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ABSTRACT

Mutual information (MI), a quantity describing the
nonlinear dependence between two random vari-
ables, has been widely used to construct gene reg-
ulatory networks (GRNs). Despite its good perfor-
mance, MI cannot separate the direct regulations
from indirect ones among genes. Although the con-
ditional mutual information (CMI) is able to iden-
tify the direct regulations, it generally underesti-
mates the regulation strength, i.e. it may result in
false negatives when inferring gene regulations. In
this work, to overcome the problems, we propose a
novel concept, namely conditional mutual inclusive
information (CMI2), to describe the regulations be-
tween genes. Furthermore, with CMI2, we develop
a new approach, namely CMI2NI (CMI2-based net-
work inference), for reverse-engineering GRNs. In
CMI2NI, CMI2 is used to quantify the mutual in-
formation between two genes given a third one
through calculating the Kullback–Leibler divergence
between the postulated distributions of including
and excluding the edge between the two genes.
The benchmark results on the GRNs from DREAM
challenge as well as the SOS DNA repair network
in Escherichia coli demonstrate the superior per-
formance of CMI2NI. Specifically, even for gene ex-
pression data with small sample size, CMI2NI can
not only infer the correct topology of the regula-
tion networks but also accurately quantify the reg-
ulation strength between genes. As a case study,

CMI2NI was also used to reconstruct cancer-specific
GRNs using gene expression data from The Cancer
Genome Atlas (TCGA). CMI2NI is freely accessible at
http://www.comp-sysbio.org/cmi2ni.

INTRODUCTION

Identifying the causal regulations between genes is the key
to understand the biological processes within cells. Despite
the great efforts from the community, such as ENCODE (1)
and modENCOD (2), untangling the comprehensive gene
regulation networks (GRNs) is still a challenging task (3).
With the increasingly accumulated high throughput data,
many computational approaches have recently been devel-
oped to reconstruct GRNs (4–6). In general, these GRN in-
ference approaches fall into two categories, i.e. model-based
and machine learning-based approaches (7,8). In model-
based methods, the chemical reactions of transcription and
translation as well as other cellular processes are generally
described with linear or nonlinear differential equations,
where the parameters represent the causal strengths of the
corresponding regulations. Popular methods in this cate-
gory include singular value decomposition (9,10), network
component analysis (11), multiple linear regression (12–14),
and linear programming (15,16). In machine learning-based
approaches, the regulations between genes are described by
different indexes (i.e. causal association) (17,18), including
Pearson correlation coefficient (19,20), Bayesian network
(21), information theory-based mutual information (MI)
(22–26) and conditional mutual information (CMI) (27,28).

Among those popular methods, the mutual information
(MI) has been widely used to construct GRNs due to its
capability of characterizing the nonlinear dependency be-
tween genes (23,29). Recent study shows that comparing
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with other approaches, MI is a natural way to equitably
quantify statistical associations (30). Another advantage of
the MI-based methods is their ability to deal with thousands
of variables (genes) in the presence of the limited number of
samples (14,31,32). Since MI describes the statistical depen-
dencies between two variables, edge in GRN implies possi-
ble functional dependency between the two connected genes
but not necessarily causal regulation. In other words, the
edge detected by MI may be a functional or indirect regu-
lation through one or more intermediaries instead of a di-
rect (or physical) interaction between a transcription factor
(TF) and a gene. Therefore, the mutual information overes-
timates the regulation relationships to some extent and fails
to distinguish indirect regulators from direct ones, thereby
leading to possible false positives during the inference of
GRNs (28,33–35). Recently, the conditional mutual infor-
mation (CMI) was proposed to infer the causal regulations
between genes (36). As an extension of MI, CMI is able
to separate the direct regulations from those indirect ones.
CMI has also been used to detect the activity of TFs and
miRNAs in transcriptional and post-transcriptional regu-
lations (27,37). However, the theoretical analysis shows that
CMI tends to underestimate the regulation strength in some
cases due to its statistical feature (38–40).

In many cases, the real regulations between nodes in a
GRN are obscured by the noise in the data. Therefore, most
network inference methods perform poorly with a high false
positive rate. To address this issue, Brarzel et al. (33) and
Feizi et al. (35) described easily implemented methods for
identifying and removing erroneous links, thereby produc-
ing more accurate networks. However, it turns out that both
of the two methods are related with the method of par-
tial correlation, which is the correlation between two vari-
ables predicted linearly from all other variables (34). Both
of the two approaches need to inverse the correlation ma-
trix to achieve the result and they are only different in scal-
ing the inverse correlation matrix. Well known to us, it is
difficult to process the inverse of correlation matrix when
large scale variables but with small samples are given (41).
Hence, approximate methods used by the two approaches
to achieve the inverse of correlation matrix will destroy the
performance of network inference in many cases.

In this work, to overcome those problems, we propose a
concept based on a new measure of causal strength (36),
i.e. CMI2 (conditional mutual inclusive information), to
quantify the causal associations between variables. To in-
fer GRNs, a new algorithm, namely CMI2NI, is developed
by combining CMI2 with path consistency (PC) algorithm.
CMI2NI, which alleviates both the overestimation prob-
lem of MI and the underestimation problem of CMI based
on information theory, gives a quantitative measurement of
causal associations between two genes. With the hypothesis
of Gaussian distribution for gene expression data, CMI2
can be calculated by a concise formula involving the co-
variance matrices of the related gene expression profiles.
The proposed network inference method CMI2NI can not
only accurately quantify causal associations but also recon-
struct the correct topological structures of biological net-
works even with a small number of samples. The exper-
imental results on the benchmark GRNs from DREAM
challenge and the widely used SOS DNA repair network

in Escherichia coli demonstrated the effectiveness of our
CMI2NI. As a case study, CMI2NI was applied to recon-
struct cancer-specific GRNs based on gene expression data
from The Cancer Genome Atlas (TCGA), where the GRNs
provide a global view of the regulatory circuit of the cancer
genes.

MATERIALS AND METHODS

(Conditional) mutual information

Recently, MI and CMI have been widely used to reconstruct
GRNs due to their advantages in measuring dependency
between variables. In general, the gene expression data can
be described as vectors, in which the elements denote the
expression values of genes under different conditions. MI
measuring the dependency between two variables (genes) X
and Y can be defined as below (42),

MI(X, Y) =
∑

x∈X, y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (1)

where p(x, y) is the joint probability distribution of X and Y,
and p(x) and p(y) are the marginal probability distributions
of X and Y, respectively. With the widely adopted hypoth-
esis of Gaussian distribution for gene expression data, for-
mula (1) can be easily calculated using the following equiv-
alent formula (43)

MI(X, Y) = 1
2

log
|C(X)| · |C(Y)|

|C(X, Y)| , (2)

where C is the covariance matrix of variables and | · | is the
determinant of matrix C. If variables (genes) X and Y are
independent of each other, clearly MI(X, Y) = 0.

On the other hand, CMI measures conditional depen-
dency between two variables (genes) given other variable(s)
(gene(s)). The CMI of variables X and Y given Z is defined
as

CMI(X, Y|Z)=
∑

x∈X, y∈Y, z∈Z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
,(3)

where p(x, y|z), p(x|z) and p(y|z) are conditional probabil-
ity distributions. Similarly, under the assumption of Gaus-
sian distributions (28), formula (3) equals to

CMI(X, Y|Z) = 1
2

log
|C(X, Z)| · |C(Y, Z)|
|C(Z)| · |C(X, Y, Z)| , (4)

which is efficient to calculate CMI between two variables X
and Y given one or more variables Z. For example, if the
conditional variable Z = (Z1, Z2) is composed of two vari-
ables (genes) Z1 and Z2, we get the second-order CMI.

Kullback–Leibler divergence-based casual strength measure

Recently, to accurately measure the causal strength between
two genes, a measure based on Kullback–Leibler (KL) di-
vergence was proposed (39). Before giving the definition
of the measure, the interventional probability is described
firstly. In a directed acyclic graph (DAG), if variable Y is
regulated by variable X both directly and indirectly through
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Figure 1. Quantification of association (ASS) by CMI2. (A) The associa-
tion between two variables (genes) X and Y in a two-node network mea-
sured by CMI2 is equal to MI and CMI. (B) The association between two
variables (genes) X and Y in a triple-node network measured by CMI2 is
equal to CMI. (C) CMI can exclude the indirect information from direct
information, but it underestimates the association between X and Y when
the expression level of Z is near or equal to the expression level of X or Y.
In this case, CMI2 can accurately measure the association prior to both
MI and CMI.

variable Z, the interventional probability of moving the link
from X to Y is defined as

PX→Y(x, y, z) = P(x, z)
∑

x

P(y|z, x)P(x), (5)

where P(y|z, x) is a conditional probability distribution of
Y given Z and X.

For the three variables mentioned above, the casual
strength, i.e. regulation strength of the arrow from X to Y is
defined (39) as

CX→Y(X; Y|Z) = DKL(P(X, Y, Z)||PX→Y(X, Y, Z)), (6)

where P(X, Y, Z) is the joint probability distribution of
X, Y and Z, PX→Y(X, Y, Z) is the interventional prob-
ability distribution of X, Y and Z for removing ar-
row X → Y, and DKL(P||PX→Y) is KL-divergence from
P(X, Y, Z) to PX→Y(X, Y, Z). With above definition, mea-
sure CX→Y(X; Y|Z) is unsymmetrical.

Conditional mutual inclusive information for association
measure

Among the most popular association measures, MI tends to
overestimate the regulation strengths between genes (false-
positive problem), while CMI tends to underestimate the
strengths (false-negative problem). As shown in Figure 1,
MI can correctly quantify the regulation strength between
genes X and Y for the case of Figure 1A but fails to quantify
the association between genes X and Y for the case in Fig-
ure 1B due to the indirect regulation mediated by gene Z, i.e.
overestimate the strength. Although CMI can successfully
quantify the indirect regulation, it fails when the expression
level of gene Z is near or equal to that of X (or Y), where the
Pearson correlation coefficient between Z and X (or Y) is
near or equal to 1. In that case as shown in Figure 1C, CMI
will underestimate the regulation strength because the CMI
value between genes X and Y given Z is near or equal to
zero, which is actually incorrect. The newly proposed mea-
sure CX→Y(X; Y|Z) tried to address this issue by calculating
the relative entropy distance. However, it can only partially
address the issue (see Supplementary Data). In addition, it
is difficult to put it into practice for large-scale network in-

ference because of the prior information requirement of net-
work directions (38,39,44).

In this work, to overcome the problems discussed above,
we proposed an effective unbiased measure based on the
causal strength (39), named CMI2, to quantify causal as-
sociations between genes. CMI2 is an association measure
using the inclusive information, i.e. entropy relative dis-
tance between the postulated edge-existence distribution
and edge-non-existence distribution. Next, we describe the
definitions of CMI2.

In a DAG, if variable Y is regulated by variable X both
directly and indirectly through variable Z, the association
between X and Y is defined as

CMI2(X, Y|Z)=(DKL(P||PX→Y)+DK L(P||PY→X))
/

2, (7)

where P = P(X, Y, Z) is the joint probability distribu-
tion of X, Y and Z, PX→Y = PX→Y(X, Y, Z) and PY→X =
PY→X(X, Y, Z) are the interventional probability distribu-
tions of X, Y and Z for removing edges X → Y and Y → X,
respectively. DKL(P||PX→Y) and DKL(P||PY→X) are KL-
divergences from P toPX→Y and PY→X. Similar to CMI,
CMI2 has an order number |Z|, i.e. the number of condi-
tional variables Z, and MI can be regarded as zero-order
CMI2.

The above quantity can be decomposed into three terms.
One of them is CMI and another two are non-negative
terms. The decomposition can be derived from the theoret-
ical result as follows. For the three variables defined above,
CMI2(X; Y|Z) between variables X and Y given Z can be
decomposed into

CMI2(X; Y|Z) = CMI(X; Y|Z) + 1
2 DKL(P(Y|Z)

||PX→Y(Y|Z)) + 1
2 DKL(P(X|Z)||PY→X(X|Z)).

(8)

The proof of the above result can be found in the Sup-
plementary Data. Equation (8) states that CMI2 is equal to
CMI if the second and third terms of Equation (8) are zero,
i.e. both X and Y are independent with Z. Since the KL-
divergence is non-negative, CMI2 between X and Y given Z
is no less than CMI between X and Y given Z.

Equation (8) also states that CMI and CX→Y(X; Y|Z) =
CMI(X; Y|Z) + DKL(P(Y|Z)||PX→Y(Y|Z)) underestimate
the association strength. For instance, given that Y and
Z are almost identical, we can get CMI(X; Y|Z) ≈ 0 and
DKL(P(Y|Z)||PX→Y(Y|Z)) ≈ 0). In other words, strong de-
pendency between X and Z makes the influence of cause
Y almost invisible when looking at CMI(X; Y|Z) and
DKL(P(Y|Z)||PX→Y(Y|Z)). Therefore, The third term in
Equation (8) corrects the underestimation. Similarly, if X
and Z are similar, The second term in Equation (8) will cor-
rect the underestimation.

Computation of CMI2

As described above, CMI2 can be determined by comput-
ing the (joint) probabilities of genes X, Y and Z, which can
be estimated with kernel density estimator to construct the
probability density functions based on gene expression data
(23,27,45). In this work, to efficiently estimate CMI2, we as-
sumed that the gene expression profiles follow a multivariate
Gaussian distribution, which has been widely accepted and
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proved to be reasonable (43,46). Here, to approximate the
Gaussian distribution, the log-transformation of gene ex-
pression data was adopted. According to the definition of
KL-divergence, CMI2(X; Y|Z) can be rewritten as

CMI2(X; Y|Z) =∑
x,y,z

P(x, y, z) ln P(x,y,z)
P(x,z)

∑
x

P(y|z,x)P(x)+P(y,z)
∑

y
P(x|z,y)P(y) ,

(9)

where P(y|z, x) and P(x|z, y) are the conditional probabil-
ities.

With the hypothesis of Gaussian distribution, CMI2 can
be calculated based on the following result.

Theorem 1. Let X and Y be 1-dimension variables, Z is a
nz(nz ≥ 1)-dimension variable, and X, Y and Z follow Gaus-
sian distribution. Then

CMI2(X; Y|Z) =
1
4

(
tr(C−1�) + tr(C̃−1�̃)+ ln C0 + ln C̃0 − 2n

)
, (10)

where

n = nz + 2, C0 = ρxx

((
�−1

)
xx −

(
�−1

1

)
xx

+ ρ−1
xx

)
,

C̃0 = ρyy
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�̃−1

)
yy −

(
�̃−1

1

)
yy

+ ρ−1
yy

)
,
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⎛
⎝ Cxx Cxy Cxz

Cxy Cyy Cyz
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xz CT

yz Czz

⎞
⎠

−1

, C̃ =
⎛
⎝ C̃yy C̃yx C̃yz

C̃yx C̃xx C̃xz
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,
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)
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)
,
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(
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.

The proof of Theorem 1 can be found in the Supplemen-
tary Data. With Equation (10), the CMI2 can be calculated
in a very efficient way with the general hypothesis of Gaus-
sian distribution underlying gene expression data.

Figure 2. The diagram of CMI2NI. In the figure, gi,i = 1, 2, . . . , n represent
gene i, sj, j = 1, 2, . . . , m, represent sample j, and CMI2(.,. |L), L = 0, 1,
. . . , n − 2, represents the Lth-order CMI2. A pair of genes are regarded
as independent if their CMI2 is equal to zero or below a given threshold.
The black solid and red doted lines in the network represent direct and
indirect regulations, respectively. The algorithm will terminate until there is
no change between the (L − 1)th and Lth-order networks, and the resultant
network will be taken as the output of CMI2NI. Generally, we can obtain
the network with a few iterations, i.e. L < m << n.

Path consistency algorithm

The path consistency (PC) algorithm is a widely used algo-
rithm in graph theory and has been used for the reconstruc-
tion of gene regulation network. By gradually removing re-
dundant edges in a network based on the conditional de-
pendency between the nodes, PC-algorithm can construct
a network with sparse topological structure. In particular,
PC-algorithm is specifically useful for the sparse and scale-
free networks, such as biological networks including GRNs.
The PC-algorithm has been utilized for GRN inference by
popular approaches, such as pcalg (36) and PCA-CMI (28),
where partial correlation coefficient (PCC) and CMI were
respectively used by pcalg and PCA-CMI to quantify the
regulation strength.

CMI2NI: GRN inference method based on CMI2

Given an expression dataset with n genes and m samples,
we developed a novel algorithm, called CMI2NI, to infer
its underlying GRN. In CMI2NI, after obtaining MI and
CMI2 with Equations (2) and (10), the PC algorithm was
then used to remove the (conditional) indirect regulations
from the clique/complete graph. GRN inference will be per-
formed by removing those edges without strong causal reg-
ulations recursively until there is no change in the network
topology, e.g. at Lth-order CMI2. CMI2NI improves the re-
sulted GRN through accurately quantifying the causal reg-
ulation strength with CMI2.

Figure 2 depicts the diagram of CMI2NI with details de-
scribed as follows. Firstly, we generated a complete con-
nected graph according to the number of genes. Secondly,
for an adjacent gene pair i and j, we computed the MI be-
tween them. If the gene pair i and j has low or zero MI, we
deleted the edge between genes i and j. Thirdly, for an ad-
jacent gene pair i and j, we calculated the first-order CMI2
given another gene z that is neighbors of i and j. If the gene
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pair i and j has low or zero CMI2, we deleted the edge be-
tween them. Subsequently, the higher order CMI2 was cal-
culated for a gene pair until there were no further changes in
the network topology. The detailed algorithm for inferring
a GRN was described in algorithm CMI2NI.

To reduce computational complexity but not sacrifice the
accuracy for detecting the true regulatory interactions, we
adopted an optimal strategy to select L genes from T ad-
jacent genes for randomly selected gene pair i and j, which
also ensures the local optimality of the algorithm. For ex-
ample, suppose that there are T (T ≥ 1) genes which are ad-
jacent with both genes i and j. When constructing the Lth-
order (L ≤ T) network, all the Lth-order CMIs for the pos-
sible combinations of L conditional genes from T genes are
computed and the maximal one or the geometric mean of
them is selected to decide the existence of regulation. Gen-
erally, after a few number of iterations L, the computation
will terminate due to no change on the network topology,
i.e. L < m << n. In other words, we can obtain the network
without resorting to any approximations in the computa-
tional procedure, as indicated in the CMI2NI algorithm and
also Figure 2. Theoretically, for a network with n genes or
molecules (e.g. n = 20 000 genes), it requires at least n in-
dependent samples to derive their direct regulations due to
the computation of CMI2(.,.|n − 2), which clearly is not
available for most of real cases. However, if the algorithm
is converged to an Lth-order network, it actually requires
only L + 2 independent samples due to CMI2(.,.|L). In other
words, CMI2NI can infer the network without any approx-
imation in the above process even with a small number of
samples, i.e. L + 2 independent samples when converged to
an Lth-order network, where L is usually between 3 and 5
for many real networks or datasets, far less than n. Thus,
comparing to the traditional requirement of n independent
samples for computing all statistic dependency among vari-
ables, our algorithm can obtain the network without the ap-
proximation with a small number of samples L + 2.

Algorithm (CMI2NI)
Input:

Gene expression matrix A,
Parameter for dependence threshold θ .

Output:
Inferred gene network G,
Order of inferred network L.
Step-1. Initialization. Generate the complete connected network G0 for

all genes (i.e. the clique graph of all genes). Set L := −1.
Step-2.L := L + 1; For a nonzero edge G0(i, j ) �= 0, select adjacent

genes connected with both genes i and j. Compute the number T of the
adjacent genes (not including genes i and j) .

Step-3. set G := G0. If T < L, stop. If T ≥ L, select out L genes from
these T genes and let them as K = [k1, · · · , kL]. The number of all
selections for K is CL

T . Compute the Lth-order CMI2(i, j |K) for all CL
T

selections, and choose the maximal one denoting as CMI2max(i, j |K). If
CMI2max(i, j |K) < θ , set G(i, j ) = 0.

Step-4. If G = G0, stop; If G = G0, set G0 := G and return to Step-2.

Sometimes there is no need to run the algorithm with
high order networks, so we set a parameter for deciding
the maximal order of the network in the software to termi-
nate the algorithm according to the user’s need. More im-
portantly, this will greatly reduce the computational com-
plexity. The MATLAB implementation of the algorithm de-

scribed above with detailed tutorials are freely available at
http://www.comp-sysbio.org/cmi2ni.

Datasets

In order to validate our method, CMI2NI was applied to
simulation dataset as well as a real gene expression dataset.
As for simulation data, the method was tested on the widely
used reference network in Yeast with synthetic nonlinear ex-
pression data from DREAM challenge (4). As for real gene
expression data, we applied our method to the well-known
SOS DNA repair network with the experimental dataset in
E. coli (47,48).

Metrics for evaluation

The performance of the proposed method was evaluated by
the following measures, i.e. sensitivity (SN) or true posi-
tive rate (TPR), false positive rate (FPR), positive predic-
tive value (PPV), accuracy (ACC) and Matthews coefficient
constant (MCC). Mathematically, they are defined as

TPR = TP/(TP + FN),

FPR = FP/(FP + TN),

PPV = TP/(TP + FP),

ACC = (TP + TN)/(TP + FP + TN + FN),

MCC =
(TP · TN−FP · FN)

/√
(TP+FP)(TP+FN)(TN+FP)(TN+FN),

where TP, FP, TN and FN are the numbers of true posi-
tives, false positives, true negatives and false negatives, re-
spectively. TPR and FPR are also used to plot the receiver
operating characteristic (ROC) curves and the area under
ROC curve (AUC) is calculated. In addition, we compared
CMI2NI with several PC algorithm-based methods, such as
pcalg (49) and PCA-CMI (28).

RESULTS

Simulation study

For simulation expression data, the widely used benchmark
networks along with expression datasets from DREAM
challenge were adopted here to evaluate our method. The
gold standard networks were selected from source networks
of real species. The expression data were generated with
the nonlinear ordinary differential equation (ODE) systems
in which the network structures were determined with de-
tailed dynamics of both transcriptional and translational
processes (50). In this work, the DREAM3 datasets about
Yeast knock-out gene expression data with sizes 10, 50 and
100 were used (4).

Firstly, we tested CMI2NI on the Yeast gene expression
data with network size 10 and sample number 10. We chose
0.03 as the threshold value of mutual information and con-
ditional mutual inclusive information to decide indepen-
dence, and the order index was not constrained, i.e. the

http://www.comp-sysbio.org/cmi2ni
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Figure 3. ROC curves of several methods on Yeast networks of sizes 10,
50 and 100 from DREAM3 challenge. The red solid line denotes the ROC
curve by CMI2NI, while the green and blue ones respectively denote the
ROC curves by PCA-CMI and pcalg. (A) The ROC curves on networks of
size 10. (B) The ROC curves on networks of size 50. (C) The ROC curves
on networks of size 100.

algorithm terminated until there was no more higher or-
der CMI2 to be computed. In order to evaluate the perfor-
mance of CMI2NI, the AUC score was adopted. As shown
in Figure 3A, CMI2NI performs best with an AUC score of
0.994, implying the efficiency of CMI2NI. In addition, we
also compared CMI2NI with partial correlation coefficient-
based PC algorithm (pcalg) (49) and conditional mutual
information-based PC-algorithm (PCA-CMI) (28). The re-
sults can be found in Figure 3A, where we can see that
CMI2NI is superior to the other methods. The detailed re-
sults of different approaches can be found in Table 1 with
respect to PPV, ACC, MCC and AUC. From Table 1, we
can see that CMI2NI and PCA-CMI perform compara-
tively well with respect to PPV, ACC and MCC, and both
approaches outperform pcalg.

Secondly, we tested CMI2NI on the Yeast gene expres-
sion data with network size 50 and sample number 50. The
network containing 50 nodes with 77 edges was selected
from real and experimental verified networks. We set the
threshold value 0.05 for MI and CMI2 to decide indepen-
dence and the order index was not constrained. As shown in
Figure 3B, CMI2NI outperforms other reference methods
with the highest AUC score of 0.834. From Table 1, we can
see that CMI2NI performs better than the other methods
with respect to all the metrics listed. For example, CMI2NI
achieved 0.492, 0.396, 0.397 and 0.834 for PPV, ACC, MCC
and AUC, respectively.

Thirdly, we tested CMI2NI on the Yeast gene expression
data with network size 100 and sample number 100. The
reference network contains 100 nodes with 166 edges. We
set the threshold value 0.03 of MI and CMI2 to decide in-
dependence and the order index was set to the first order
which is a usually adopted order for large-scale networks
to reduce the computational burden. As shown in Figure
3C, CMI2NI performs better than other reference meth-
ods with the highest AUC value of 0.856. The detailed re-
sults of different approaches can be found in Table 1 with
respect to various metrics. From Table 1, we can see that
CMI2NI performs better than the other two methods with
the highest values 0.628, 0.972, 0.479 and 0.856 for PPV,
ACC, MCC and AUC, respectively. In the 100-gene network
from DREAM dataset, 14 edges were detected by CMI2 but
missed by CMI. Furthermore, CMI2 successfully silenced
20 edges overestimated by CMI without reducing the true
positive rate in the 100-gene network.

The results on all the three datasets with different net-
work sizes from DREAM challenge demonstrated the ef-
fectiveness of our CMI2NI. Furthermore, the good perfor-
mance of CMI2NI indicates that CMI2, as a new measure
of causal regulation strength, is superior to CMI.

Reconstruction of SOS network in Escherichia coli

Besides the above simulation datasets, CMI2NI was also ap-
plied to reconstruct gene networks from real gene expres-
sion data. We evaluated our CMI2NI on the well-known
SOS DNA repair network which is an experimentally ver-
ified network in E. coli with real gene expression data
(47,48).

The network is a 9-gene sub-network of SOS pathway
in E. coli. The SOS pathway, which regulates cell survival
and repair after DNA damage, involves the lexA and recA
genes. There are more than 30 genes that are directly regu-
lated by lexA and recA, while tens or even hundreds of other
genes that are indirectly regulated by the two genes. Here,
the nine transcripts in the test network include the princi-
ple mediators of the SOS response (lexA and recA), four
other regulatory genes with known involvement in the SOS
response (ssb, recF, dinI and umuDC), and three sigma fac-
tor genes (rpoD, rpoH and rpoS) whose regulations play im-
portant roles in the SOS response. For the expression data,
we chose the perturbation data, which were obtained after
perturbations were applied to the test network in E. coli.
In the perturbation, each of the nine genes in the test net-
work is overexpressed with arabinose-controlled episomal
expression plasmid, and the change in expression of each
transcript relative to the unperturbed cells was accordingly
measured using quantitative real-time polymerase chain re-
action (qPCR).

The performance of CMI2NI was evaluated with the net-
work of size 9 and the expression dataset generated un-
der perturbations. We chose 0.01 as the threshold of both
MI and CMI2. To show the performances of CMI2NI and
other methods, the true network and inferred networks were
visualized with Cytoscape (51). Figure 4A shows the true
network with 24 edges. Figure 4B–D shows the networks in-
ferred by pcalg, PCA-CMI and CMI2NI, respectively, with
corresponding ACC of 0.583, 0.694 and 0.722. From the re-
sults shown in Figure 4E, we can see that CMI2NI outper-
forms the other two methods significantly, where CMI2NI
achieves the highest AUC of 0.802.

The detailed results of different methods can be found in
Table 2 with respect to some indexes, such as PPV, ACC,
MCC, etc. From Table 2, we can see that CMI2NI per-
forms best on most metrics. Although pcalg achieves higher
TPR with the same parameter, the higher FPR disables it
as a good performer. Both PCA-CMI and CMI2NI out-
perform pcalg, implying the efficiency of CMI. The supe-
rior performance of CMI2NI over PCA-CMI demonstrates
that CMI2 is better than CMI when quantifying the causal
strength between variables.

Performance of CMI2NI

The theoretical analysis of CMI2 has proven that CMI2 can
be decomposed into CMI and a non-negative term. This im-
plies that CMI2 value is bigger than CMI. Hence, CMI2 can
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Table 1. Comparison of different methods on networks with sizes 10, 50 and 100 in DREAM3 challenge

Method TP FP TN FN TPR FPR PPV ACC MCC AUC

Size 10
pcalg 20 8 62 0 1.000 0.114 0.714 0.911 0.795 0.991
PCA-CMI 18 2 68 2 0.900 0.028 0.900 0.956 0.871 0.991
CMI2NI 18 2 68 2 0.900 0.028 0.900 0.956 0.871 0.994
Size 50
pcalg 66 162 2134 88 0.428 0.071 0.289 0.898 0.299 0.782
PCA-CMI 72 78 2218 82 0.467 0.034 0.480 0.934 0.438 0.810
CMI2NI 78 80 2216 76 0.506 0.035 0.493 0.936 0.466 0.834
Size 100
pcalg 152 252 9316 180 0.457 0.026 0.376 0.956 0.392 0.829
PCA-CMI 114 96 9472 218 0.343 0.010 0.542 0.968 0.416 0.849
CMI2NI 128 76 9492 204 0.385 0.007 0.627 0.971 0.478 0.855

Table 2. Comparison of different methods on SOS DNA repair network

Method TP FP TN FN TPR FPR PPV MCC ACC AUC

pcalg 12 3 9 12 0.500 0.250 0.800 0.239 0.583 0.701
PCA-CMI 16 3 9 8 0.667 0.250 0.842 0.393 0.694 0.792
CMI2NI 17 3 9 7 0.708 0.250 0.850 0.435 0.722 0.802

Figure 4. Comparison of CMI2NI with pcalg and PCA-CMI on the SOS
network. (A) Benchmark (true) network. (B) Network inferred by pcalg.
(C) Network inferred by PCS-CMI. (D) Network inferred by CMI2NI.
In the network, a pink node represents a gene. (E) ROC curves of three
methods, where the AUC score of CMI2NI is 0.802.

address the underestimation problem of CMI. To further
test this theoretical conclusion, we investigated the value
of CMI2 with both simulation and real expression datasets.
Moreover, we compared values of CMI2 and CMI. For sim-
ulation dataset, we used a random dataset as well as the
dataset from DREAM challenge. For real gene expression
dataset, we used the expression data of SOS network in E.
coli.

Firstly, we generated random variables with different
samples 5, 10, 100 and 500, we took one or more of them as
conditional variable(s). We computed their CMI2 and CMI
values using these datasets. The calculation was performed
100 times on each dataset, and the mean of the CMI2 and
CMI values were used for comparison. Figure 5A gives the
results of CMI2 and CMI values. From the histogram, we
can find that for all the types of datasets with different sam-

Figure 5. Comparison of methods CMI2 and CMI in quantifying causal
strengths in different datasets. Blue and red bars represent CMI2 and CMI
respectively. (A) Comparison on five replicate random datasets. (B) Com-
parison on random, DREAM and SOS datasets.

ples, CMI2 values are always larger than CMI values, which
is consistent with theoretical analysis of CMI2.

Secondly, we investigated the values of CMI2 on the
datasets from DREAM challenge and the real expression
dataset for SOS network in E. coli. When computing the
causal strength, we only calculated CMI2 or CMI for the
edges in the network, where the means of all edges for
CMI2s or CMIs were used for comparison. Figure 5B
shows the values of CMI2 and CMI on the five datasets,
from which we can clearly see that CMI2 is indeed higher
than CMI.

Case study: reconstruction of cancer-specific gene regulatory
network

It is well recognized that most complex traits are caused
by the dysfunction of certain functional modules and path-
ways (52), where the gene regulatory circuit may be rewired
in the diseases. Since the gene regulatory network provides
a global view of the gene regulations, we hereby investi-
gated how the cancer genes are regulated by constructing a
gene regulatory network for cancer. As a case study, we ap-
plied CMI2NI to build a GRN for acute myeloid leukemia
(AML) based on the RNA sequencing data of a large cohort
of AML patients from TCGA (http://cancergenome.nih.

http://cancergenome.nih.gov/
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Figure 6. AML-specific gene regulatory network reconstructed by
CMI2NI.

gov/) (53,54). The Level-3 processed data was used here, and
the RPKM (read per kilobase of exon per million mapped
reads) value was used as the gene expression value.

Figure 6 shows the AML-specific GRN constructed by
CMI2NI. In particular, we considered the 81 cancer genes
involved in a network built by RACER (55), where the
network was constructed based on the same AML gene
expression dataset used here. In the AML-specific GRN,
there are 16 regulators and 65 target genes, and we in-
ferred the regulation relationships between the regulators
and genes with CMI2NI. In total, we detected 550 regula-
tions, among which 113 regulations have been reported by
RACER. Compared with the network inferred by RACER,
there are two hub regulators NRSF and BCLAF1 in the
GRN constructed by CMI2NI, where these two regulators
respectively target 39 and 35 genes. In the GRN built by
RACER, the degrees of these two regulators are small. By
investigating the target genes of NRSF and BCLAF1 from
our constructed GRN, we want to see which pathways these
two regulators are involved in and how they are related
to cancer. With the cancer gene annotation system CaGe
(http://mgrc.kribb.re.kr/cage/), we noticed that the genes
targeted by NRSF are significantly enriched in cancer path-
ways and the top two ranked pathways are leukemia-specific
pathways (detailed results can be found in Supplementary
Tables S1). Similarly, BCLAF1 target genes are also signif-
icantly enriched in leukemia-specific pathways (detailed re-
sults can be found in Supplementary Tables S2). Despite
these two regulators have not been reported directly to be
related to leukemia, the analysis of their target genes im-
plies that they play important roles in leukemia. In the fu-
ture, these two regulators can be considered when designing
target therapy for leukemia.

DISCUSSION

The information theory-based association measures, e.g.
MI and CMI have been widely used to infer gene regula-
tion networks. However, these measurements either under-

estimate or overestimate the associations between variables
(5,56). In this paper, we proposed a novel association con-
cept, namely CMI2, to accurately quantify the dependency
between a pair of variables. CMI2 provides a natural gener-
alization of correlation and is capable of characterizing the
nonlinear dependency between variables that is common
in biology. Furthermore, CMI2NI can accurately quantify
the causal strengths or correlations between gene-pairs so
that the indirect regulation can be eliminated, which is the
key point to improve the accuracy of GRN inference. With
CMI2, we developed a network inference algorithm, namely
CMI2NI, to infer gene regulation networks. With the power
of PC algorithm, CMI2NI can also keep the natural sparse-
ness of biological networks. The benchmark results show
that CMI2NI outperforms other popular approaches, im-
plying the effectiveness of CMI2NI. Considering the com-
plex functional relationships among genes (57), we also con-
structed an AML-specific GRN with CMI2NI to see how
the cancers genes are regulated. Similar to other network-
based approaches, such as network differentiation (58–63)
and dynamical network biomarkers (64–66), investigating
the regulatory circuit of cancer genes provides new insights
into the cancer pathogenesis.

Despite the advantages of CMI2NI, we notice there is still
room to improve it. Firstly, similar to PCA-CMI, CMI2NI
cannot directly infer edge directionality, which is also a gen-
eral problem of many other methods, especially for those
not working on time series data (23). Secondly, it is still
a challenge task to select the conditional genes in an op-
timization way. In the PC-algorithm, genes i, j and their
neighbours are randomly selected when calculating asso-
ciation. For example, there are T (T ≥ 1) genes which are
adjacent with both genes i and j. When constructing the
Lth-order (L ≤ T) network, all the Lth-order CMI2s for
the possible combinations of L conditional genes from T
genes are computed, and the maximal one or the geometric
mean of them is used to describe the regulation strength.
However, the selection of conditional genes may affect the
performance of PC algorithm.
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