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Abstract

There is rich literature on using continuous-time and discrete-time models for studying popu-

lation dynamics of consumer-resource interactions. A key focus of this contribution is to sys-

tematically compare between the two modeling formalisms the stabilizing/destabilizing

impacts of diverse ecological processes that result in a density-dependent consumer attack

rate. Inspired by the Nicholson-Bailey/Lotka-Volterra models in discrete-time/continuous-

time, respectively, we consider host-parasitoid interactions with an arbitrary parasitoid

attack rate that is a function of both the host/parasitoid population densities. Our analysis

shows that a Type II functional response is stabilizing in both modeling frameworks only

when combined with other mechanisms, such as mutual interference between parasitoids.

A Type III functional response is by itself stabilizing, but the extent of attack-rate accelera-

tion needed is much higher in the discrete-time framework, and its stability regime expands

with increasing host reproduction. Finally, our results show that while mutual parasitoid inter-

ference can stabilize population dynamics, cooperation between parasitoids to handle hosts

is destabilizing in both frameworks. In summary, our comparative analysis systematically

characterizes diverse ecological processes driving stable population dynamics in discrete-

time and continuous-time consumer-resource models.

I. Introduction

Interaction between a resource (such as, a prey or host) and a consumer (such as, a predator or

parasitoid) forms a core motif in ecological networks. Population dynamics of consumer-

resource interactions has been extensively studied using two different approaches: continuous-

time and discrete-time models. The continuous-time framework is generally used to model

populations with overlapping generations and all year-round reproduction. In contrast, dis-

crete-time models are more suited for populations with non-overlapping generations that

reproduce in a discrete pulse determined by season. Perhaps, the classical example of this in
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continuous time is the Lotka-Volterra model

dhðtÞ
dt
¼ rhðtÞ � chðtÞpðtÞ ð1aÞ

dpðtÞ
dt
¼ chðtÞpðtÞ � gpðtÞ ð1bÞ

[1–10]. Here h(t) and p(t) denote the population densities of the host and the parasitoid at

time t, respectively. Parasitoids attack hosts with rate c with each parasitized host developing

into a new parasitoid. Finally, 1/γ is the average lifespan of an individual parasitoid. It is well-

known that the steady-state equilibrium of the Lotka-Volterra model is neutrally stable result-

ing in cycling population densities with a period of� 2p=
ffiffiffiffirgp [1].

The analogous counterpart of the Lotka-Volterra model in discrete-time is the Nicholson-

Bailey model

Htþ1 ¼ RHtexpð� cPtÞ ð2aÞ

Ptþ1 ¼ RHt½1 � expð� cPtÞ� ð2bÞ

where we now use capital letters Ht and Pt to denote the adult host, and the adult parasitoid

densities, respectively, in year t [4, 11–16]. The model reflects the synchronized annual life

cycles of these insects living in the temperate regions of the world [17–20]. More specifically, if

R> 1 denotes the number of viable eggs produced per adult host, then RHt is the host larval

density that becomes exposed to parasitoid attacks. Parasitoids attack and parasitize hosts at a

constant rate c, resulting in the fraction exp(−cPt) that escapes parasitism to become the adult

hosts for the next year. Similarly, the fraction 1 − exp(−cPt) of parasitized larvae give rise to

adult parasitoids in the next generation. The Nicholson-Bailey model is characterized by

diverging oscillations in population densities resulting in an unstable population dynamics

[11].

The neutrally stable Lokta-Volterra equilibrium and the unstable Nicholson-Bailey equilib-

rium catalyzed rich theoretical work in understanding how individual ecological mechanisms

(such as a Type II functional response, interference between parasitoid in attacking hosts, etc.)

promote stability of host-parasitoid interactions, especially in the context of biological control

of pest species [1, 21–24]. A key contribution of this work is to study the combined effect of

different forms of density-dependence in the parasitoid attack rate and quantify their overall

stabilizing effect in a single stability criterion. This gives us a holistic picture of how a mixture

of processes impact population dynamics. For example, while a Type II functional response is

destabilizing in both the continuous- and discrete-time frameworks, combining it with some

form of parasitoid interference can lead to stable population dynamics. Another novelty of this

work is the comparison of stability regimes between the modeling formalisms, and how these

stability regimes change with relevant ecological parameters, such as the extent of host repro-

duction. This comparison is specifically important to elucidate the general forms of density-

dependence in the parasitoid attack rate that stabilizes population dynamics irrespective of the

modeling framework, and hence are robust to model choice. Such general features are particu-

larly relevant for actual populations that may not exactly follow the idealistic modeling

assumption of either Lotka-Volterra or Nicholson-Bailey formalisms and may be best

described by an intermediate hybrid modeling framework.

The manuscript is organized as follows: in Section II we formulate the generalized Lotka-

Volterra model and derive criteria for stable population dynamics. The same process is
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repeated in Section III for an analogously formulated Nicholson-Bailey model. We compare

stability regions in Section IV summarizing the findings in Fig 1, and put these results in the

context of known literature and highlight new insights arising from this study.

II. Stability condition for a generalized Lotka-Volterra model

Consider a generalized Lotka-Volterra model

dhðtÞ
dt
¼ rhðtÞ � f ðh; pÞhðtÞpðtÞ ð3aÞ

dpðtÞ
dt
¼ f ðh; pÞhðtÞpðtÞ � gpðtÞ ð3bÞ

with an attack rate f(h, p) that is an arbitrary continuously-differentiable function of both the

host and parasitoid population densities. Such an attack rate captures diverse ecological

processes:

• Function f decreasing with host density corresponds to a Type II functional response. In

contrast, f varies non-monotonically with host density for a Type III response with the attack

rate increasing (accelerating) with host density at low densities and then decreasing at high

Fig 1. The stability region (grey shaded area) as determined by (5) and (10) in continuous time (right) and discrete-time (left), respectively, is

plotted as function of fh (attack-rate sensitivity to the host density) and fp (attack-rate sensitivity to the parasitoid density). The origin fh = fp = 0

represents the classical Lotka-Volterra and Nicholson-Bailey models. While the former model in continuous time is on the edge of stability indicating a

neutrally-stable equilibrium, the Nicholson-Bailey model in discrete time is outside the grey shaded area indicating an unstable equilibrium. The

stability regions are plotted for two different levels of host reproduction—R = 2 (top) and R = 20 (bottom) with r = log R and γ = 1.

https://doi.org/10.1371/journal.pone.0265825.g001
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host densities. This non-monotonicity results in the classical sigmoidal shape of net attack

rate f(h, p)h(t) per parasitoid [25–35].

• Function f decreasing (increasing) with parasitoid density corresponds to mutual interfer-

ence (cooperation) between parasitoids [36–41].

We assume that model (3) has a unique non-trivial equilibrium given as the solution to

f ðh�; p�Þ ¼
r
p�
; p� ¼

rh�

g
: ð4Þ

where h� and p� represent the equilibrium host and parasitoid densities, respectively. Note that

the model also has a trivial equilibrium h� = p� = 0, but we are primarily interested in the prop-

erties of the non-trivial equilibrium. In Appendix A, we provide explicit conditions for a wide

range of attack rates f that result in a unique non-trivial equilibrium.

Our analysis in Appendix B shows that this equilibrium is asymptotically stable, if and only

if,

fp <
rfh
g
; 1þ fh þ fp > 0; ð5Þ

where fp and fh

fh≔
h�

f ðh�; p�Þ
@f ðh; pÞ
@h

jh¼h� ;p¼p� ; ð6aÞ

fp≔
p�

f ðh�; p�Þ
@f ðh; pÞ
@p

jh¼h� ;p¼p� ; ð6bÞ

are the dimensionless log sensitivities of the attack rate to the host and parasitoid densities,

respectively. It is reasonable to have the net attack rate per host f(h, p)p be a non-decreasing

function of the parasitoid density that constrains fp� −1. Similarly, we constrain fh� −1 that

ensures the net attack rate per parasitoid f(h, p)h be a non-decreasing function of the host den-

sity. If any one of the inequalities in (5) does not hold, then the equilibrium is locally unstable

and this instability often manifests in a stable limit cycle [42, 43].

III. Stability conditions for a generalized Nicholson-Bailey model

We next consider a potential discrete-time counterpart of the generalized Lotka-Volterra

model. One phenomenological approach to obtain this model is to simply substitute c in (2)

with f(Ht, Pt) yielding

Htþ1 ¼ RH texpð� f ðHt; PtÞPtÞ ð7aÞ

Ptþ1 ¼ RHt½1 � expð� f ðHt; PtÞPtÞ� ð7bÞ

[44]. Note that during the time window when hosts are vulnerable to parasitoid attacks, the

density of unparasitized host continuously decreases. To capture such effects of continuously

changing populations, a semi-discrete or hybrid formalism has been proposed to mechanisti-

cally formulate the corresponding discrete-time model [45–51]. Briefly, an ordinary-differen-

tial equation model describing population interaction during the attack time window is solved

to derive the update functions of the discrete-time model. Importantly, this mechanistic

approach can yield contrasting results from the phenomenological approach—a Type III
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functional response is stabilizing in the semi-discrete approach [48, 52], but always destabiliz-

ing if one considers (7) with an analogous attack rate [48].

Referring the reader to Appendix C for details, the semi-discrete approach yields the follow-

ing model in the discrete-time formalism that is analogous to the continuous-time counterpart

(3)

Htþ1 ¼
RHt

ð1þ fhðRHtÞ
fhP1þfp

t Þ
1
fh

ð8aÞ

Ptþ1 ¼ RHt 1 �
1

ð1þ fhðRHtÞ
fhP1þfp

t Þ
1
fh

 !

: ð8bÞ

Recall from (6) that fh and fp are the log sensitivities of the parasitoid attack rate to the host

and parasitoid densities, respectively. This model has a unique non-trivial equilibrium

H� ¼
1 � R� fh

fhðR � 1Þ
1þfp

 ! 1
1þfhþfp

; P� ¼ ðR � 1ÞH�; ð9Þ

which is asymptotically stable, if and only if,

fp <
Rþ ðfhðR � 1Þ � RÞRfh

RðRfh � 1Þ
; 1þ fh þ fp > 0: ð10Þ

Note that the second inequality is the same as in (5), and hence 1 + fh + fp> 0 is a necessary
condition for stability in both modeling frameworks. One can consider small and large values

of R for which the stability condition reduces to

fp < 0; 1þ fh þ fp > 0; when R! 1; ð11aÞ

fp < fh � 1; 1þ fh þ fp > 0; when R!1; ð11bÞ

respectively.

IV. Comparison of stability regimes

To understand the stabilizing/destabilizing effects of diverse ecological processes we plot the

stability regions as predicted by inequalities (5) and (10) in Fig 1. For an analogous compari-

son, the hosts growth rate r in the continuous-time framework is related to R in the discrete-

time framework by r = log(R). In Fig 1, fh = fp = 0 represents the classical Lotka-Volterra/Nich-

olson-Bailey models and

• Going right along the positive x-axis (fh> 0) corresponds to an attack rate that accelerates

with increasing host density as in a Type III functional response.

• Going left along the negative x-axis (fh< 0) corresponds to an attack rate that decreases with

increasing host density as in a Type II functional response.

• Going up along the positive y-axis (fp> 0) corresponds to an attack rate that increases with

parasitoid density capturing cooperation between parasitoids to handle hosts.

• Going down along the negative y-axis (fp< 0) corresponds to an attack rate that decreases

with increasing parasitoid density corresponding to mutual interference between parasitoid,

or aggregation of parasitoid attacks to a subpopulation of high-risk hosts [22, 48, 53–60].
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A straightforward observation from Fig 1 is that the region of stability is larger in continu-

ous time as compared with discrete time, but in some limits, they turn out to be identical.

A. Comparison of stability conditions with respect to host reproduction

An important result that emerges from the inequalities (5) and (10) is that for low levels of

host reproduction (i.e., R! 1 and r! 0), both modeling frameworks have exactly the same

stability criterion

fp < 0; 1þ fh þ fp > 0 ð12Þ

showing that an attack rate decreasing with increasing parasitoid density is a necessary condi-

tion for stability. For high levels of host reproduction (i.e., R!1 and r!1), fh> 0 becomes

the necessary and sufficient condition for stability in the Lotka-Volterra framework. In the

Nicholson-Bailey framework, the stability condition for R!1 is given by (11b) that corre-

sponds to the two lines meeting at fh = 0 and fp = −1. This implies that fh> 0 is only a necessary
condition for stability in the discrete-time framework for large values of R and one further

requires fp< fh − 1 for stability. It is important to point that the limit R!1 is less ecologically

relevant, as for most natural systems R is expected to be less than 10 [1].

B. Impact of functional responses

We first consider the effect of a Type II functional response

f ðhÞ ¼
c1

1þ c1Thh
; ð13Þ

where c1 is the attack rate at low-host density and Th is the parasitoid handling time. In this

case, the dimensionless log sensitivities of the attack rate to the host density

fh ¼ �
c1Thh

1þ c1Thh
ð14Þ

is negative, and fh approaches −1 as handling times becomes longer and longer. In the context

of Fig 1, this corresponds to the neutrally stable Lotka-Volterra equilibrium moving left on the

negative x-axis, and this destabilizing effect of handling times is consistent with known litera-

ture [61].

Interestingly, a Type II functional response (fh< 0) can provide stability if combined with

other mechanisms, such as, interference in parasitoid attack where fp< 0 (grey-shaded area in

the third quadrant). Note that this grey-shaded area decreases in size with increasing repro-

duction, suggesting that the stability arising from the mixture of handling times and parasitoid

interference is more likely to operate at low host proliferation. The meeting point of two lines

in the third quadrant gives the necessary condition for stability

fh > �
1

1þ r
g

in continuous time ð15aÞ

fh >
logR � logð2R � 1Þ

logR
in discrete time ð15bÞ

that reduces to fh> −1 in the limit R! 1 & r! 0. These limits on fh have important implica-

tions suggesting that long handling times that cause fh! −1 can drive instability even in the

presence of parasitoid interference in both modeling frameworks.
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A Type III functional response (fh> 0 and fp = 0) is stabilizing in both framework but the

degree of attack-rate acceleration needed for stability is much higher in the discrete-time

framework: fh> 1 in the discrete-time framework compared to fh> 0 in the continuous-time

framework.

Recall that one of the inequalities needed for stability 1 + fh + fp> 0 is the same for both

frameworks. The other inequality in the continuous-time framework is anchored at the origin

and rotates anticlockwise with increasing R. In contrast, the other inequality in the discrete-

time framework is anchored at fh = 1, fh = 0 and also rotates anticlockwise with increasing R.

This leads to the stability region related to a Type II functional response shrinking with

increasing R. However, the stability region related to Type III responses expands with increas-

ing R in the continuous-time framework. The non-origin anchoring in the discrete-time

framework leads to the stability region related to Type III responses expanding with increasing

R for fh> 1, but shrinking for 0< fh< 1.

C. Impact of a parasitoid-dependent attack rate

For a parasitoid-dependent attack rate (fh = 0) one can see that fp> 0 (i.e., cooperation

between parasitoids) is not stabilizing in both frameworks. In contrast, mutual interference

between parasitoids is stabilizing with the stability criterion reducing to

fp < 0 in continuous time ð16aÞ

fp < �
RlnðRÞ þ 1 � R

RlnðRÞ
in discrete time: ð16bÞ

An interesting observation from the fourth-quadrant of the discrete-time stability region is

that while values of

0 > fp > �
RlnðRÞ þ 1 � R

RlnðRÞ
ð17Þ

and

0 < fh < 1 ð18Þ

are by themselves not stabilizing, their combination can lead to stability. Thus, moderate levels

of parasitoid interference together with attack-rate acceleration to host density can stabilize

population dynamics in the Nicholson-Bailey formulation of host-parasitoid population

dynamics. Finally, we point out that the stability resulting from a combination of cooperation

between parasitoids and a Type III functional response (grey-shaded region in the first quad-

rant), but increasing parasitoid cooperation also requires a higher degree of attack-rate acceler-

ation to keep the system dynamics stable.

V. Conclusion

In summary, this contribution combined the stabilizing effects of diverse ecological processes

into a single stability criterion in both the Lotka-Volterra ad Nicholson-Bailey modeling for-

malisms. These results highlight general features that are stabilizing, irrespective of model

choice. For example, while destabilizing effects of Type II functional response are well known

in the literature, combining it with parasitoid interference can lead to stability (the third quad-

rant in Fig 1), and stability arising from this mixture is more likely to be prevalent for low
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values of R and r. Eq (16) quantifies the limits to such a strategy and suggests that long han-

dling times cannot be stabilized irrespective of parasitoid interference.

Recent fieldwork has documented cooperation between parasitoids, where groups of

female Sclerodermus harmandi wasps are shown to be more successful in exploiting large-

sized host individuals as compared to individual wasps [40]. Our analysis shows that such

cooperation between parasitoids can have a destabilizing effect, but this can be countered by

the stabilizing effect of a Type III functional response. Indeed, given cooperation between par-

asitoids, a Type III response is necessary for stability. For high values of R and r, stability is

much more likely to arise from a Type III response with either parasitoid interference or

cooperation.

It is perhaps intuitive that the overall stability regime is larger in the continuous-time

framework, but interestingly, our analysis reveals that the stability region is identical in the

limit of low host reproduction. An important restriction of this work is that there is no limit to

host growth in the absence of the parasitoid, and these results could be further generalized to

consider a host carrying capacity, which can be stabilizing in both frameworks [1, 46]. Another

interesting direction of future work would be to expand these stability criteria in the context of

two parasitoid species attacking the same host, or two different host species attacked by a com-

mon parasitoid providing a holistic impact of diverse mechanisms on the stability of complex

consumer-resource models.

Appendix A: Uniqueness of non-trivial equilibrium in the

generalized Lotka-Volterra model

A functional response in the parasitoid attack rate can be modeled using a function f that only

depends on the host density

f ðhÞ ¼
c1hq

1þ c1Thhqþ1
ð19Þ

with parameter c1 > 0, Th is the parasitoid handling time, q = 0 corresponds to a Type II func-

tional response, and q> 0 captures a Type III functional response. The non-trivial equilibrium

is given as the solution to (4), which can be rewritten as

h�f ðh�Þ ¼ g p� ¼
rh�

g
: ð20Þ

Substituting (19) in (20), h� is the solution to

c1h�
qþ1

1þ c1Thh�
qþ1
¼ g ð21Þ

Assuming the parasitoid handling time is smaller that the average parasitoid lifespan (i.e.,

Th< 1/γ), (21) will have a unique solution as the left-hand-side of (21) is a monotonically

increasing function that starts at zero and saturates at 1/Th> γ, and hence, h� f(h�) will inter-

sect with γ only once. Having obtained the unique h�, the corresponding parasitoid density is

given by p� ¼ rh�
g

.

Let us consider a parasitoid-dependent attack rate

f ðpÞ ¼ c1pa ð22Þ
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where c1 > 0 and −1 < α< 1, with negative (positive) values of α denoting parasitoid interfer-

ence (cooperation). In this case the unique non-trivial equilibrium will be

p� ¼
r
c1

� � 1
1þa

; h� ¼
p�g
r
: ð23Þ

Appendix B: Stability criterion for the generalized Lotka-Volterra

model

Linearizing the right-hand-side of (3) around the equilibrium yields the following Jacobian matrix

A ¼
� rfh � fpg � g

rfh þ r gfp
;

2

4

3

5 ð24Þ

and stability requires a Hurwitz matrix whose eigenvalues have negative real parts [62, 63]. For a

two-dimensional system, the equilibrium is asymptotically stable, if and only if, the determinant

of the A matrix is positive and its trace is negative [62, 63]. This implies that the equilibrium

obtained as the solution to (4) is asymptotically stable, if and only if, both inequalities in (5) hold.

Appendix C: Stability criterion for the generalized Nicholson-Bailey

model

The semi-discrete approach models the host-parasitoid interaction during the host’s vulnera-

ble stage as an ordinary differential equation. Let τ denote the time within the host vulnerable

stage that varies from 0 to T corresponding to the start and end of the vulnerable stage. The

densities of parasitoids, un-parasitized and parasitized host larvae at time τ within the vulnera-

ble stage of year t are represented by P(τ, t), L(τ, t), I(τ, t), respectively. These densities evolve

as per the dynamical system

dPðt; tÞ
dt

¼ � gPPðt; tÞ ð25aÞ

dLðt; tÞ
dt

¼ � cPðt; tÞLðt; tÞ � gLLðt; tÞ ð25bÞ

dIðt; tÞ
dt

¼ cPðt; tÞLðt; tÞ � gIIðt; tÞ; ð25cÞ

where c represents the parasitoid’s attack rate per host, and γP, γL, γI are the death rates of the

respective species. Assuming Pt parasitoids, RHt host larvae, and no parasitized larvae at the

start of the vulnerable period (τ = 0), solving the above differential equations with initial condi-

tions

Lð0; tÞ ¼ RHt; Pð0; tÞ ¼ Pt; Ið0; tÞ ¼ 0 ð26Þ

predicts the parasitized and unparasitized larval populations at the end of the season (τ = T).

This leads to a more general discrete-time model

Htþ1 ¼ FðHt; PtÞ ð27aÞ

Ptþ1 ¼ GðHt; PtÞ ð27bÞ
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where update functions are obtained by setting

FðHt; PtÞ ¼ LðT; tÞ ð28aÞ

GðHt; PtÞ ¼ IðT; tÞ: ð28bÞ

Solving (25) for a constant attack rate c with no mortalities (γP = γL = γI = 0), and assuming

T = 1 without loss of any generality, yields the Nicholson-Bailey model (2).

To capture a generalized parasitoid attack with log sensitivities fh (with respect to the host)

and fp (with respect to the parasitoid), we replace c in (25) with the monomial Lðt; tÞfhPfp
t . In

the absence of any mortalities (γP = γL = γI = 0) and again assuming T = 1, the above semi-dis-

crete approach results in the model (8). Linearizing the right-hand-side of (8) around the equi-

librium (9) results in the Jacobian matrix

A ¼
1 � fhH�

fhP�1þfp � ð1þ fpÞH�
1þfhP� fp

R � 1þ fhH�
fhP�1þfp ð1þ fpÞH�

1þfhP� fp

2

4

3

5; ð29Þ

and stability in the discrete-time formalism requires all eigenvalues of A to have an absolute

value less than one [63, 64]. For a 2 × 2 matrix, the stability criterion can be written in terms of

the determinant and the trace of A—the equilibrium (9) is stable, if and only if,

1 � DetðAÞ > 0 ð30Þ

1þ TrðAÞ � DetðAÞ > 0 ð31Þ

1þ TrðAÞ þ DetðAÞ > 0: ð32Þ

It turns out that the last inequality always holds, and the first two inequalities yield the sta-

bility conditions (10).
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