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Abstract 

Background:  Sequencing viruses in many specimens is hindered by excessive background material from hosts, 
microbiota, and environmental organisms. Consequently, enrichment of target genomic material is necessary for 
practical high-throughput viral genome sequencing. Hybridization probes are widely used for enrichment in many 
fields, but their application to viral sequencing faces a major obstacle: it is difficult to design panels of probe oligo 
sequences that broadly target many viral taxa due to their rapid evolution, extensive diversity, and genetic hypervari-
ability. To address this challenge, we created ProbeTools, a package of bioinformatic tools for generating effective 
viral capture panels, and for assessing coverage of target sequences by probe panel designs in silico. In this study, 
we validated ProbeTools by designing a panel of 3600 probes for subtyping the hypervariable haemagglutinin (HA) 
and neuraminidase (NA) genome segments of avian-origin influenza A viruses (AIVs). Using in silico assessment of AIV 
reference sequences and in vitro capture on egg-cultured viral isolates, we demonstrated effective performance by 
our custom AIV panel and ProbeTools’ suitability for challenging viral probe design applications.

Results:  Based on ProbeTool’s in silico analysis, our panel provided broadly inclusive coverage of 14,772 HA and 
11,967 NA reference sequences. For each reference sequence, we calculated the percentage of nucleotide positions 
covered by our panel in silico; 90% of HA and NA references sequences had at least 90.8 and 95.1% of their nucleo-
tide positions covered respectively. We also observed effective in vitro capture on a representative collection of 23 
egg-cultured AIVs that included isolates from wild birds, poultry, and humans and representatives from all HA and 
NA subtypes. Forty-two of forty-six HA and NA segments had over 98.3% of their nucleotide positions significantly 
enriched by our custom panel. These in vitro results were further used to validate ProbeTools’ in silico coverage assess-
ment algorithm; 89.2% of in silico predictions were concordant with in vitro results.

Conclusions:  ProbeTools generated an effective panel for subtyping AIVs that can be deployed for genomic surveil-
lance, outbreak prevention, and pandemic preparedness. Effective probe design against hypervariable AIV targets also 
validated ProbeTools’ design and coverage assessment algorithms, demonstrating their suitability for other challeng-
ing viral capture applications.
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Background
Most viral specimens are characterized by low amounts 
of viral genomic material and excessive background 
from viral hosts and environmental organisms. Con-
sequently, practical viral genome sequencing requires 
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targeted enrichment for confident detection and accu-
rate genotyping, especially in high-throughput surveil-
lance and clinical applications [1–3]. Hybridization 
probe capture methods have been used for viral target 
enrichment [4–7], but designing probe oligo sequences 
for many viruses can be a major obstacle due to exten-
sive genomic diversity and hypervariability within and 
between viral taxa [8–13].

Probe panels are typically designed by enumerating 
probe-length sub-sequences (k-mers) from reference 
sequences. The simplest approach to designing probes 
for hypervariable taxa is to enumerate k-mers from an 
exhaustive collection of reference sequences, thereby 
including as much genomic divergence in the design 
space as possible [7, 8]. This approach becomes prob-
lematic, however, when redundant probe sequences 
are enumerated from repeated instances of conserved 
genomic loci.

A few strategies have been used to address this 
redundancy problem. One common strategy is to clus-
ter similar k-mers after they have been enumerated 
[6, 7]. Another strategy is to align candidate probe 
sequences against select reference genomes to iden-
tify and retain only those probes targeting divergent 
genotypes [8]. Redundancy has also been addressed by 
constraining the design space to a limited number of 
representative reference genomes, selected either by 
manual curation or clustering [9–12]. Some of these 
strategies have been supplemented with multiple 
sequence alignments over hypervariable loci or entire 
genomes so that probes are designed from consensus 
and degenerate sequences [9, 10].

Spacing between probe sequences is another compli-
cated design consideration. Regular spacing (tiling) is the 
most common approach because it is easy to implement, 
but it does not ensure optimal positioning of probes. 
Reducing the spacing increases the likelihood that some 
enumerated probes are optimally positioned, but it also 
increases the number of probe candidates and any asso-
ciated computation to collapse redundancy among them. 
Creating the smallest possible panel of probes that opti-
mally covers the entire target space quickly becomes an 
intractable computational problem, one that had led to 
increasingly complicated approaches including sophisti-
cated minimization of loss functions [13].

Efforts to address viral hypervariability have resulted 
in several elaborate probe design algorithms. Unfor-
tunately, these have largely been implemented on a 
study-by-study basis and have not resulted in general-
purpose software tools that can be easily used by oth-
ers. Meanwhile, among the handful of published probe 
design packages, there is only one option that spe-
cifically addresses viral hypervariability [13]. The rest 

are intended for comparatively conserved eukaryotic 
genomes and are inadequate for many viral applications 
[14–17]. This leaves virologists with limited options for 
designing their own hybridization probes, especially 
if they have minimal capacity for custom program-
ming, sophisticated mathematics, and experimental 
bioinformatics.

Here, we present ProbeTools, a general-purpose soft-
ware package for designing compact probe panels against 
diverse viral taxa and other hypervariable genomic tar-
gets. It can also be used to assess how well existing panels 
cover user-provided target sequences. ProbeTools imple-
ments the established K-mer clustering method, but it 
adds a novel incremental design heuristic to minimize 
the generation of redundant probes. It also provides a 
simple command line user interface for ease of use and 
automation.

In this study, we demonstrate ProbeTools’ effective-
ness by designing capture panels for avian-origin influ-
enza A viruses (AIVs). These viruses are subtyped by 
two hypervariable viral surface proteins called haemag-
glutinin (HA) and neuraminidase (NA), making them 
an appropriately challenging case study for ProbeTools. 
The genome segments encoding these proteins have 
diversified into 16 avian-origin HA subtypes and 9 avian-
origin NA subtypes, giving rise to 144 possible combina-
tions and the HxNx nomenclature used in both animal 
and human contexts (e.g. H1N1, H3N2, H5N1, H7N9). 
Furthermore, each of these subtypes has diverged into 
numerous clades, many of which have been only partially 
characterized [12, 18, 19].

AIV lineages have varying potential for spillover from 
wild birds into poultry and humans [20–25], posing a 
perennial threat to agriculture and public health. Some 
lineages cause costly outbreaks of severe disease in poul-
try flocks which, in turn, expose humans to potentially 
dangerous zoonotic influenza infections. This threatens 
economic disruption, future pandemic crises, and new 
types of seasonal influenza, which remains an important 
global health burden and among the ten leading causes of 
death worldwide [12, 21–31]. Consequently, surveillance 
of AIVs in wild birds is a cornerstone of outbreak pre-
vention and pandemic preparedness [12, 20, 32, 33]. An 
effective panel of AIV-specific probes would be instru-
mental for these genomics-based surveillance efforts.

In this study, we designed and validated a compact 
panel of 3600 probes for detecting and subtyping AIVs. 
Our results showed broad inclusivity against all avian-
origin HA and NA subtypes based on in silico predictions 
against of tens-of-thousands of AIV reference sequences. 
We also demonstrated successful captures in  vitro on a 
representative collection of 23 egg-cultured AIVs. These 
results validated the core ProbeTools algorithms and 
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demonstrated its suitability for other challenging probe 
design applications with hypervariable viral targets.

Results
Assessing basic k‑mer clustering and marginal 
improvements to target coverage with additional probes
We began by assessing probe design against hypervari-
able targets with a basic k-mer clustering algorithm, 
wherein all 120-mers were enumerated from a tar-
get space of AIV reference sequences then clustered 
based on 90% nucleotide sequence identity. We used 

this strategy, implemented in the ProbeTools clusterk-
mers module, to generate probe panels of increasing 
size against 14,772 HA segment reference sequences 
and 11,967 NA segment reference sequences. We then 
used the ProbeTools capture module, which aligns probe 
sequences against target sequences, to assess target space 
coverage, i.e. the percentage of nucleotide positions in 
each target sequence covered by at least one probe in 
the panel (Fig. 1A, solid lines). As expected, panels with 
more probe sequences provided better target space 
coverage, however we observed diminishing marginal 

Fig. 1  Incremental design strategy improves upon basic k-mer clustering for probe panel design. Panels were designed against target spaces of 
14,772 haemagglutinin (HA) and 11,967 neuraminidase (NA) genome segment reference sequences. The ProbeTools clusterkmers module was used 
to make panels using basic k-mer clustering and the makeprobes module was used to make panels with an incremental strategy. For each panel, 
probe coverage of reference sequences was assessed in silico using the ProbeTools capture module. A For both strategies, increasing panel size 
improved the 10th percentile of reference sequence coverage with diminishing marginal increases, but incrementally designed panels achieved 
more extensive coverage at larger panel sizes. Incrementally designed panels also provided better coverage of the worst-covered reference 
sequence using fewer probes. B Incrementally designed panels shifted coverage distributions upwards for the worst-covered reference sequences. 
Each reference sequence in the target space is represented as a dot, plotted according to its probe coverage. Coverage of the worst-covered 
reference sequence and 10th percentile of all reference sequences are indicated above the axis. C Incrementally designed panels improved 
reference sequence coverage by re-distributing probes from regions with deep coverage (4 or more probes) to regions with shallow coverage (2 or 
fewer probes)
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improvements for both HA and NA genome segments. 
We also noted that reference sequences with no probe 
coverage remained in the target space past the point of 
diminishing marginal returns. These results highlighted 
two limitations of the basic k-mer clustering approach: 
some HA and NA segments remained undetected despite 
designing additional probes, and additional probes pro-
vided only modest and diminishing improvements to the 
distribution of target coverage.

Improving target coverage with incremental panel design 
focused on poorly covered targets
To address the limitations we observed with basic k-mer 
clustering, we devised an incremental design strat-
egy to improve marginal coverage increases, especially 
for poorly covered targets. In this strategy, basic k-mer 
clustering was used to design panels in smaller batches 
of 100 probes. After adding each batch to the growing 
panel, target space regions without probe coverage were 
identified using the capture module. These low cover-
age regions were then extracted with another ProbeTools 
module called getlowcov and used as a new target space 
for designing the next batch. In this way, each subsequent 
batch of probes was focused on regions not already cov-
ered by the panel.

We compared target space coverage for panels designed 
with this incremental strategy against panels designed 
above using basic k-mer clustering (Fig.  1). The incre-
mental strategy provided higher 10th percentiles of cov-
erage, especially for HA panels larger than 2000 probes 
and NA panels larger than 1200 probes (Fig. 1A). Further-
more, the incremental strategy provided better coverage 
for the worst-covered reference sequences (Fig.  1AB). 
We also compared depth of probe coverage, i.e. the num-
ber of probes covering each nucleotide position in tar-
get sequences (Fig.  1C). This comparison indicated that 
the incremental strategy improved target coverage by 
redistributing probes from positions with deep coverage 
to shallow coverage. We speculate that the incremental 
approach, by removing already-covered regions from the 
target space after each batch, limited the enumeration 
of adjacent, partially overlapping k-mers that provided 
redundant coverage. Based on the observed performance 
improvements of the incremental strategy, it was imple-
mented as an additional self-contained ProbeTools mod-
ule called makeprobes (Fig. 2).

Predicted coverage of HA and NA subtypes by AIV_v1 
panel
Using the incremental strategy implemented in the 
ProbeTools makeprobes module, we generated an AIV-
targeting probe panel called AIV_v1. It was composed of 
1935 HA-specific probes and 1435 NA-specific probes. 

We also included 184 probes targeting the highly con-
served matrix segment (M) which is the standard AIV 
diagnostic target [24, 34]. We then used the ProbeTools 
capture module to predict probe coverage using the 
AIV_v1 panel for all 36,313 AIV reference sequences in 
the target space. The minimum, maximum, and 10th per-
centile of reference sequence coverage was calculated for 
each HA and NA subtype and the M segment (Fig. 3A).

We observed that M segments had the best coverage 
followed by NA subtypes then HA subtypes, reflecting 
the comparative levels of genomic diversity within these 
genome segments. No reference sequence had less than 
59.6% coverage, which is sufficient for segment and sub-
type identification. HA subtypes H5, H7, and H9 are 
considered high priority for AIV surveillance because 
they frequently cause agricultural outbreaks and novel 
influenza infections in humans [23–26, 34]; 90% of H5, 
H7, and H9 reference sequences had at least 94.4, 88.5, 
and 92.4% probe coverage respectively. We also noted 
a significant positive monotonic association between a 
subtype’s target coverage distribution and number of ref-
erence sequences from that subtype in the target space 
(Fig. 3B). This indicated that over-representing subtypes 
in the target space resulted in preferential design and bet-
ter probe coverage for these targets, e.g. the high priority 
subtypes H5, H7, and H9.

In vitro capture of diverse egg‑cultured influenza isolates
After assessing the AIV_v1 panel in silico, we had it syn-
thesized and used it to perform in vitro captures on a col-
lection of diverse egg-cultured AIV isolates (Table 1). We 
ensured that each avian-origin HA and NA subtype was 
represented in the collection, and we included isolates 
from wild birds, poultry, and humans. The collection 
contained 22 egg cultures, including one mixed infection, 
providing 23 viruses and 69 distinct HA, NA, and M seg-
ments for in vitro capture.

Sequencing libraries were prepared from each iso-
late then pooled. AIV library pools were diluted 1:100 
(ng/ng) in libraries of background material made from 
mock-infected egg cultures, then captured three times 
independently using the AIV_v1 panel. Pre- and post-
capture pools were sequenced to calculate mean fold-
enrichment at each nucleotide position in these 69 HA, 
NA, and M segments. Half of all nucleotide positions 
had a mean fold-enrichment greater than 351.2-fold, 
and 90% of nucleotide positions had a mean fold-
enrichment greater than 195.0-fold (Fig.  4A). We also 
calculated the percentage of the capture pools com-
posed of background material from the mock-infected 
egg cultures, then compared these percentages pre- and 
post-capture (Fig. 4B). Before capture, the mean back-
ground percentage was 99.17%, but this was reduced 
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to 0.03% following capture. Together, these data dem-
onstrate effective enrichment of AIV material and 
removal of background by probe capture with the 
AIV_v1 panel.

We also used these in vitro results to assess breadth of 
enrichment, i.e. the percentage of nucleotide positions in 
each HA, NA, and M segment that had been significantly 
enriched by probe capture (Fig.  4C, Table S1). Breadth 

Fig. 2  ProbeTools makeprobes module implements a generalized incremental design algorithm. 1) The user provides a FASTA formatted file 
containing target sequences, which forms the total target space and becomes the poorly covered target space for the first cycle of the design 
loop. 2) The ProbeTools clusterkmers module generates a batch of probe sequences from the poorly covered target space using its k-mer clustering 
algorithm. 3) The latest batch of probes is combined with probes from previous batches to generate the current probe panel. If the size of 
the current probe panel meets the maximum panel size set by the user, the design loop ends and the current panel becomes the final panel, 
otherwise... 4) The ProbeTools capture module determines which nucleotide positions in the total target space are covered by the current probe 
panel. 5) The ProbeTools stats module calculates the 10th percentile of target coverage from the capture module results. If the target coverage goal 
set by the user is met, the current probe panel becomes the final probe panel, otherwise... 6) The getlowcov module extracts low coverage regions 
of the target space from the capture module results. These become the new poorly covered target space, and the design loop repeats
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of enrichment was greater than 96.3% for 64 of 69 seg-
ments in the collection, and it was not less than 46.5% 
for any segment, which is sufficient for segment and sub-
type identification (Table S3). Nine isolates contained 
high priority H5, H7, and H9 segments, all of which had 
greater than 98.7% breadth of enrichment. This included 
two isolates from zoonotic human infections (H5N1 
and H7N9), which were extensively enriched despite the 
absence of reference sequences from human infections in 
the target space used for probe design.

We further examined the five segments with less than 
96.3% breadth of enrichment to understand why they 
were apparently not captured in full. First, we used the 
ProbeTools capture module to assess if the AIV_v1 panel 
lacked probes targeting their particular genome segment 
sequences. We observed that most positions without sig-
nificant enriched were nonetheless extensively covered 
by the probe panel (Fig. 5A). This indicated that insuffi-
cient design by ProbeTools was not a major explanation 
for the lack of significant capture of these segments.

Fig. 3  The ProbeTools-designed AIV_v1 panel provided broadly inclusive coverage in silico of avian-origin HA subtypes, NA subtypes, and M 
segments. The AIV_v1 panel of 3600 probes was designed using the ProbeTools makeprobes module. It was composed of 1935 haemagglutinin 
(HA) segment-specific, 1435 neuraminidase (NA) segment-specific, and 184 matrix (M) segment-specific probes. A Coverage predictions against 
36,313 reference sequences were generated with the ProbeTools capture module and stratified by subtype for HA and NA segments. The minimum, 
10th percentile, and maximum of probe coverage against reference sequences from each subtype/segment are indicated. B A significant positive 
monotonic association was observed between the number of sequences from a subtype in the target space and that subtype’s 10th percentile of 
coverage. Each dot represents an HA or NA subtype, and the results of Spearman’s rank correlation test are indicated on the plots
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Next, we assessed whether experimental factors were 
responsible for nucleotide positions in these segments 
failing to achieve statistically significant enrichment. 
Fold-enrichment values between positions with and 
without significant enrichment were comparable, but 
variation between capture replicates were significantly 
different, with higher variation for positions that were 
not significantly enriched (Fig.  5 BC). We attribute this 
to sub-optimal cDNA synthesis for the affected posi-
tions, causing under-representation of these positions in 
the material that was captured, lower depths of coverage, 
and higher stochasticity (Fig. 5D). Despite this source of 
experimental variation, and the limited number of repli-
cates that was practical for us to perform, only 3.1% of 
nucleotide positions across all HA, NA, and M segments 
were impacted, and most of these positions only barely 
failed the enrichment significance test (half achieved a 
p-value < 0.07) (Fig.  5E). Overall, our in  vitro capture 
results demonstrated that the ProbeTools-designed 
AIV_v1 panel performed well on real viral isolates, effec-
tively removing background material and providing high 

breadths of enrichment across HA, NA, and M segment 
targets.

Comparison of in silico probe coverage prediction 
and in vitro probe capture enrichment
ProbeTools relies on in silico coverage assessment by the 
capture module, both for final panel evaluation and for 
identifying poorly covered sequences during incremen-
tal design. To validate ProbeTools’ coverage assessment 
algorithm, we examined how closely its in silico predic-
tions agreed with in vitro capture results on egg-cultured 
AIV isolates.

Using the ProbeTools capture module, we deter-
mined which nucleotide positions in the egg-cultured 
AIVs were predicted to be covered by the AIV_v1 
probe panel. We then compared these predictions to 
our in vitro capture results to see if significant enrich-
ment had actually occurred at these nucleotide posi-
tions (Fig.  6 and Fig. S1). Predicted probe coverage 
and significant enrichment results were concordant for 
89.2% of nucleotide positions. Only 2.3% of nucleotide 

Table 1  Representative collection of egg-cultured avian influenza virus isolates. Isolates were selected to provide representation 
of each avian-origin haemagglutinin (HA) and neuraminidase (NA) subtype as well as infections from poultry, wild bird, and human 
hosts. Each specimen was given a name based on an abbreviation of its host type and a sequential number (P for poultry, WB for wild 
bird, and H for human). Poultry and wild bird isolates were obtained from the Canadian Food Inspection Agency’s National Centre 
for Foreign Animal Disease (CFIA NCFAD), and human isolates were obtained from the Public Health Agency of Canada’s National 
Microbiology Laboratory (PHAC NML). Isolate subtypes were confirmed in-house by genome sequencing

Specimen name Host type Strain name HA subtype NA subtype Source laboratory

P1 Poultry A/Turkey/Ontario/844–2/2006 H6 N1 CFIA NCFAD

P2 Poultry A/Chicken/Germany/N/1949 H10 N7

P3 Poultry A/Turkey/Ontario/18–2/2000 H7 N1

P4 Poultry A/Emu/Texas/39924/1993 H5 N2

P5 Poultry A/Turkey/Ontario/6118/1967 H8 N4

P6 Poultry A/Chicken/Quebec/IM-109/2010 H6 N1

WB1 Wild bird A/Duck/British Columbia/26–2/2005 H5 N2

WB2 Wild bird A/Swan/Alberta/OTH33–8/2009 H1 N1

WB3 Wild bird A/Teal/Germany/Wv632/2005 H5 N1

WB4 Wild bird A/Duck/Alberta/C-16/2007 H7 N7

WB5 Wild bird A/Duck/Australia/341/1983 H15 N8

WB6 Wild bird A/Duck/Alberta/60/1976 H12 N5

WB7 Wild bird A/Gull/Maryland/4/1977 H13/H7 N6/N3

WB8 Wild bird A/Pheasant/Washington/37349/1985 H9 N9

WB9 Wild bird A/Mallard/Gurjev/263/1982 H14 N5

WB10 Wild bird A/Duck/British Columbia/14/1999 H4 N6

WB11 Wild bird A/Duck/Prince Edward Island/274.1/2006 H16 N3

WB12 Wild bird A/Duck/Alberta/431/2006 H3 N8

WB13 Wild bird A/Pintail/Alberta/293/1977 H2 N9

WB14 Wild bird A/Mallard/Manitoba/OTH27–1186/2017 H11 N9

H1 Human A/Alberta/01/2014 H5 N1 PHAC NML

H2 Human A/Anhui/1/2013 H7 N9
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positions targeted by the AIV_v1 panel were not sig-
nificantly enriched. These were concentrated in the 
five segments discussed above that were impacted by 
variability between replicates (Fig. S2). We also noted 
that 7.7% of nucleotide positions were significantly 
enriched despite not being targeted by the AIV_v1 
panel, a phenomenon that was observed in most seg-
ments across all isolates (Fig. 6 and Fig. S1). We attrib-
ute this to the capture of larger fragments containing 
untargeted sequences adjacent to the location annealed 
by the probe. It might also indicate that local align-
ment parameters used by ProbeTools capture are more 
conservative than actual annealing thermodynamics. 
Either way, these results showed that ProbeTools pre-
dictions generally reflected actual capture of target 
genomic material, and in silico predictions more often 
underestimated panel performance when predictions 
were incorrect.

Discussion
This study highlighted some important considerations 
when designing panels using ProbeTools. Foremost 
among these was the effect of target space composition 
on panel inclusivity. In this AIV case study, we noted a 
significant positive monotonic association between panel 
coverage and the number of reference sequences repre-
senting a particular subtype in the target space. Based on 
how the ProbeTools algorithm ranks probe candidates 
by the number of k-mers in the cluster they represent, 
it stands to reason that over-representing similar taxa 
(which would contain many similar k-mers) would bias 
the resulting panel towards these taxa.

Consequently, ProbeTools users should have a thorough 
knowledge of the contents of their target space and the 
possible sources of sampling bias in the databases from 
which they obtain their reference sequences. In the case of 
AIVs, the agricultural impacts and public health threats of 

Fig. 4  Effective in vitro capture of egg-cultured avian influenza virus isolates using the ProbeTools-designed AIV_v1 panel. The AIV_v1 panel 
of 3600 probes was designed using ProbeTools, and it was used to capture sequencing libraries made from a representative collection of 23 
egg-cultured avian influenza viruses (AIVs) (described in Table 1). AIV libraries were pooled together, diluted 1:100 (ng/ng) in libraries of background 
material made from mock-infected egg cultures, then captured three times independently. A Pre- and post-capture pools were sequenced to 
calculate fold-enrichment at each nucleotide position in the haemagglutinin (HA), neuraminidase (NA), and matrix (M) genome segments of these 
isolates (mean of three independent replicates). B Background material from mock-infected egg cultures was effectively removed during probe 
capture. C Breadth of enrichment, i.e. the percentage of nucleotide positions that were significantly enriched by probe capture, was calculated for 
each HA, NA, and M genome segment in these isolates
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certain HA subtypes have led to more frequent sequenc-
ing of these subtypes and accessioning of their genome 
sequences in popular databases. For our panel, this con-
tributed to bias towards subtypes like H5, H7 and H9. 
Whether this is a benefit or limitation will depend on the 
intended application. In the context of outbreak preven-
tion and pandemic preparedness, a panel biased towards 
taxa that are known for their agricultural impact and 

zoonotic potential is beneficial. If the objective is to char-
acterize viral diversity and ecology in wildlife, however, 
this could be a limitation.

To obtain the best results, ProbeTools users should 
purposefully curate their target space to serve their 
probe capture objectives. Users may want to identify 
taxa whose detection is a priority and over-represent 
them in the target space. Conversely, users may want 

Fig. 5  Lack of significant enrichment in segments with lower breadths of enrichment was due to experimental variation between capture 
replicates instead of insufficient probe design. A representative collection of 23 egg-cultured avian influenza viruses was captured three times 
independently using the ProbeTools-designed AIV_v1 panel. A ProbeTools capture was used to predict probe panel coverage of positions without 
significant enrichment from 5 genome segments with breadths of enrichment less than 96%. These positions were extensively targeted by probes 
in the AIV_v1 panel. B Fold-enrichment was comparable for positions with and without significant enrichment. The difference in distribution means 
was only 1.09-fold, although it was statistically significantly (p < 0.0001, Welsh’s t-test) due to the large number of nucleotide positions involved 
in the comparison (n = 96,376 and n = 3082 for positions with and without significant enrichment respectively). C Variation in fold-enrichment 
between three independent replicates was significantly higher for positions that did not achieve significant enrichment (p < 0.0001, Levene’s test). D 
Positions that failed to achieve statistically significant enrichment were significantly under-represented in the material that was captured (p < 0.0001, 
Welsh’s t-test). E Most positions with insignificant enrichment narrowly failed the enrichment test’s pre-determined alpha level of 5%
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to ‘flatten’ their target space to ensure no particular 
taxa, clades, subtypes, etc dominate. This could be done 
manually, by selecting specific sequences to represent 
relevant groups, or it could be attempted bioinformati-
cally by pre-clustering target sequences, providing the 
number and length of target sequences do not make 
this computationally prohibitive.

Another strategy could be to use the various Probe-
Tools modules to extract low coverage sequences from 
specific groups whose target sequences have poor probe 
coverage after a core panel is designed. For instance, 
had H15 subtype AIVs been a surveillance priority in 
this study, supplemental H15-specific probes could 
have been designed by running the capture, getlowcov, 
and makeprobes modules on the H15 subset of target 
sequences after noting their comparatively low cover-
age by the main panel. In this way, the modular nature 
of ProbeTools and the relatively simple-to-understand 
algorithms within each module empower users to 
experiment and find creative solutions. This flexibility 
is instrumental for tailoring probe panels to the needs 
of the user and their specific viral capture application.

Conclusions
In this study, we used ProbeTools to create an effective 
and broadly inclusive panel of hybridization capture 
probes for subtyping AIVs. Our results show the util-
ity of this panel as a tool for AIV surveillance, outbreak 

prevention, and pandemic preparedness. They also dem-
onstrate that ProbeTools can effectively design probes 
against hypervariable genomic targets like avian-origin 
HA and NA segments. This validation of ProbeTools’ 
core design and coverage assessment algorithms shows 
that they are suitable for other challenging design appli-
cations, e.g. other viruses with hypervariable genes and 
pan-viral capture panels targeting multiple diverse taxa.

An increasing frequency of zoonotic outbreaks, epi-
demics, and pandemic crises has renewed interest in 
characterizing viral diversity at the interface of wild-
life, livestock, game, and humans [35–38]. Genomic 
sequencing is becoming central to these One Health 
ventures. Viral capture panels will need designing and 
updating as our knowledge of viral threats continues to 
expand [39, 40].

The on-going COVID-19 pandemic has also dem-
onstrated the value of viral genomics to public health 
[41–44], resulting in unprecedented investments in 
sequencing capacity at public health laboratories. This 
will expand routine genomics for numerous common 
pathogens, requiring the development of new target 
enrichment protocols. The COVID-19 pandemic has 
popularized the use of tiled multiplex PCR for viral 
genome enrichment in clinical and public health appli-
cations [45, 46], but on-going genomic drift is likely to 
cause amplicon dropouts and require frequent primer 
scheme redesigns for many pathogens, as has already 
been observed for SARS-CoV-2 [47]. Due to their longer 
length and, thus, higher tolerance of nucleotide mis-
matches [6], hybridization probe panels would require 
less frequent assay upkeep. To illustrate this principle, we 
used ProbeTools to design a SARS-CoV-2 panel contain-
ing 322 probes based on 1899 reference sequences from 
the first 2 months of the pandemic (January and Febru-
ary 2020). We then assessed in silico how well this panel 
covered 36,038 sequences from the most recent 2 months 
of the pandemic (May and June 2022); the tenth per-
centile of target coverage was 99.41% and the minimum 
was 98.19%, demonstrating that hybridization probes, 
especially panels designed by ProbeTools, can withstand 
genetic drift.

Furthermore, targeted enrichment protocols could 
be easily parallelized for multiple pathogens with probe 
capture; specimens containing different pathogens could 
be prepared into libraries concurrently and even pooled 
for a single capture using a pan-pathogen panel [8, 9, 11]. 
Amplicon sequencing, on the other hand, would require 
separately performed multiplex PCR reactions for each 
different pathogen, decreasing laboratory throughput.

Genomic sequencing is maturing into a routine tool 
for viral discovery, OneHealth surveillance, and clini-
cal microbiology. Hybridization probe capture offers an 

Fig. 6  In silico predictions of probe coverage by ProbeTools were 
highly concordant with actual in vitro enrichment of egg-cultured 
AIV isolates. A representative collection of 23 egg-cultured avian 
influenza viruses was captured three times independently using 
the ProbeTools-designed AIV_v1 panel. Pre- and post-capture pools 
were sequenced to determine which nucleotide positions in the 
haemagglutinin (HA), neuramindase (NA), and matrix (M) genome 
segments of these isolates had been significantly enriched. The 
ProbeTools capture module was used to assess which nucleotide 
positions of these HA, NA, and M genome segments were targeted 
by the ProbeTools-designed panel. Each cell indicates the number of 
nucleotide positions meeting the corresponding in silico prediction 
and in vitro capture conditions
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enrichment method that is durable against genomic drift 
and conducive to high-throughput, parallelized work-
flows for numerous pathogens. ProbeTools facilitates 
probe design tasks for these endeavours.

Methods
ProbeTools modules
ProbeTools consists of five main modules written in 
Python (v3.7.3) that perform essential tasks in the probe 
design process. ProbeTools is freely available under the 
MIT License. It can be installed easily using the Anaconda/
Miniconda package and environment manager. Alterna-
tively, it can be installed via the Python Package Index, 
followed by separate installation of its VSEARCH and 
BLASTn dependencies. Installation instructions, source 
code, documentation, and usage examples are available at 
https://​github.​com/​Kevin​Kuchi​nski/​Probe​Tools.

The clusterkmers module enumerates and clus-
ters probe-length k-mers from user-provided target 
sequences. 1) K-mers are enumerated using a sliding 
window that advances by a specified number of bases. 
The user may also specify the width of the window. 2) 
K-mers are clustered based on nucleotide sequence 
similarity using VSEARCH cluster_fast [48]. 3) Centroid 
sequences from each cluster are ranked by the size of 
the cluster they represent. Centroids from larger clus-
ters are assumed to be better probe candidates by virtue 
of having similarity to more k-mers in the target space. 
By default, clusterkmers enumerates 120-mers, advanc-
ing the window one base at a time, and it clusters using a 
nucleotide sequence identity threshold of 90%. Previous 
studies have observed effective hybridization between 
targets and probes with this degree of sequence similar-
ity [9, 11].

The capture module predicts how well user-provided 
probe sequences cover user-provided target sequences. 
1) Each probe sequence is locally aligned against each 
target sequence using BLASTn [49]. 2) Alignments are 
filtered, retaining those with a minimum sequence iden-
tity over a minimum alignment length. 3) Subject align-
ment start and end coordinates are extracted from the 
BLASTn results to determine which nucleotide positions 
in the target sequences are covered by probes. By default, 
capture requires 90% sequence identity over at least 60 
bases to assign probe coverage to the aligned positions.

The getlowcov module uses the output of capture to 
extract genomic regions with low coverage from the pro-
vided targets. This allows for additional probe design 
focused on poorly covered regions of the target space. 
This module returns all sub-sequences where a mini-
mum number of consecutive bases were covered by 
fewer than a specified number of probes. By default, get-
lowcov returns all sub-sequences over 40 bases in length 

where all bases in the sub-sequence were covered by zero 
probes.

The stats module uses the output of capture to calcu-
late coverage statistics. For each provided target, it cal-
culates the percentage of nucleotide positions covered 
by varying numbers of probes (“target coverage” and 
“probe depth”).

The makeprobes module chains the previous modules 
together to implement a generalized incremental design 
strategy (Fig. 2). In this strategy, probes are designed in 
batches, and regions of the target space with probe cov-
erage are removed between batches so that additional 
probes are focused on poorly covered areas. This mod-
ule can be used as a convenient departure point for cus-
tom designs. The user is only required to provide target 
sequences and select a batch size. They can optionally 
specify a maximum panel size and target space coverage 
goal. The makeprobes module iterates through its design 
loop, adding batches of probes to the panel until the max-
imum panel size is met, the target space coverage goal is 
achieved, or no further probes can be generated.

Preparation of AIV target space
All available full-length influenza A virus genome seg-
ment sequences from avian hosts were downloaded from 
the Influenza Research Database (www.​fludb.​org) on 
Dec 5, 2017 [50]. Sequences containing degenerate bases 
were removed to avoid low quality entries. Sequences 
were then clustered using VSEARCH cluster_fast (v1.0.7) 
[48] with a 100% sequence identity threshold to remove 
redundant entries. The remaining entries were used as 
our final AIV target space (described in Table 2).

AIV_v1 probe panel design and in silico coverage 
assessment
The AIV_v1 panel was designed against our final AIV 
target space using the ProbeTools makeprobes module as 
follows: 2000 probes were designed against HA targets 
in 20 batches of 100 probes; 1500 probes were designed 
against NA targets in 15 batches of 100 probes, and 200 
probes were designed against M targets in 20 batches of 
10 probes. All probes were 120 nucleotides in length, and 
designs were conducted using makeprobes with default 
parameters. Designs were conducted with ProbeTools 
v0.0.5, VSEARCH v1.0.7, and BLASTn v2.2.31.

The top-ranked 1935 HA probes, 1435 NA probes, 
and 184 M probes were combined into the final panel. 
Additional probes were added to the panel for poten-
tial control and validation applications, including 36 
probes targeting the common reference strain A/Puerto 
Rico/8/34 and 10 probes targeting synthetic spike-
in DNA oligomers with randomly generated artificial 
sequences. This provided a final panel of 3600 probes 

https://github.com/KevinKuchinski/ProbeTools
http://www.fludb.org
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(a breakpoint in the manufacturer’s pricing structure), 
which was synthesized as a custom panel by Twist Biosci-
ence (San Francisco, CA, USA). Sequences for probes in 
the AIV_v1 panel are provided in Supplemental Material 1. 
In silico coverage assessment of the AIV_v1 panel, both 
against the reference sequence target space and the con-
sensus sequences of the egg-cultured isolate collection, 

were conducted using the capture and stats modules with 
default parameters.

Preparation of sequencing libraries from egg‑cultured 
influenza isolates
Detailed laboratory procedures for the following are pro-
vided in Supplemental Material 2. RNA extracts from 
egg-cultured AIV isolates and mock infected eggs were 
provided by the Canadian Food Inspection Agency’s 
National Centre for Foreign Animal Disease (Winnipeg, 
Manitoba, Canada) and the Public Health Agency of 
Canada’s National Microbiology Laboratory (Winnipeg, 
Manitoba, Canada). Eggs were not directly handled by 
the authors. cDNA was prepared from each RNA extract 
using a previously described method [51]. cDNA was 
fragmented by sonication, then prepared into sequencing 
libraries for Illumina platforms with unique dual index 
barcodes. Adapter-ligated cDNA was split into three 
separate barcoding reactions, providing three separately 
barcoded replicate libraries for each isolate.

Probe capture enrichment and genomic sequencing 
of libraries prepared from egg‑cultured influenza isolates
Detailed laboratory and bioinformatic procedures for 
the following are provided in Supplemental Material 2. 
1) Three pools were prepared, with each pool containing 
one replicate library from each AIV isolate. These pools 
were sequenced in-house on Illumina MiSeq to generate 
full HA, NA, and M segment sequences for each isolate 
and to confirm HA and NA subtypes. 2) Each pool was 
diluted in 1:100 (ng/ng) in one of three replicate libraries 
of background genomic material that had been prepared 
from a mock-infected chicken egg. Aliquots of each 
diluted pool were sequenced pre-capture at Canada’s 
Michael Smith Genome Sciences Centre (Vancouver, BC) 
on one Illumina HiSeq X lane to establish baseline HA, 
NA, and M segment abundance. 3) Each diluted pool was 
independently captured using the AIV_v1 probe panel. 
Captured pools were then sequenced in-house on Illu-
mina MiSeq to assess target enrichment of HA, NA, and 
M segments post-capture.

Analysis of significant probe capture enrichment 
for egg‑cultured AIV isolates
1) Pre- and post-capture depths of coverage were deter-
mined by mapping each library’s sequencing reads 
to the HA, NA, and M segment sequences of its cor-
responding AIV isolate. 2) Depths of coverage were 
normalized by dividing raw pre- and post-capture read 
depths by the total reads in the corresponding pre- and 
post-capture pools (Table S2). 3) For each library, fold-
enrichment at each nucleotide position was calculated 
by dividing the normalized post-capture read depth by 

Table 2  Avian influenza virus reference sequences used 
as target space in this study. Full-length genome segment 
sequences from avian hosts were downloaded from the 
Influenza Research Database (www.​fludb.​org). Sequences 
containing degenerate bases were removed, then the remaining 
sequences were clustered using a 100% nucleotide sequence 
identity threshold to discard redundant entries. This provided a 
final target space of 36,313 reference sequences representing all 
avian-origin haemagglutinin (HA) subtypes, neuraminidase (NA) 
subtypes, and matrix (M) segments

Genome 
segment

Subtype Reference sequences in 
target space (#)

Target 
space size 
(KB)

HA H1 539 939.1

H2 381 664.0

H3 1309 2267.6

H4 1135 1944.1

H5 3546 6129.7

H6 1378 2361.3

H7 1266 2148.5

H8 122 209.9

H9 2653 4498.9

H10 591 1005.4

H11 520 897.5

H12 176 301.5

H13 232 405.4

H14 22 38.3

H15 13 22.7

H16 156 271.7

HA untyped 733 1254.8

HA total 14,772 25,360.4
NA N1 2742 3804.9

N2 3162 4498.5

N3 945 1347.3

N4 174 249.8

N5 296 427.4

N6 1424 2037.0

N7 502 718.4

N8 1272 1822.9

N9 667 948.5

NA untyped 783 1116.6

NA total 11,967 16,971.0
M none 9574 9582.4

http://www.fludb.org


Page 13 of 14Kuchinski et al. BMC Genomics          (2022) 23:579 	

the normalized pre-capture read depth. 4) For each AIV 
isolate, mean fold-enrichment was calculated at every 
nucleotide position from the fold-enrichment values 
of its three independently captured replicate libraries. 
5) Mean fold-enrichment values and their standard 
deviations were used to determine if significant enrich-
ment had occurred at all nucleotide positions using a 
one-sample T-test against the fixed value of one-fold 
enrichment with an alpha level of 5%.
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