is involved in the regulation of 
depressive-like behavior. The ANOVA of immobility time in the 
FST (Figure 2E) revealed significant effects of MCH (F1,24 = 4.684, 
P < .05) and SNAP-94847 (F1,24 = 9.545, P < .01) and a significant 
MCH × SNAP-94847 interaction (F1,24 = 37.633, P < .001). The post-
hoc analysis showed that the intra-LC injection of MCH (100 ng) 
significantly increased immobility time compared with the 
vehicle group (P < .01), which was blocked by the intra-LC micro-
injection of SNAP-94847 (P < .01). The ANOVA of climbing time 
(Figure  2F) revealed significant effects of MCH (F1,24 = 17.278, 
P < .01) and SNAP-94847 (F1,24 = 5.316, P < .05) and a significant 
MCH × SNAP-94847 interaction (F1,24 = 14.900, P < .01). The post-
hoc analysis showed that MCH decreased climbing time (P < .01), 
which was blocked by SNAP-94847 (P < .01). The ANOVA of swim-
ming time (Figure 2G) revealed no significant effects of the intra-
LC injection of MCH (P > .05) or SNAP-94847 (P > .05) but showed a 
significant MCH × SNAP-94847 interaction (F1,24 = 5.603, P < .05). In 
the SPT, the ANOVA of sucrose preference (Figure 2H) revealed 
significant effects of MCH (F1,24 = 5.580, P < .05) and SNAP-94847 
(F1,24 = 7.223, P < .05) and a significant MCH × SNAP-94847 inter-
action (F1,27 = 13.404, P < .01). The posthoc analysis showed that 
MCH decreased sucrose preference (P < .01), which was blocked 
by SNAP-94847 (P < .01).

Microinjection of SNAP-94847 in the LC Blocked 
Depressive-Like Behavior That Was Induced by an 
Intracerebroventricular Injection of MCH

In the second experiment, the i.c.v. injection of MCH induced 
depressive-like behavior in the FST and SPT. In the FST, the 
0.8- and 1.6-μg doses of MCH significantly increased immobility 
time (F3,24 = 30.786, P < .001; Figure 3A), decreased climbing time 
(F3,24 = 5.083, P = .007; Figure  3B), and decreased swimming time 
(F3,24 = 8.594, P < .001; Figure 3C) compared with the vehicle group. 
The 0.4 μg dose of MCH exerted no significant effects on these 
parameters. The 0.8- and 1.6-μg doses of MCH decreased sucrose 
preference in the SPT (F3,24 = 8.594, P < .001; Figure 3D).

To determine the involvement of MCH-R1 in the LC in the 
regulation of depressive-like behavior, we pretreated the rats 
with SNAP-94847 in the LC before i.c.v. MCH administration 
(0.8 μg). The ANOVA of immobility time in the FST (Figure 3E) 
revealed significant effects of MCH (F1,27 = 11.379, P < .01) and 
SNAP-94847 (F1,27 = 37.990, P < .001) and a significant MCH × SNAP-
94847 interaction (F1,27 = 43.592, P < .001). The posthoc analysis 
showed that the i.c.v. injection of MCH increased immobility time 
compared with the vehicle group (P < .01), which was blocked by 
the intra-LC microinjection of SNAP-94847 (P < .01). The ANOVA 
of climbing time (Figure 3F) revealed significant effects of MCH 
(F1,27 = 8.589, P < .01) and SNAP-94847 (F1,27 = 4.193, P < .05) and a sig-
nificant MCH × SNAP-94847 interaction (F1,27 = 6.009, P < .05). The 
posthoc analysis showed that MCH decreased climbing time 
(P < .01), which was blocked by SNAP-94847 (P < .01). The ANOVA 
of swimming time (Figure 3G) revealed significant effects of the 
i.c.v. injection of MCH (F1,27 = 0.000, P = .985) and intra-LC micro-
injection of SNAP-94847 (F1,27 = 10.253, P < .05) and a significant 
MCH × SNAP-94847 interaction (F1,27 = 10.098, P < .05). The posthoc 
analysis showed that MCH decreased swimming time (P < .05), 

Figure 2.  Effects of intra-locus coeruleus (LC) injection of SNAP-94847 on the behavioral alterations induced by microinjection of melanin-concentrating hormone 

(MCH) in the LC. Microinjection of 100 ng MCH into the LC increased the immobility time (A) and decreased the climbing time (B) in the forced swim test (FST) and 

decreased sucrose preference in the sucrose preference test (SPT) (D). No significant alterations were found in the swimming time in the FST (C). Pretreatment of 

microinjecting SNAP-94847 in the LC could block the MCH-induced depressive-behavior in the FST and SPT (E–H). All data are presented as mean ± SEM, n = 6–8/group. 

**P < .01 as compared with the Vehicle group and ##P < .01 as compared with the Vehicle + MCH group.



Ye et al.  |  1133

which was blocked by SNAP-94847 (P < .01). In the SPT, the ANOVA 
of sucrose preference (Figure 3H) revealed significant effects of 
MCH (F1,27 = 7.421, P < .05) and SNAP-94847 (F1,27 = 4.499, P < .05) and 
a significant MCH × SNAP-94847 interaction (F1,27 = 4.742, P < .05). 
The posthoc analysis showed that MCH decreased sucrose pref-
erence (P < .01), which was blocked by SNAP-94847 (P < .01).

Microinjection of SNAP-94847 in the LC Blocked 
Depressive-Like Behavior That Was Induced by 
Repeated CORT Administration

In the third experiment, the ANOVA of immobility time in the 
FST (Figure 4A) revealed significant effects of CORT (F1,24 = 59.336, 
P < .001) and SNAP-94847 (F1,24 = 43.989, P < .001) and a significant 
CORT × SNAP-94847 interaction (F1,24 = 51.701, P < .001). The post-
hoc analysis showed that repeated CORT administration for 
21 days increased immobility time compared with the vehicle 
group (P < .01), which was blocked by the intra-LC microinjection 
of SNAP-94847 (P < .01). The ANOVA of climbing time (Figure 4B) 
revealed significant effects of CORT (F1,24 = 8.881, P < .01) and 
SNAP-94847 (F1,24 = 5.108, P < .05) and a significant CORT × SNAP-
94847 interaction (F1,24 = 21.122, P < .001). The posthoc analysis 
showed that CORT decreased climbing time (P < .01), which was 
blocked by SNAP-94847 (P < .01). The ANOVA of swimming time 
(Figure  4C) revealed significant effects of CORT (F1, 24 = 26.278, 
P < .001) and SNAP-94847 (F1, 24 = 22.167, P < .001) and a signifi-
cant CORT × SNAP-94847 interaction (F1, 24 = 9.432, P < .01). The 
posthoc analysis showed that CORT decreased swimming time 
compared with the vehicle group (P < .01), which was blocked by 
SNAP-94847 (P < .01). In the SPT, the ANOVA of sucrose preference 
(Figure  4D) revealed significant effects of CORT (F1,24 = 21.285, 
P < .001) and SNAP-94847 (F1,24 = 6.369, P < .05) and a significant 
CORT × SNAP-94847 interaction (F1,24 = 5.479, P < .05). The post-
hoc analysis showed that CORT decreased sucrose preference 
(P < .01), which was blocked by SNAP-94847 (P < .01).

Immunofluorescent Evidence of the Expression of 
MCH-Ergic Neurofibers in the LC

Sections of the LC were double-immunostained for MCH and 
TH to demonstrate the expression of MCH-ergic neurofibers 
in the LC. A  schematic diagram of double staining is shown 
in Figure  5A–E. Confocal laser scanning microscopy of the LC 
revealed a small number of MCH-immunopositive neurofibers 
throughout the LC nucleus (Figure  5A). Consistent with previ-
ous studies (Del Cid-Pellitero and Jones, 2012; Yoon and Lee, 
2013), we also found that some MCH-immunopositive neurofib-
ers appeared to contact TH-immunopositive soma or proximal 
dendrites (Figure 5E). The existence of MCH fibers in the double-
immunostained sections was reinforced by result of negative 
control (Figure 5F–J), which showed no MCH signal was detected 
throughout the LC area.

Discussion

The innervation of MCH-ergic fibers and expression of MCH-R1 
in the LC were previously reported (Saito et al., 2001; Yoon and 
Lee, 2013). In the present study, we also observed the expression 
of MCH-ergic neurofibers in the LC (Figure 5). The present results 
showed that the microinjection of MCH in the LC increased 
immobility time in the FST and decreased sucrose preference 
in the SPT. This depressive-like behavior was blocked by pre-
treatment with the MCH-R1 antagonist SNAP-94847 in the LC. 
The microinjection of SNAP-94847 in the LC also ameliorated 
depressive-like behavior that was induced by chronic CORT 
administration, an i.c.v. injection of MCH, and an intra-LC injec-
tion of MCH. These results indicate that the MCH-R1/MCH-ergic 
system in the LC might play an important role in the regulation 
of depressive behavior.

Multiple theories have been proposed with regard to the 
ways by which the LC is involved in the pathology of depression. 

Figure 3.  Effects of intra-locus coeruleus (LC) microinjection of SNAP-94847 on the behavioral alterations induced by i.c.v. injection of melanin-concentrating hormone 

(MCH). Intracerebroventricular injection of MCH (0.8 and 1.6 μg) increased the immobility time and decreased the climbing time and swimming time in the forced swim 

test (FST) (A–C) and decreased the sucrose preference index in the sucrose preference test (SPT) (D). Pretreatment of microinjecting SNAP-94847 in the LC could block 

the depressive-behavior in the FST and SPT (E–H). All data are presented as mean ± SEM, n = 7–8/group. * P < .05, **P < .01 as compared with the Vehicle group, ##P < .01 as 

compared with the Vehicle + MCH group.
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Abundant noradrenergic neurons are located in the LC, and the 
first-line treatment for patients with major depressive disorder 
includes selective norepinephrine reuptake inhibitors (Cipriani 
et al., 2009; Croom et al., 2009). Recent evidence suggests that 
numerous inputs to the LC, including glutamatergic and corti-
cotropin-releasing factor projections, are related to depression 
(Bissette et al., 2003; Bernard et al., 2011; Chandley and Ordway, 
2012). The present results indicated that the MCH-ergic system 
that acts through MCH-R1 in the LC might also be an import-
ant component of the link between the LC and the regulation of 
depressive-like behavior.

The exact mechanism by which MCH-R1 in the LC is involved 
in regulating depressive-like behavior remains unclear. One pos-
sibility is that MCH plays an inhibitory role in the LC. Neurons 
that express MCH also contain glutamic acid decarboxylase for 
the synthesis of γ-aminobutyric acid (GABA; Sapin et al., 2010). 
Although direct physiological evidence is lacking, MCH release 
in the LC may decrease neuronal discharge, in part through the 
synaptic release and postsynaptic effects of GABA in the LC (Del 
Cid-Pellitero and Jones, 2012). Monti et al. (2015) proposed that 
MCH and GABA that is released by MCH-ergic neurons inhibit 
noradrenergic neurons in the LC, thus increasing REM sleep 
time (Monti et al., 2015). Depressive-like behavior that is induced 
by MCH in the LC may result from the inhibition of noradren-
ergic activity. Likewise, the antidepressant effect of MCH-R1 
antagonism in the LC in the present study may be related to 
an enhancement of noradrenergic activity. Further studies are 
needed to demonstrate whether such effects of MCH-R1 antago-
nism occur only in this model of depressive-like behavior.

Chronic exposure to CORT or stress induces depressive-like 
behavior and affects the activity of LC noradrenergic neurons. 
Previous studies reported that more than 3 weeks of CORT or 
stress exposure is needed to decrease the levels of TH (Duncko 
et al., 2001; Yunan Zhao et al., 2008), which is the rate-limiting 
enzyme in the biosynthesis of norepinephrine. In the present 
study, the 21-day administration of CORT may have suppressed 
the activity of LC noradrenergic neurons, and treatment of MCH-
R1 antagonist SNAP-94847 blocked this effect, thus demonstrat-
ing antidepressant efficacy.

Climbing behavior in the FST has been considered to be 
related mostly to an increase in noradrenergic system activa-
tion (Detke et al., 1995). In the present study, climbing behavior 
was significantly suppressed in rats that received a microinjec-
tion of MCH in the LC, repeated CORT administration, or an i.c.v. 
injection of MCH. The MCH-R1 antagonist SNAP-94847 reversed 
this increase in climbing time in all 3 experiments. These results 
support the hypothesis that the LC noradrenergic pathway in 
conjunction with MCH and MCH-R1 may be an important ele-
ment in the regulation of depressive-like behavior.

In conclusion, the present study investigated the involve-
ment of the LC MCH-ergic system in depressive-like behavior 
in rats. Depressive-like behavior was induced in rats by chronic 
CORT administration, an i.c.v. injection of MCH, and an intra-LC 
microinjection of MCH. The expression of depressive-like behav-
ior was reversed by an intra-LC microinjection of the MCH-R1 
antagonist SNAP-94847. Thus, the MCH-ergic system in the LC 
might be involved in the regulation of depressive-like behavior. 
Notably, however, the biological function of MCH in humans is 

Figure 4.  Effects of repeated corticosterone (CORT) administration on the behavior in forced swim test (FST) and sucrose preference test (SPT). Repeated CORT admin-

istration induced an increase of immobility time (A) and a decrease of climbing time and swimming time (B,C) in the FST and a decrease of sucrose preference in the 

SPT (D), which were blocked by microinjecting SNAP-94847 in the LC. All data are presented as mean ± SEM, n = 7–8/group. **P < .01 as compared with the Vehicle group 

and # P < .05 as compared with the Vehicle + CORT group. 
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mediated by 2 G-protein-coupled receptors, MCH-R1 and MCH-
R2. Therefore, more studies are needed to elucidate the func-
tional relationship between the MCH-ergic system and other 
neural systems in the LC in patients with depression.
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