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Abstract

Antimicrobial drugs administered systemically may cause the emergence and dissemination

of antimicrobial resistance among enteric bacteria. To develop logical, research-based rec-

ommendations for food animal veterinarians, we must understand how to maximize antimi-

crobial drug efficacy while minimizing risk of antimicrobial resistance. Our objective is to

evaluate the effect of two approved dosing regimens of enrofloxacin (a single high dose or

three low doses) on Escherichia coli in cattle. We look specifically at bacteria above and

below the epidemiological cutoff (ECOFF), above which the bacteria are likely to have an

acquired or mutational resistance to enrofloxacin. We developed a differential equation

model for the antimicrobial drug concentrations in plasma and colon, and bacteria popula-

tions in the feces. The model was fit to animal data of drug concentrations in the plasma and

colon obtained using ultrafiltration probes. Fecal E. coli counts and minimum inhibitory con-

centrations were measured for the week after receiving the antimicrobial drug. We predict

that the antimicrobial susceptibility of the bacteria above the ECOFF pre-treatment strongly

affects the composition of the bacteria following treatment. Faster removal of the antimicro-

bial drugs from the colon throughout the study leads to improved clearance of bacteria

above the ECOFF in the low dose regimen. If we assume a fitness cost is associated with

bacteria above the ECOFF, the increased fitness costs leads to reduction of bacteria above

the ECOFF in the low dose study. These results suggest the initial E. coli susceptibility is a

strong indicator of how steers respond to antimicrobial drug treatment.

Introduction

Fluoroquinolones are broad-spectrum antimicrobial drugs with concentration-dependent bac-

tericidal activity [1]. They are categorized as critically important antimicrobial drugs for

human medicine [2, 3]. An important public health concern with fluoroquinolones is their
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increased resistance in foodborne pathogens such as Campylobacter and Salmonella because

fluoroquinolones are one of the treatment choices for complicated cases caused by both patho-

gens [4, 5]. Increased fluoroquinolones resistance in foodborne pathogens can be driven by

the use of antimicrobial drugs in veterinary medicine because food animals are the main reser-

voir for these pathogens [6]. To minimize public health risk, the Food and Drug Administra-

tion (FDA) has prohibited the extra-label use of fluoroquinolones in food animals. Currently,

two fluoroquinolones are approved in the United States for food animals: enrofloxacin and

danofloxacin. These drugs are approved for bovine and swine respiratory diseases in a

injectable form. As extra-label use is prohibited, the drugs cannot be used for other indica-

tions, dose, route of administration or species beyond that is indicated in the label.

Fluoroquinolones can reach high concentrations in the gut because they are partially

excreted in the bile acid [7]. Additionally, intestinal efflux transporters may transport fluoro-

quinolones into the gut lumen [8]. As a result, fluoroquinolones can disrupt the gut commen-

sal bacteria— even when treatment is parental [9]. In addition to influencing the population

dynamics of enteric bacteria, fluoroquinolones may select for resistance. Resistance is most

often mediated by mutations on the genes coding fluoroquinolone targets: DNA-gyrase and

topoisomerases [10]. The increase in resistance during treatment is often attributed to the

selection and amplification of pre-treatment mutants [11]. Resistance following oral treatment

has been reported in broilers and swine [11–13]. On the contrary, intramuscular high doses in

swine and cattle have been associated with little resistance, suggesting that route of administra-

tion and dose may influence fluoroquinolones’ effect on resistance in enteric bacteria [11, 14].

In veterinary medicine, dose regimes are approved based on efficacy [1]. Therefore, the phar-

macokinetics-pharmacodynamics (PK-PD) of the drug influence on enteric bacterial popula-

tions, including resistance selection, is less understood.

To investigate what factors influence the effect of enrofloxacin on enterobacteriacea, we

developed a mathematical model to represent the dynamics of enrofloxacin in steers following

subcutaneous administration and its effects on E. coli population in the gut. The model was fit

to data from twelve steers that were monitored following two dose regimens: a single high

dose or three low doses [15]. These are currently the only two approved doses of fluoroquino-

lones in cattle.

Materials and methods

Experimental data

The experimental data have been previously described in [15] and was approved by the North

Carolina State University Institutional Animal Care and Use Committee. Briefly, twelve

healthy six-month-old steers were assigned to two dose regimes. The steers ranged in weight

from 124-241 kg with similar body condition scores (2.5-3.5). The treatments were a single

high subcutaneous dose of enrofloxacin (12.5 mg/kg) or lower subcutaneous doses of enroflox-

acin (5.0 mg/kg), administered 24 hours apart for three doses. Ultrafiltration probes were

placed in each steers’ ileum and spiral colon. Enrofloxacin is partially metabolized into cipro-

floxacin [16]. Because enrofloxacin and ciprofloxacin produce additive antimicrobial activity,

we combined both antimicrobial drugs and modeled the total concentration of both drugs.

Following a subcutaneous administration, measurements of the enrofloxacin and ciprofloxa-

cin concentrations were taken in the plasma, interstitial fluid, ileum, and colon. In addition to

the antimicrobial drug concentrations, fecal samples were collected by hand and E. coli con-

centration was measured in colony forming units per milliliter (CFUs/ml) [15]. In the high

dose treatment, fecal samples were taken every 12 hours for the first 48 hours, then 24 hours

there after until hour 192. In the low dose treatment, fecal samples were taken every 12 hours
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for the first 96 hours, then 24 hours there after until hour 192. The minimal inhibitory concen-

tration (MIC) of E. coli to enrofloxacin were measured for 8 isolates at several time points

using the approved Clinical and Laboratory Standards Institute (CLSI) standard [17]. At the

conclusion of the study and observation of the appropriate meat withdrawal time, all ultrafil-

tration probes and catheters were removed, and the steers were sold.

Mathematical model

An ordinary differential equation model was developed to describe the dynamics of the anti-

microbial drug and bacterial population in the host. Fig 1 presents the model flowchart. The

choice of the model structure was based on the ability to identify the model parameters with

the available data. More complex models were not identifiable given the available data.

In our model, enrofloxacin is administered subcutaneously (S) with a dose S0 given n times

with time intervals T, modeled by the Dirac function δ(t − iT). The subcutaneous compart-

ment is modeled as a single compartment with linear elimination at rate k. The antimicrobial

drug is then distributed into the plasma at rate βk; this term accounts for the amount of drug

that reaches the plasma. P is the total concentration of bound and unbound antimicrobial

drug in the plasma. From the plasma, the antimicrobial drugs are transported to the colon (C)

at a net transfer rate α by means of passive diffusion, and active transport into the small intes-

tine with subsequent transit to the colon. C is the total concentration of unbound drugs in the

colon. Finally, the drugs are eliminated from the colon at rate η. We assume all rates are for

enrofloxacin and its metabolized form ciprofloxacin combined.

We assume E. coli grows logistically at rate σ, and the maximum E. coli concentration is

Nmax. In addition to modeling changes on the overall E. coli population (E), we follow the sub-

population with MIC above the epidemiological cut-off value (ECOFF), (R). Based on the

Fig 1. ODE schematic. Schematic of the mathematical model for enrofloxacin and ciprofloxacin concentrations throughout the gastrointestinal tract

(GIT) of the steer and the effects on the E. coli population. The compartments S, P, and C are antimicrobial concentration in the steer while the

compartments E and R describe the bacteria population in the feces.

https://doi.org/10.1371/journal.pone.0228138.g001
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European Committee on Antimicrobial Susceptibility Testing, the MIC epidemiological cut-

off value for enrofloxacin on E. coli is 0.125 μg/ml [18]. The pharmacodynamic effects of the

antimicrobial drug on bacteria above (R) and below (E − R) this threshold is captured through

Cr50 and Cs50, respectively. These parameters represent the concentration of drug needed to

produce 50% of the maximum killing effect. Ciprofloxacin is more active than enrofloxacin

against gram-negative bacteria, thus our decision to combine both drugs introduces some bias

on the effects on bacteria [19]. Our pharmacodynamic parameters (Cr50 and Cs50) may not be

directly comparable to pharmacodynamic parameters obtained for each drug independently.

The system of equations for the model described above is given by:

dS
dt
¼

Xn

i¼0

S0dðt � iTÞ � kS;

dP
dt
¼ bkS � aP;

dC
dt
¼ aP � ZC;

dE
dt
¼ sð1 �

E
Nmax
ÞE �

C
C þ Cs50

ðE � RÞ �
C

C þ Cr50

R;

dR
dt
¼ sð1 �

E
Nmax
ÞR �

C
C þ Cr50

R;

ð1Þ

with initial conditions S(0) = 0 mg/kg, P(0) = 0 μg/mL, C(0) = 0 μg/mL, E(0) = E0 log10 CFUs

and R(0) = R0 log10 CFUs.

The relation between mutations that confer fluoroquinolone resistance and bacteria fitness

is complex [20]. Some resistance mutations that decrease susceptibility to fluoroquinolones

decrease bacterial fitness. In other instances, accumulation of multiple mutations conferring

resistance can lead to improved fitness [20]. To investigate the effect of fitness costs after treat-

ment, we adjusted the bacterial growth to account for differential fitness. Our initial model

assumes that all of the E. coli grow identically. Here we investigate fitness cost associated with

the bacteria above the ECOFF. In the following model we denote c as the fitness cost.

dS
dt
¼

Xn

i¼0

S0dðt � iTÞ � kS;

dP
dt
¼ bkS � aP;

dC
dt
¼ aP � ZC;

dE
dt
¼ sð1 �

E
Nmax
ÞðE � cRÞ �

C
C þ Cs50

ðE � RÞ �
C

C þ Cr50

ðRÞ;

dR
dt
¼ ð1 � cÞsð1 �

E
Nmax
ÞR �

C
C þ Cr50

R;

ð2Þ

with initial conditions S(0) = 0 mg/kg, P(0) = 0 μg/mL, C(0) = 0 μg/mL, E(0) = E0 log10 CFUs,

R(0) = R0 log10 CFUs, and S0 = D mg/kg. We use this model to investigate the fitness cost asso-

ciated with bacteria above the ECOFF.
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Identifiability, parameterization, and sensitivity analysis

Parameters that can be uniquely derived from data are identifiable. We investigated the struc-

tural identifiability of the model prior to performing parameter estimation. For our model, all

of the parameters are unknown except S0 and k. Using the web application COMBOS [21], we

confirmed that β, α, η, σ, Nmax, Cs50 and Cr50 were uniquely identifiable parameters. The exact

code used in the web application is in the appendix.

The software Monolix 2018 R1 (Lixoft, Antony, France) was used to perform all parameter

estimations. Using our model (1), we fit the model to the data for each steer in the high and

low dose treatment group independently. The parameters in the model were estimated using

stochastic approximation expectation maximization (SAEM) over a maximum of 200 itera-

tions with a Monte Carlo sampling size of 10, 000. SAEM combines a maximum likelihood

estimation algorithm with a stochastic approximation procedure for estimating conditional

expectations [22]. We fixed k based on previous studies [14], see Table 1. We assumed all

parameters had log-normal distributions. Furthermore, we assumed that the drug parameters

could vary across the two cohorts as it has been previously shown that the transport mecha-

nism in the colon may be concentration dependent [15]. Similarly, we let Nmax vary and σ vary

across study groups to capture E. coli dynamics at the individual level. Commensal E.coli popu-

lation vary across individuals and can be highly dynamic [23]. We estimated β, α, η, σ, Nmax,

Cr50, Cs50 and r0 for the low dose study. Due to the lack of E. coli above the ECOFF during the

high dose study, it was not possible to fit Cr50 in the high dose study. Thus we used the Cr50 fit

in the low dose study and fixed it for the high dose study.

In addition to fitting the individual-level parameters, we obtained population-level esti-

mates. We estimated population-wide parameters using a two step process: (1) a Bayesian esti-

mate of the individual parameters; and (2) parameters were estimated using a linearization

about those Bayesian estimates [24]. The simulations output the transformed population

parameters, μ, while the given standard deviation, ω, is untransformed. The estimated popula-

tion distribution for each parameter is XðiÞ ¼ meZi where Zi � N ð0;o2Þ.

Table 1. Parameter estimates.

Parameter Description Units HD μ HD ω LD μ LD ω

k drug absorption rate into plasma 1

hr 0.44 fixed 0.44 fixed

β drug conversion factor into plasma mg kg
mg ml

0.00127 0.31 0.00157 0.339

α net drug transfer rate into colon 1

hr 0.163 0.316 0.146 0.192

η elimination of drug from colon 1

hr 0.0464 0.605 0.0854 0.0275

σ E. coli growth rate 1

hr 0.211 0.371 0.188 0.0349

Nmax maximum bacteria concentration logCFUs
g

5.52 0.044 6.21 0.077

Cs50 50% of sensitive bacteria killing effect
mg
mL 6.05 0.546 2.02 0.689

Cr50 50% of bacteria above ECOFF bacteria killing effect
mg
mL 5.91 fixed 5.91 0.339

r0 initial amount of bacteria above ECOFF logCFUs
g

5.74 × 10−5 7.27 1.39 0.696

Population parameter estimates of the parameters: k,drug conversion factor into plasma; β, drug distribution into plasma; α, net drug transfer rate into colon; η,

elimination of drug from colon; σ, E. coli growth rate; Nmax, maximum bacteria concentration; Cs50, 50% of sensitive bacteria killing effect; Cr50, 50% of bacteria above

the ECOFF killing effect; and r0, initial amount of bacteria above the ECOFF. The median of distribution of the parameter estimate for the high dose and low dose steers

in the columns, HD μ and LD μ, respectively. The non-transformed lognormal standard deviation of the high dose and low dose steers is also in the columns HD ω and

LD ω. We fixed k based on previous studies [14], and Cr50 in the high dose steers based on the low dose estimation.

https://doi.org/10.1371/journal.pone.0228138.t001
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Using the R package Sensitivity [25], we also performed a sensitivity analysis of the model

parameters under different dosing regimens. We chose a uniform distribution for the parame-

ters, where the minimum and maximum are + /− 3 standard deviations from the population

level mean. We compared the parameters’ effects on the total cumulative bacteria above the

ECOFF at the end of the simulation (i.e we compared the amount of
R tend

0
Rdt). We imple-

mented the extended Fourier amplitude sensitivity test which estimates the first order and

total Sobol indices for each parameter [26]. The first order effects measure the variation caused

by the parameter alone; the total effects measure the overall effect of varying the parameter,

including variance caused by parameter interactions.

Results

Data fitting

For each steer, we fit the model to the concentration of antimicrobial drug (enrofloxacin and

ciprofloxacin together) in the plasma and colon, and we fit the E. coli population in the feces

and the above the ECOFF subpopulation. In Figs 2 and 3, we plotted the individual steer data

(circles) with the corresponding fit in the same line color for the high and low dose respec-

tively. The summary of the individual parameters is provided in the appendix in S1 and S2

Tables. No steer previously received antibiotics however. It is possible they were housed with

treated animals prior to their arrival, which may have contributed to the different initial

amounts of R populations. At the high dose, E. coli population changes over time are fairly

similar across individuals. All the animals had an overall decrease in the total E. coli population

and a subsequent recovery within 100 hours post-dose (Fig 2). Most animals had no E.coli
above the ECOFF at time zero, therefore the model did not predict further selection. In a fol-

lowing section, we further explore the effect of modifying the initial conditions. Although for

the low dose, the pattern of trajectories for E. coli over time was similar across individuals,

there was more variation on the nadir reached by the E.coli compared to the high dose (Fig 3).

All of the steers had similar patterns for the percentage of bacteria above the ECOFF except

steer 173, which had less E. coli above the ECOFF after treatment than before treatment. These

Fig 2. High dose steer dynamics. Prediction of the high dose treatment group. Estimation of the concentration of

antimicrobial drugs in the plasma, P, colon, C and estimation of the amount of the total E. coli and E. coli above the

ECOFF in the feces. Each steer is represented by the same color for model predictions (lines) and corresponding data

(dots). The median population estimate for each compartment is the black dashed line.

https://doi.org/10.1371/journal.pone.0228138.g002

Modeling the effect of enrofloxacin on enteric bacteria

PLOS ONE | https://doi.org/10.1371/journal.pone.0228138 January 31, 2020 6 / 18

https://doi.org/10.1371/journal.pone.0228138.g002
https://doi.org/10.1371/journal.pone.0228138


differences are likely attributed to inter-animal variability, which is commonly seen in phar-

macological studies.

We also estimated the population-wide parameters for both the high and low dose popula-

tions (Table 1). Population-level parameters were similar across treatments. The parameter β
accounts for the distribution of antimicrobial drugs in the plasma and is a conversion from the

mg/kg dose given to each steer to the μg/ml drug concentration in the plasma and colon. This

accounts for the lower measurement of β. β varied between the dosing regimens, with a change

of 3 × 10−4 μg/mgml, or a 24% increase from the high dose cohort to low dose cohort estimate.

β varied between the dosing regimens, with the low-dose treatment having 3 × 10−4 μg/mgml,

or a 24% higher level, versus the high-dose treatment. The movement of the drugs into the

colon via the plasma, rate α, decreased by 10% for the high-dose treatment as compared to

low-dose population estimates. The elimination of antimicrobial drugs from the colon, η, in

the high-dose regimen was nearly double that of the low dose regimen. The bacterial growth

rate, σ decreased by 14% in the low dose regimen, which is an indication of the slower growth

of E. coli after multiple rounds of antimicrobial drugs. There is a slight variation in Nmax across

the dosing regimens (11% change from high to low dose). Similarly, we see a large variation in

r0 but this is expected given the variation in the initial amount of bacteria above the ECOFF

between the high dose and low dose steers. Finally, Cs50 has a significant variation across the

cohorts, nearly three times larger in the high dose regimen. The steers are fit individually

across the cohorts and this is only a comparison of the mean estimation. This is primarily an

artifact of the small to non-existent amount of bacteria above the ECOFF, thus Cs50 is fit to

more of an overall C50 of antimicrobial drugs in the high dose steers.

Based on the median and standard deviation for the parameters of both the high dose and

low dose treatments, we plotted the predicted distribution of both dosing regime groups. In

Fig 4, we plot the distribution of the plasma, colon, total E. coli and E. coli above the ECOFF

during the high dosing regimen. The region of distribution is small for the plasma, with the

smallest predicted peak of 1 μg/mL and the maximum is 3 μg/mL of antimicrobial drugs in

the plasma, both predictions occur within the first 12 hours. Alternatively there is a larger vari-

ability in the colon ranging from the smallest predicted peak of 0.8 μg/mL and the highest

Fig 3. Low dose steer dynamics. Prediction of the low dose treatment group. Estimation of the concentration of

antimicrobial drugs in the plasma, P, colon, C and estimation of the amount of the total E. coli and E. coli above the

ECOFF in the feces. Each steer is represented by the same color for model predictions (lines) and corresponding data

(dots). The median population estimate for each compartment is the black dashed line.

https://doi.org/10.1371/journal.pone.0228138.g003
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predicted peak of 3.5 μg/mL of antimicrobial drugs in the colon, both of which occur within

the first 24 hours. There is a 90% likelihood that the E. coli population returns to a steady state

between 5 and 6 log CFU/g within 200 hours. Also noteworthy is the variability in the bacteria

above the ECOFF population, which is likely due to the variability in Cr50. There is a 95% likeli-

hood the amount of bacteria above the ECOFF will stay below 1 log CFU/g.

Similarly, in Fig 5, we plot the predicted population-level distribution of the plasma, colon,

total E. coli and E. coli above the ECOFF during the low dosing regimen. The region of distri-

bution is small for the plasma, with the smallest predicted peak at 0.4 μg/mL and the maximum

at 1.6 μg/mL of antimicrobial drugs in the plasma. Alternatively there is larger variability in

the colon ranging from the smallest predicted peak of 0.3 μg/mL and the highest predicted

peak of 1.6 μg/mL of antimicrobial drugs in the colon. The E. coli population returns to a

steady state ranging from 5 to 7 log CFU/g for all predictions within 140 hours for the low dos-

ing regimen. Also noteworthy is the large variability in the amount of E. coli above the ECOFF.

Our model can predict an E. coli population that is completely above the ECOFF, but may also

predict as few as 1 CFU/g depending on the parameters for the low dosing regimen.

Sensitivity analysis

We performed a sensitivity analysis of the parameters for the high and low dose models. In

Table 2, we include the range for each parameter during the sensitivity analysis for the high

Fig 4. High dose distributions. Predicted distribution of our model for the antimicrobial drugs concentration

throughout the GIT of the steer during the high dosing regimen. The top left panel is the plasma, the bottom left is the

colon, top right the total E. coli population and bottom right is E. coli above the ECOFF. In each panel, the dark line

represents the median, and the darkest blue region has a 50% likelihood, whereas the lighter colors are less likely to

occur.

https://doi.org/10.1371/journal.pone.0228138.g004

Modeling the effect of enrofloxacin on enteric bacteria

PLOS ONE | https://doi.org/10.1371/journal.pone.0228138 January 31, 2020 8 / 18

https://doi.org/10.1371/journal.pone.0228138.g004
https://doi.org/10.1371/journal.pone.0228138


and low dose regimen. We bound our parameters by +/-3 of the standard deviations. The max-

imum r0 is bound on the upper side, by the initial amount of E. coli. During our simulations,

we compared how the parameter changes affected the area under the curve of the amount of

bacteria above the ECOFF.

We simulate model outcomes for 3,500 simulations across the parameter space during the

high dose regimen (500 variations of the 7 parameters). In the left panel of Fig 6, we plot the

Fig 5. Low dose distributions. Predicted distribution of our model for the antimicrobial drug concentration

throughout the GIT of the steer during the low dosing regimen. The top left panel is the plasma, the bottom left is the

colon, top right is the total E. coli population and bottom right is the amount of E. coli above the ECOFF. In each panel,

the dark line is the median, and the darkest blue region has a 50% likelihood, whereas the lighter colors are less likely to

occur.

https://doi.org/10.1371/journal.pone.0228138.g005

Table 2. Sensitivity analysis parameter ranges.

Parameters Min High Dose Max High Dose Min Low Dose Max Low Dose

β 0.00087 0.0017 0.0011 0.0022

α 0.0017 0.22 0.13 0.16

η 0.011 0.14 0.085 0.086

σ 0.12 0.32 0.19 0.19

Nmax 5.48 5.55 6.10 6.32

Cs50 1.84 14.80 0.49 8.39

Cr50 - - 4.19 8.34

r0 0 5.6 0.33 6.16

Parameter values used to bound the global Sobol sensitivity analysis. The minimum and maximum values are given for each parameter for the high dose and low dose

dosing regimens.

https://doi.org/10.1371/journal.pone.0228138.t002
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frequency of the outcome, the area under the curve of the amount of bacteria above the

ECOFF. During the high dose simulations, the majority of the simulations have an area under

the curve that is less than 100. Since our simulation is for over 200 hours, during the duration

of the simulation the mean value of R is less than 0.5 log 10 CFUs/g. These results indicate that

for most of the parameter space, the bacteria above the ECOFF is not dominant, and eventually

dies out. We also plotted the first order effects and total effects on the total amount of bacteria

above the ECOFF over time during the high dose simulation, in Fig 6 right panel. Based on

our sensitivity analysis, we found that Cs50, 50% of the bacteria killing effect is the most sensi-

tive parameter. This is an expected outcome given that this parameter strongly controls the

effect the antimicrobial drug has on the amount of bacteria. Additionally, the initial amount of

bacteria above the ECOFF, r0, strongly effects the amount of overall amount of bacteria above

the ECOFF. The parameter η has the strongest effect on the overall amount of bacteria above

the ECOFF of all the drug parameters.

We simulate model outcomes for 4,000 simulations across the parameter space during the

low dose regimen (500 variations of the 8 parameters). In Fig 7, left panel, we plot the fre-

quency of the outcome, the area under the curve of the bacteria above the ECOFF, of the sensi-

tivity analysis. During the low dose simulations, the simulations range from 5 to 1,300 log 10

CFUs/g total amount of bacteria above the ECOFF over 200 hours. Most of the simulations

range from 800 to 1,200 log 10 CFUs/g total amount of bacteria above the ECOFF over 200

hours. Since our simulations occur over 200 hours, the mean value for R is R = 5 log10CFUs/g.

These results indicate that for most of the parameter space, the bacteria above the ECOFF

dominate the population. For the low dose regimen, we also find Cs50, the half maximum kill-

ing effect of the antimicrobial drug on the total bacteria is the most sensitivity parameter (Fig

7, right panel). The second most influential parameter is again r0, the initial amount of bacteria

above the ECOFF. For the drug parameters, β is the most sensitive in the low dose regimen,

this varies from the high dose regimen. The area in which were sampling η is small due to little

variation in the estimation in the low dose steers. If a larger range is sampled, η is also sensitive

in these simulations.

Fig 6. High dose sensitivity analysis. Sobol sensitivity analysis results of the high dose regime. The left panel is a histogram of the output variable of the

sensitivity analysis, the area under the curve of the bacteria above the ECOFF, R. The right panel is the sensitivity index for each parameters. The first

order effects measures varying the parameter alone but averaged across all of the other variations while the total effect measures the effect of varying the

parameters including variance caused by the parameters interactions.

https://doi.org/10.1371/journal.pone.0228138.g006
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Simulating the effects of individual parameter changes

Based on our results in the predicted distribution and the sensitivity analysis, there is little vari-

ation in the total amount of bacteria above the ECOFF in the high dosing regimen. We focus

on understanding ways we can decrease or increase the amount of bacteria above the ECOFF

developed during antimicrobial drug treatment by individually modifying the parameters

beyond the range in the sensitivity analysis.

Variations in Cs50. We begin by varying the Cs50, 50% of sensitive bacteria killing effect.

In Fig 8, we use the median parameters for the high and low dose steers in Table 1 and vary

Cs50 to see the effect it has on the amount of E. coli (left panel) and the total amount of E. coli
above the ECOFF (right panel). In the high dose steers (top row) we find that when Cs50 = 1 or

2 the high dose regimen leads to increased amounts of bacteria above the ECOFF. In the low

dose steers (bottom row), we find there is always bacteria above the ECOFF, albeit for smaller

Cs50 there are more bacteria above the ECOFF. When Cs50 < 3 in the low dose steers, we see

that the final steady state of the simulation is a complete E. coli population above the ECOFF.

Variations in GIT movement. The original cohort of steers is a healthy cohort who have

similar living and feeding conditions. Using our model, we adjusted the η to ranges outside the

predicted population distributions to simulate changes that may occur on sick animals. For

example, a decreased fecal elimination rate could occur when steers stop eating during illness

which leads to significantly decreased intestinal motility. An increased elimination may take

place when the animal has diarrhea or increased intestinal motility. In Fig 9, we vary η from η
= 0.01 (red line) to η = 0.8 (blue line). We increased the initial condition in the high dose simu-

lation to r0 = 1.39 to be comparable to the low dose r0. While these variations have no effect on

the plasma compartment, they do affect the colon compartment, total E. coli, and amount of E.
coli above the ECOFF. In Fig 9 we see the large η leads to less antimicrobial drug in the colon

(blue line, top row Fig 9) due to the rapid elimination, while the the small η leads to more anti-

microbial drug in the colon (red line, top row Fig 9). The slow elimination (small η) leads to a

decrease amount of overall E. coli above the ECOFF in both the high and low dosing regimens

(red line, bottom row Fig 9). This is expected because of the large amounts of antibiotics in the

colon, which decreases the total amount of E. coli and thus the subset of E.coli above ECOFF.

Fig 7. Low dose sensitivity analysis. Sobol sensitivity analysis results of the low dose regime. The left panel is a histogram of the output variable of the

sensitivity analysis, the area under the curve of the bacteria above the ECOFF, R. The right panel is the sensitivity index for each parameters. The first

order effects measures varying the parameter alone but averaged across all of the other variations while the total effect measures the effect of varying the

parameters including variance caused by the parameters interactions.

https://doi.org/10.1371/journal.pone.0228138.g007
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Fig 8. Variations in Cs50. Simulation of variations of Cs50 and the effects on the high (top row) and low (bottom row)

dose model (1). In the simulation Cs50 is varied from the initial estimate of 6.05 or 2.02 (black line) for the high and low

dose model, respectively. We vary Cs50 with incremental values of 7 (red line), 6 (blue line), 5 (green line), 4 (purple

line), 3 (orange line), 2 (pink line) and 1 (grey line).

https://doi.org/10.1371/journal.pone.0228138.g008

Fig 9. Variations in η. Varying η, the elimination of the drug from the colon, to understand the changes that occur in

sick or non-normal steers in the low and high dose study. The black line represents the average steer simulation, the

red line is slow movement (η = 0.01) and the blue line is rapid movement (η = 0.8).

https://doi.org/10.1371/journal.pone.0228138.g009
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Surprisingly, increasing the η causes analogous effects in the high and low dose treatments.

In the high dose steers, increasing the η caused an increased amount of bacteria above the

ECOFF (bottom left panel, blue line Fig 9), albeit the difference are negligible. In the low dose

steers, decreasing the η causes less antimicrobial to reach the colon, and subsequently less bac-

teria above the ECOFF (bottom right panel, blue line, Fig 9).

Variations in the initial amount of bacteria above the ECOFF. To further understand

the growth of E. coli above the ECOFF, we simulated how changes in the initial amount of bac-

teria above the ECOFF affected the outcomes of the two dosing regimens. In Fig 10, left panel,

we used the population parameters from the high dose steers, which had previously only pre-

dicted a completely sensitive population after treatment. We varied only the initial amount of

bacteria above the ECOFF and show that as we increase the initial amount of bacteria above

the ECOFF, the overall fraction of bacteria above the ECOFF increased at the end of the simu-

lation. Similarly, in the right panel, we found that by increasing the initial amount of bacteria

above ECOFF the amount of overall fraction of bacteria above the ECOFF rapidly increased.

Overall, we found that by changing the initial amount of bacteria above the ECOFF alone, the

steer returns to a state of primarily bacteria above the ECOFF after treatment. These results

indicate that the initial amount of bacteria above the ECOFF is a strong predictor for the

growth of bacteria above the ECOFF, particularly in the high dose treatment.

Simulating decreased fitness in bacteria above the epidemiological cut-off

Our current model does not consider fitness cost in the growth of E. coli above the ECOFF.

Using the previous model (1), we adjusted the differential equations to consider the effect of

the fitness cost on the percentage of bacteria above the ECOFF [27, 28]. Using the estimated

population parameters we re-simulated our model using the system (2), where c is the fitness

cost. We simulated the effect of adjusting c from 0 to 1 on the fraction of bacteria above the

ECOFF 200 hours after the beginning of the treatments. For both dosing regimens, we used

the same variations of initial conditions for the initial amount of resistance bacteria i.e. r0 =

10−2, 10−1, 1, 3, and 5. In Fig 11, we plotted the trade off between c, x-axis, and R/E, y-axis.

When the initial condition is small (r0 = 10−2), for all fitness costs the high dose steers also go

to R/E� 0. In the low dose steers with a small initial condition, we found that when c> 0.274,

the R/E ratio is at halfway, i.e. R/E = 0.5. When the initial condition is large (r0 = 5), the high

Fig 10. Varying initial bacteria. We shift only the initial condition r0 from 0 to the total amount of E. coli in each

treatment and investigate how this effects the fraction of R/E, or the proportion of E. coli about ECOFF.

https://doi.org/10.1371/journal.pone.0228138.g010
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dose steers reach the halfway ratio when c> 0.12. In the low dose steers with the high initial

condition, we find that when c> 0.656, the R/E ratio is at halfway.

Previous studies have shown that fitness cost can have a wide range of effects on bacteria

[20]. It is thought that a single mutation can have no effect, or a fitness value as much as 0.6.

Depending on the cost of each mutation, the fitness value can compound to be as much as 0.68

[20]. While our extreme selection of c = 1 is unlikely, it is possible that for any initial condition,

the population could have an R/E ratio<0.50 depending on the fitness costs of mutations.

Discussion

Understanding how antimicrobial drug regimens influence enteric bacteria in food animals is

a relevant public health concern as food animals are a reservoir for zoonotic enteric bacteria,

including resistant bacteria. In recent years, mathematical models of different complexities

have been developed to investigate the underlying relationships between antimicrobial use and

gut bacteria dynamics [28–31]. Most studies combined data from the literature to parameterize

the models. As a result, predictions may not be accurate when compared with in vivo data

[14]. In addition, the individual- and population-level variation and uncertainty associated

with the outcomes cannot be assessed. To the best of our knowledge, our study is the first to fit

a compartmental model for the dynamics of the antimicrobial drug and enteric bacteria to

experimental data for assessing the collateral effects of parental treatments on gut bacteria. In

addition, by using mixed-effect modeling tools, we were able to estimate individual and popu-

lation-level parameters, and characterize the variation around the parameters and model

predictions.

Overall, our parameters aligned with previously reported values. Our estimates of drug

elimination are comparable to our group’s original fluoroquinolones study [14]. Our estimated

bacterial parameters are also similar to previously used bacterial parameters in other studies.

The growth rate for commensal E.coli previously used on a growth model was 0.17 [28], which

is similar to both our high and low dose estimates. Additionally, Nmax values have been

reported between 5.5 [32] and 6.5 [33]; both of our estimations fall with in this range. While

these values are only estimated for the steers in our cohort, we believe the usefulness of our

study is broad because steers are the primary animal recipients of enrofloxacin.

Our model captures changes on bacteria populations mediated by competitive release and

selection during treatment [34]. The model does not address emergence of de novo mutations

or the long term replacement of bacteria after treatment. Competition among bacteria is cap-

tured by the shared carrying capacity (Nmax) and the differential selection during treatment is

Fig 11. Varying fitness cost. Varying c, the fitness cost, to understand the effect on the ratio of R/E at 200 hours for

each dosing regimen. Each line represents a different amounts of r0.

https://doi.org/10.1371/journal.pone.0228138.g011
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mediated by the parameters Cs50 and Cr50. The sensitivity analysis indicated that for both dose

regimens, the accumulated E. coli population above the ECOFF was more sensitive to the kill-

ing effects (Cs50 and Cr50) than Nmax, which vary less in both treatments (Table 1). The model

outcomes were also very sensitive to the initial proportion of E. coli above the ECOFF. In the

high dose regimen, bacteria above the ECOFF were not amplified during treatment (Fig 2).

Because the initial proportion of bacteria above the ECOFF was low, we explored the model

outcome under different initial conditions beyond the ones observed in the study (Fig 10). For

the high dose treatment, higher numbers of bacteria above the ECOFF at the beginning of the

treatment translated into an increase in the proportion of bacteria above the ECOFF, although

the increase was not proportional to the initial bacteria levels. On the other hand, for the low

dose regimen, the proportion of bacteria above the ECOFF were clearly amplified indepen-

dently of the initial amount (Fig 10). Overall, these findings suggest that dose regimens and

initial bacteria composition are important indicators of resistance selection.

While there was extensive experimental data reported in the original study regarding the

amount of antimicrobial drugs in the GIT, the timing of sampling was inconsistent across the

dosing studies and cohorts. Moreover, there was large variation in the initial amount of bacte-

ria above ECOFF between the single dose and multiple dose steers. These variations across

cohorts do effect our parameter estimates in the current study, but there is enough data to

highlight the dynamics within the cohorts during the course of the previous study. A more sig-

nificant limitation of the original study was lack of MICs reported when identifying the

amount of bacteria above the ECOFF. For some steers MICs were only collected at the begin-

ning and end of the study, leaving little understanding of the changes in bacteria during dos-

ing. Additionally, there were only 8 isolates collected leaving large room for error when

estimating the bacteria population above the ECOFF. We believe the derivation of our current

model—using a total population and a population above the ECOFF instead of above and

below the ECOFF population—helps to overcome the limited isolates. Additionally, our cur-

rent results highlight that the speed of movement through the colon may be able to mitigate

the growth of bacteria above the ECOFF. Slow colon movement reduced growth of all bacteria

in both dosing regimens, while rapid colon movement reduced growth of E. coli above the

ECOFF in the low dosing regimens (Fig 9). This indicates that changes in motility in sick ani-

mals may also influence resistance selection during treatment.

Despite the limitations, our model provides a basic framework to model the effects of anti-

microbial drugs on enteric bacteria. Previous work [35] highlighted the need for a such a

model and suggests this type of model could guide future study design. Additionally, the

unique GIT dataset utilized herein is a key factor in calibrating the model to estimate data-

driven parameters. Previous work created a similar model to measure withdrawal times from

feedlot to slaughterhouse in steers with limited data [31] and found similar results regarding

the importance of the colon movement, despite the limited data. Our work could be easily

adjusted for other data sets, of this drug or other antimicrobial drugs which we believe would

further validate the model and impact future studies. Additionally, this work could by adapted

to study withdrawal times of antimicrobial drugs and their effect on antimicrobial resistance.

In conclusion, this model is the first attempt to combine the concentrations of antimicro-

bial drugs with their effect on the bacteria concentrations with in the GIT. Our results high-

light the need for further data collection to gain a deeper understanding of such dynamics.

Our results also suggest that the initial susceptibility of E. coli in the GIT is a strong indicator

of how steers will respond to antimicrobial drug treatment. This model highlights the impor-

tance of the judicious use of antimicrobial drugs and need for isolate testing prior to initiating

an antimicrobial drug treatment regimen.
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