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Abstract

Purpose—To evaluate an algorithm for calibrationless parallel imaging to reconstruct 

undersampled parallel transmit field maps for the body and brain.

Methods—Using a combination of synthetic data and in vivo measurements from brain and 

body, 3 different approaches to a joint transmit and receive low-rank tensor completion algorithm 

are evaluated. These methods included: 1) virtual coils using the product of receive and transmit 

sensitivities, 2) joint-receiver coils that enforces a low rank structure across receive coils of all 

transmit modes, and 3) transmit low rank that uses a low rank structure for both receive and 

transmit modes simultaneously. The performance of each is investigated for different noise levels 

and different acceleration rates on an 8-channel parallel transmit 7 Tesla system.

Results—The virtual coils method broke down with increasing noise levels or acceleration rates 

greater than 2, producing normalized RMS error greater than 0.1. The joint receiver coils method 

worked well up to acceleration factors of 4, beyond which the normalized RMS error exceeded 

0.1. Transmit low rank enabled an eightfold acceleration, with most normalized RMS errors 

remaining below 0.1.

Conclusion—This work demonstrates that undersampling factors of up to eightfold are feasible 

for transmit array mapping and can be reconstructed using calibrationless parallel imaging 

methods.
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1 Introduction

Parallel transmit (pTx) technology mitigates transmit field heterogeneity1,2; accelerates 

spatial RF pulses3,4; and lowers specific absorption rate deposition,5–7 which is achieved by 

driving multiple (parallel) transmit coils with subject, target, and pulse-specific amplitudes 

and phases. To generate subject-specific pulse designs, the transmit fields are measured 

for each subject and transmit channel, a time-consuming process in cardiac imaging, for 

example.8 This work investigates the acceleration of pTx field mapping for streamlining the 

use of pTx in MR imaging.

The minimum requirement for field mapping is to characterize the relative magnitudes 

and phases of the transmit channels (relative maps). Relative maps are analogue to coil 

sensitivities in parallel imaging and are measured by transmitting in different transmit 

configurations, usually 1 channel at a time, while acquiring data on all receive channels 

simultaneously.9–11 Relative mapping is only valid when the excitation flip angle is both 

large enough to generate sufficient signal (greater than the noise) and small enough that 

the signal is proportional to B1+.12 Whereas this requires fewer images than absolute B1+ 

mapping,10 it still typically results in a scan time cost that scales with the number of transmit 

channels.

As demonstrated by Padormo et al., the same k-space calibration data can be used to 

estimate both receive sensitivities and transmit sensitivities (precise RF inference from 

multiple observations [PRIMO]13). In the heart, gating to cardiorespiratory motion increases 

the measurement time by at least fivefold for mapping transmit fields (assuming a 

respiratory efficiency of 50% and cardiac acquisition window of 400 ms). Either multiple 

breathholds or freebreathing using self-gating14 can be used to cover the whole heart, which 

takes about 3 and 6 min, respectively.

To reduce measurement times, accelerated imaging techniques can be used to recover 

pTx field maps from under-sampled (k-space) measurements. Accelerating the pTx 

field calibration will both increase the scan time available for diagnostic imaging and 

streamline the pTx adjustments. In order to recover missing k-space data, a calibrationless 

parallel imaging approach can be used, for example, with prior knowledge about the 

low-rank Hankel (or block-Hankel) structure of matrices formed from local k-space 

neighborhoods.15–18 The simultaneous autocalibrating and k-space estimation (SAKE)17 

method uses a projection-onto-sets algorithm with singular value thresholding to recover 

missing k-space data by alternating between enforcing data consistency and low-rank 

Hankel matrix structure without the need of any fully sampled calibration region. 

Simultaneous autocalibrating and k-space estimation (SAKE), and related methods such as 

Low-rank modeling of local k-space neighborhoods with parallel imaging (P-LORAKS)15,16 

or annihilating filter based low-rank Hankel matrix approach (ALOHA),19 exploit 

redundancies that are present when Hankel matrices are combined across multiple coils. 

This enables a low-rank representation of the data to effectively constrain undersampled 

data recovery. In fact, these approaches are also similar to methods such as parallel imaging 

using eigenvector maps (ESPIRiT)20 and PRIMO,13 which form very similar low-rank 

Hankel-structured matrices, except that these latter methods work on fully sampled data. 
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A comprehensive review of low-rank Hankel methods in MR image reconstruction can be 

found in Ref. 21.

In this work, we investigate the extension of these calibrationless parallel imaging 

approaches to recover undersampled relative transmit field maps using structured low rank 

tensor completion. We build on previous work that leverages image redundancy across 

multiple dimensions or encodings, for example.22–24 In this work a multi-dimensional tensor 

representation of both transmit and receive field dimensions is evaluated. This approach 

exploits varying undersampling patterns across different transmit encodings and enables 

information sharing across these encodings. We investigate, in simulations and experimental 

data in the body and the brain, the acceleration factors achievable with this approach and 

demonstrate that undersampling factors of up to 8× are feasible with our proposed method.

2 Theory

2.1 Matrix structure

Simultaneous autocalibrating and k-space estimation and the subspace identification part 

of ESPIRiT20 take k-space data and through the application of a kernel transform form a 

block-Hankel matrix representation. Subspace identification is performed through low-rank 

reconstruction of missing samples (simultaneous autocalibrating and k-space estimation) 

or SVD-based singular value truncation (ESPIRiT). PRIMO13 extends ESPIRiT to include 

transmit (Tx) sensitivities, which is achieved by concatenating the transmit and receive 

sensitives along different axes of the block-Hankel matrix. The time interleaved acquisition 

of modes (TIAMO)25 method harnesses transmit sensitives in the image reconstruction 

using different transmit modes (sensitives) as virtual receive channels, which results in a 

number of virtual receiver channels that are the product of receive channels and transmit 

modes. We refer to these methods below as virtual coil (VC) for the latter and PRIMO for 

the former.

Here we consider the VC and PRIMO representations to be special cases of a block-Hankel 

tensor formed from the multi-dimensional data  ∈ ℂNkx ×Nky ×NRx ×NTx, where the fourth

order tensor (or multi-dimensional array)  is transformed to another fourth-order tensor ℋ 
∈ ℂN1 ×N2 ×NRx ×NTx with block-Hankel frontal slices. That is, for each transmit and receive 

pair, the 2D k-space is transformed to a 2D block-Hankel matrix for which the “frontal 

slices” refers to the fact that the block-Hankel matrix is defined by the first 2 indices of the 

tensor.

The linear operator:

T :ℂNkx × Nky × NRx × NTx ℂN1 × N2 × NRx × NTx, (1)

is what maps the k-space data corresponding to any given transmit and receive k-space into 

the block-Hankel N 1 × N 2 matrix by rastering over k-space with a kernel of dimension N 

1 = m × n (eg, N 1 = 9 for a 3 × 3 kernel), resulting in N 2 = (Nkx − m + 1) · (Nky − n + 1) 

distinct kernel vectors. This is done for every transmit and receive pair, which results in the 

tensor ℋ =T ( ), as demonstrated in Figure 1.
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We considered 3 different unfoldings of this tensor:

Virtual coils (VC): From the tensor ℋ, we can construct the matrix corresponding to the 

interpretation of every transmit and receive pair as a unique receive map by applying a 

particular unfolding of the tensor

U0:ℂN1 × N2 × NRx × NTx ℂ N1 ⋅ NRx ⋅ NTx × N2 , (2)

such that  = U 0 ℋ (Figure 1C).

Receive concatenation: Alternatively, we can construct a matrix corresponding to the 

calibration matrix in the PRIMO relative transmit mapping approach by applying the 

following unfolding of the tensor

U2:ℂN1 × N2 × NRx × NTx ℂ N1 ⋅ NRx × N2 ⋅ NTx , (3)

such that ℛ  = U 2 ℋ (Figure 1D).

Transmit concatenation: We recognize here that the role to the transmit sensitivities is 

entirely analogous to that of the receive sensitivities, and that if ℛ  should be well 

characterised with a low-dimensional subspace (ie, it has low rank), we should also be 

able to form a symmetrical unfolding:

U1:ℂN1 × N2 × NRx × NTx ℂ N1 ⋅ NTx × N2 ⋅ NRx , (4)

such that the matrix  = U 1 ℋ (Figure 1E) also has low rank (Figure 2). All tensor 

unfoldings can be achieved through permutation and reshaping of the multi-dimensional 

array. However, we note that  is not simply the transpose of ℛ  because the block

Hankel front slices of the tensor are not changed when the receive and transmit dimensions 

are swapped.

One key idea that we explore here is not only the alternative choice of transmit and receive 

concatenations (compared to the PRIMO-style concatenation) but also the use of both 

representations and the simultaneous enforcement of low-rank structure in both  and 

ℛ  unfoldings. We propose to use this structure of the transmit and receive k-space to 

exploit all the correlations and redundancies in the multi-dimensional data by reconstructing 

undersampled k-space transmit and receive data through the use of low-rank constraints 

across multiple simultaneous unfoldings of the data tensor and by taking advantage of the 

symmetry between the transmit and receive dimensions.

2.2 Low-rank constraints

We can formulate the reconstruction problem as a convex problem using a sum-of-nuclear 

norms approach as follows:

min1
2 Mz − D F

2 + λ1 U1T z ∗ + λ2U2T z ∗ (5)
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However, in this work we choose to employ an alternative non-convex formulation with 

strict rank constraints, which performs well in this context, and non-convex formulations 

have been used effectively in previous applications.16,17 It also has a more intuitive 

constraint parameterization (discrete rank thresholds rather than continuous regularization 

parameter λ):

minz
1
2 M z − D F

2

subject to: rank TC = r1. 
subject to: rank ℛC = r2

(6)

Here, M is the k-space sampling mask (applied to z as an element-wise Hadamard product); 

z is the reconstructed k-space tensor;  is the undersampled k-space data;  = U 1 Tz ; 

ℛ  = U 2 Tz; ri are the rank thresholds; and ∥·∥F denotes the Frobenius norm. We will refer 

to this method for accelerated relative parallel transmit mapping as the transmit low rank 

(TxLR) method, which we can also reference using the constraint shorthand  + ℛ .

Using the same reconstruction framework, with only changes to the number of constraints 

and the type of unfolding operator used, we can formulate a VC reconstruction that is the 

analogue of the virtual coil (VC) approach:

minz
1
2 M z − D F

2

subject to: rank VC = r0
(7)

where  = U 0 Tz.

We will refer to the ℛ -constrained reconstruction as the PRIMO approach due to the 

correspondence between the transmit and receive concatenation order in ℛ  and the relative 

transmit mapping calibration matrix defined by PRIMO. This is formulated as:

minz
1
2 M z − D F

2

subject to: rank ℛC = r2
(8)

where ℛ  = U 2 Tz. The difference between the proposed TxLR approach and the PRIMO 

approach is the additional simultaneously enforced  constraint in the TxLR formulation.

3 Methods

3.1 Algorithm

The constrained optimisation problem in Equation (6) was solved using the alternating 

direction method of multipliers (ADMM)26 algorithm:
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 (i): Tc
n + 1 = Γr1 U1T zn − y1

n

(ii):ℛc
n + 1 = Γr2 U2Txn − y2

n

(iii ): zn + 1 = argmin
z

1
2 M z − D

F
2 + ρ

2 TC
n + 1 − U1T z + y1

n
F
2 + ρ

2 ℛC
n + 1 − U2Tz + y2

n
F
2

(iv): y1
n + 1 = y1

n + TC
n + 1 − U1T zn + 1

(v): y2
n + 1 = y2

n + ℛC
n + 1 − U2T zn + 1

(9)

where superscript denotes the iteration number;  1 and  2 are auxiliary variables; andρ is 

the ADMM penalty parameter. The final output zn after n iterations is a k-space by transmit 

and receive tensor with the same dimensions as the undersampled . Γr is a singular value 

hard-thresholding operator that performs an SVD and discards all singular values with index 

i > r when ordered in decreasing magnitude. The algorithm is initialised with all variables, 

including z 0, y1
0, and y2

0 set to 0 (a matrix or array of zeros).

All reconstructions were implemented using MatLab R2019b (Mathworks, Natick, MA). 

The VC (Equation (7)) and PRIMO (Equation (8)) reconstructions were performed 

analogously by omitting steps (ii) and (v), adjusting the second term in (iii) accordingly, 

and using the appropriate unfolding operator U 0 or U 2. In practice, the algorithm also 

uses a varying penalty parameter ρ, with ρ 0 = 10−6 and scaling factor τ = 1.1, and takes 

advantage of over-relaxation with parameter α = 1.5 to improve convergence26 (a complete 

description of the algorithm, including these parameters, is provided in the Appendix).

Reconstructions were run to a fixed number of iterations or using a chi-square heuristic 

based on receive array noise characteristics. The chi-square heuristic checks, at every 

iteration, the condition:

∑i = 1
NRx M zi − Di F

2

σi2
/v > 1 (10)

where σi is the noise variance from the ith receive channel (obtained from a separately 

acquired noise reference scan), and υ is the total number of sampled data points. This 

expression is the well-known chi-square goodness-of-fit test, and we use it here to provide a 

parameter-free stopping criterion.

3.2 Data

In-silico data were simulated in Sim4Life 3.4 (ZMT, Zurich, Switzerland) using an 8

channel transmit/receive dipole array27 at the 7 Tesla frequency of 298 MHz, centred 

over the heart of Duke28 (Virtual Population, iTIS Foundation, Zurich, Switzerland). The 

maximum resolution around the conductors was set to 0.5 mm, 1.0 mm, or 2.0 mm as 

required to capture the geometry. A synthetic proton density image was generated by setting 

the proton density equal to the tissue density, with tissue densities greater than 1200 kg/m3 

(bone) or less than 400 kg/m3 (lung) set to 80 (a/u) to make them resemble an MR image. 

The FOV was 278 × 356 × 248 mm3 (AP/LR/HF), and data were re-sampled onto a uniform 
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grid of 2 × 2 × 2 mm3. This data were Fourier-transformed to form a k-space dataset, and 48 

central slices located in the body were used for reconstruction simulations.

In vivo data were acquired on a 7 Tesla Magnetom (Siemens, Erlangen, Germany), and 

all volunteers provided written informed consent and were scanned in accordance with 

local ethics. Data were acquired using a spoiled low flip angle gradient echo acquisition, 

which transmitted on 1 channel at a time while receiving on all channels (see Supporting 

Information Table S1 for details of the protocols used). In the brain, data were acquired in 

a sagittal orientation using an 8-channel transmit, 32-channel receive coil (Nova Medical, 

Wilmington, DE), and a 3D acquisition. In the body, an 8-channel transmit/receive dipole 

array was used,27 and 2D images were acquired in a horizontal long axis orientation. 

Receive array noise measurements were also collected to generate noise covariance matrices 

for the chi-square convergence heuristic.

All simulations using the synthetic data were performed with added channel-independent 

noise at peak SNR (defined as the maximum signal divided by the noise SD) of 60 dB in k

space unless otherwise noted. Retrospective undersampling using a uniform density pseudo

random Poisson disc distribution was employed to assess reconstruction performance at 

acceleration factors ranging from R = 2 to R = 12.

3.3 Reconstruction parameters

Reconstructions were performed using a [5,5] kernel, and rank thresholds were set 

to 50 unless otherwise stated. The number of iterations was set to 50 for the 

TxLR reconstructions, and 100 for the VC and PRIMO methods in all synthetic data 

reconstructions, except in the cases where the chi-square heuristic was evaluated. See 

Supporting Information Figure S1 for validation of these parameter choices. The chi-square 

stopping criteria was used in all reconstructions of the in vivo body and brain data.

In all cases, the k-space data were cropped to a matrix size of 24 × 24, except where the 

impact of k-space matrix size was explicitly evaluated, which examined crop sizes of 18 × 

18, 24 × 24, 36 × 36, and 48 × 48. For the 3D datasets (synthetic body, and in vivo brain), 

reconstruction was performed slice by slice on hybrid space kx-ky-z data.

Reconstruction fidelity was evaluated using a normalized RMSE metric:

RMSE = z − z F
z F

(11)

where z is the estimated k-space tensor, and z is the ground truth. Empirically, we found 

that an RMSE < 0.1 generated small errors in relative transmit sensitivity maps (<4%, 

everywhere in the image). Relative transmit sensitivity maps were estimated using the 

PRIMO extension to ESPIRiT after under-sampled tensor reconstruction.

4 Results

Reconstruction performance on the synthetic body dataset is shown in Figure 3 for 

acceleration factors ranging from R = 2 to R = 12 for the VC approach (  constraint), 

Hess et al. Page 7

Magn Reson Med. Author manuscript; available in PMC 2021 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



PRIMO approach (ℛ  constraint), and the proposed TxLR approach (  + ℛ
constraints). Mean RMSEs for all methods are shown, along with their SDs across all 48 

reconstructed slices. Whereas the VC reconstruction reaches RMSE > 0.1 at R = 2, the 

PRIMO reconstruction achieves R = 6 undersampling before reaching that error threshold. 

In comparison, the TxLR reconstruction manages to reach acceleration factors of R = 8 

before showing the same error levels. Furthermore, both the VC and PRIMO reconstructions 

suffer from very poor reconstruction fidelity as acceleration factors increase, whereas the 

proposed TxLR approach shows a much lower rate of error increase with increasing R.

Reconstructions in the synthetic dataset were assessed at varying noise levels, with peak 

SNR ranging from 50 dB to 70 dB across acceleration factors of R = 4 and R = 8. Figure 4 

plots the aggregated RMSE from all 48 slices, which shows the expected increase in RMSE 

with decreasing peak SNR and increasing acceleration factors across all methods. In all 

cases, the proposed TxLR reconstructions produce the lowest RMSE, although at the lower 

acceleration factor PRIMO performs nearly as well.

In Figure 5, the impact of varying iterations, kernel size, and rank thresholds on the 

proposed reconstruction scheme was evaluated on a central slice of the synthetic dataset 

at R = 8. Figure 5A,B show the reconstructed RMSE across square kernels ranging from 

[3,3] to [10,10] and rank thresholds of 10 to 80 for both the  and ℛ  constraints. In 

Figure 5A, a fixed iteration count of 50 was used, whereas in Figure 5B the “optimal” 

number of iterations was used based on retrospectively choosing the number of iterations 

that minimized RMSE. In both cases, the minima can be found within the parameter subset 

highlighted by the red box, for which Figure 5C provides a more detailed comparison of 

RMSE performance. This highlights that a rank constraint of 50 in a fixed 50 iteration 

reconstruction produces near-optimal results in this data. Figure 5D shows the impact of 

varying the rank constraints of the  and ℛ  terms independently, indicating that RMSE 

is minimized when both rank constraints are the same and equal to 50 in this data. An 

evaluation of reconstruction performance for different matrix sizes and acceleration factors 

can be found in Supporting Information Figure S2.

To further assess the value of the proposed approach, Figure 6 shows a comparison of using 

the  or ℛ  constraints individually, or simultaneously as proposed, evaluated again in 

the synthetic body dataset at R = 8. In Figure 6A, RMSE is shown to be similar for the 

- or ℛ -only reconstructions (where ℛ  only is the same as the PRIMO approach). 

Whereas in this case, vertical concatenation of the transmit dimension (to form the 

matrix) slightly outperforms the ℛ -based PRIMO approach (vertically concatenating 

the receive dimension), the difference is relatively small. However, reconstruction fidelity 

is significantly better for the TxLR approach, which uses the simultaneous  + ℛ
constraints.

In Figure 6B, the top row shows a representative reconstructed image for all 3 approaches 

compared to the ground truth. The second row shows difference images and RMSE for that 

image, which is lowest in the  + ℛ  case. Figure 6C shows an estimated relative 

transmit sensitivity map and difference from ground truth. In both, visual qualitative 
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inspection and RMSE indicate that the proposed  + ℛ  (TxLR) reconstruction produces 

the smallest errors.

An evaluation of the chi-square stopping heuristic is shown in Supporting Information 

Figure S3. This shows that both the choice to cut off iterations at 50 and the chi-square 

heuristic produced reconstructions close to optimal, although the heuristic tended to slightly 

overestimate the number of required iterations.

Figures 7 and 8 show the reconstruction results for the in vivo 2D body datasets. In Figure 

7, RMSE results for all subjects can be seen. The bar values represent the RMSE at a rank 

constraint of 50 compared to an optimal rank constraint between 5 and 50, as indicated by 

the black dot. For the best performing subject, RMSE remained below 0.1 for the proposed 

TxLR method even at R = 8 acceleration, whereas in the worst performing subject RMSE 

reached as high as 0.2 at R = 8. However, in all subjects and all acceleration factors, the 

TxLR reconstructions produced lower RMSE than the VC or PRIMO methods, although 

the differences between TxLR and PRIMO were relatively small for R ≤ 4. This relative 

performance held for both the fixed rank constraint of 50 and the retrospectively chosen 

optimal rank thresholds. In subjects 1 to 5, the rank constraint of 50 was optimal or close 

to optimal for the VC and TxLR reconstructions, whereas the PRIMO data benefitted from 

reduced rank thresholds. In subject 6, lower rank thresholds produced considerably lower 

RMSE for all methods, which may reflect orientation differences in that dataset compared to 

the others.

In Figure 8, we see a set of relative transmit sensitivity maps and their difference images at 

R = 4 and R = 8 for a representative subject using the rank 50 reconstructions. Although the 

differences between methods are small at R = 4, consistent with the results in the synthetic 

data, at R = 8 only the TxLR method produces a Tx-sensitivity map that resembles the 

ground truth, with comparable error to the R = 4 reconstruction.

Figure 9 shows the reconstruction results for the 3D in vivo brain dataset. In Figure 

9A, the RMSE across 36 central slices is shown, with the TxLR data showing a 

dramatic improvement in RMSE compared to the VC or PRIMO reconstructions at higher 

acceleration factors (R = 6, 8), which could reflect better use of the increased redundancy 

provided by the 32-channel receive array (compared to the 8-channel receive used in the 

synthetic and experimental body data). Even at R = 8, all brain slices were below RMSE 

of 0.1 (min = 0.060, max = 0.084). In contrast, the VC results show significantly increased 

RMSE beyond R = 2 and PRIMO beyond R = 4.

Figure 9B,C show the magnitude and phase of relative transmit sensitivity maps and their 

difference images from the ground truth for transmit channel 4 for the R = 8 data. The maps 

derived from the TxLR reconstructions show clear benefit over the other approaches and are 

virtually indistinguishable from the ground truth in both magnitude and phase.

Reconstruction times (measured using an Intel Core i9, 8-core 2.3 GHz processor, Santa 

Clara, CA, USA) in the body dataset were 0.18 s/iteration/slice (VC), 0.16 s/iteration/

slice (PRIMO), and 0.20 s/iteration/slice (TxLR) for overall reconstruction times of 

approximately 10 to 20 s/slice. In the brain dataset, with 32 receive channels instead of 8, 
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reconstruction times were 0.7 s/iteration/slice (VC, PRIMO) and 1.0 s/iteration/slice (TxLR) 

for total reconstruction times of approximately 50 to 70 s/slice.

5 Discussion

This work investigated the use of Hankel-structured low rank tensor completion to 

reconstruct undersampled parallel transmit field maps. This leverages the fact that both 

transmit and receive sensitivity maps possess low rank properties when represented as a 

Hankel-structured matrix. Redundancy in a dataset in which every transmit sensitivity is 

modulated by every receive sensitivity is intuitively evident, as data with NTx transmit 

channel and NRx receive channels results in NTx · NRx images, but only at most NTx + NRx 

of them are linearly independent.

We investigated 3 different approaches for simultaneously reconstructing transmit and 

receive sensitivity maps in a single rank-constrained reconstruction. We formulated these 

all in a comprehensive multi-dimensional tensor model (kx by ky by NTx by NRx), with 

the 3 approaches differing in how the low-rank constraints are imposed onto the tensor (via 

different matricizations or tensor-unfoldings).

The first method investigated (VC) is similar to the virtual coils approach in time interleaved 

acquisition of modes,25 where the transmit and receive sensitivity combinations are used as 

virtual coils with the number of virtual coils equal to NTx · NRx. The low-rank constraint 

was imposed on a tall matrix formed by the vertical concatenation of the block-Hankel 

matrix from each “virtual coil.” However, this reconstruction rapidly deteriorated as the 

acceleration factor increased. This is likely because the matrix dimensionality is not well 

suited to the low rank constraint; the matrix becomes significantly longer than it is wide (ie, 

there are more coils than elements in kernel). This is also reflected in the SNR performance, 

where the virtual coils approach shows significantly worse RMSE with lower SNR.

The second method (PRIMO) uses the same transmit and receive channel concatenation 

scheme as PRIMO,13 with the low-rank constraint enforced on a matrix formed by vertically 

concatenating the block-Hankel matrices from each receive channel and horizontally 

concatenating each transmit channel. This results in a matrix with similar height and width 

and a more effective low-rank representation. This approach performed significantly better 

than the VC method at lower acceleration factors (R ≤ 4) but exhibited similar or worse 

performance at high acceleration factors.

The third proposed transmit low-rank method (TxLR) makes use of the symmetry in 

the transmit and receive array data by employing simultaneous low-rank constraints on 2 

different unfoldings of the tensor data. One constraint is identical to the PRIMO constraint, 

whereas the second constraint enforces low-rankness on a matrix formed by horizontal 

receive concatenation and vertical transmit concatenation. The use of both these constraints 

is based on the recognition of the interchangeable nature of the transmit and receive 

sensitivities, where we demonstrated that each of these unfoldings individually have low

rank structure and perform similarly using an 8-channel transmit and 8-channel receive 

system. However, the 2 unfoldings capture different low-dimensional features in the tensor 
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data and are not trivially related through a transpose operation; therefore, leveraging the low

rankness of both of the unfoldings simultaneously constitutes a more powerful constraint, 

leading to dramatically improved reconstruction fidelity as assessed by RMSE.

In all cases, the TxLR approach clearly performed better than the other methods, particularly 

at higher acceleration factors. At lower acceleration factors, RMSEs were similar to those 

produced by the PRIMO method; however, dramatic differences were observed at R = 6 and 

R = 8. TxLR reconstructions in an 8-channel transmit system achieved acceleration factors 

of R = 8 with low RMSE in the body (0.1 in the best performing dataset, to 0.2 in the worst 

case) and the brain (RMSE < 0.1 for all slices). These results indicate that relative transmit 

calibration can be achieved in the same amount of time or faster than B0 calibration. The 

reconstruction performance in the brain data suggested that TxLR benefits from additional 

receive channels (32 in the brain compared to 8 in the body), although this is difficult to 

determine with only a single brain dataset.

Reconstruction hyperparameters (kernel size = [5,5], rank threshold = 50) were selected 

based on the synthetic dataset. These hyperparameters were able to robustly produce high

fidelity reconstructions in the in vivo body and brain datasets without any tuning to the 

specific coil geometries or organ. However, the parameters determined here are not universal 

recommendations. Different resolutions, matrix sizes, SNR regimes, and coil configurations 

may require different kernel sizes and rank thresholds; and context-specific parameter tuning 

will likely be required for optimized reconstructions. In the body dataset, for example, we 

did show that the chosen rank threshold of 50 was not always optimal, suggesting that 

data-specific hyperparameter tuning could lead to further reductions in RMSE. This subject

to-subject variation is likely driven by the slice orientation and not the FOV, as evidenced 

in Figure 7, where the rank threshold of 50 remained optimal despite a change in the FOV 

between subjects 1 and 2. In addition, because of the nonconvex problem formulation, 

stopping criteria for the iterative reconstruction can be important to avoid diverging from 

a local optimum. Here we show that, with knowledge of the channel-wise receiver noise 

characteristics, using a chi-square stopping heuristic resulted in near-optimal reconstruction 

performance.

Accelerations of eightfold (matching the number of transmit states) worked best for an 

image matrix of 36 × 36; however, a 24 × 24 matrix is sufficient to capture the dominant 

transmit modes in the heart (see Supporting Information Figures S4 and S5), where a sixfold 

acceleration is reliable for the heart data. A 3D relative transmit mapping acquisition on an 

8-channel system requires 4608 (24 × 24 × 8) lines of k-space data taking 16.1 s (TR = 3.5 

ms) or 41 heartbeats (cardiac window of 400 ms). An acceleration factor of 6 brings this 

down to 2.1 s or only 7 heartbeats for the whole torso. This becomes more significant when 

increasing the transmit channel count; for example, mapping a 32-channel transmit system29 

would take 65 s (24 × 24 × 32 × 3.5 ms), or 161 heartbeats; accelerating by a factor of 6 

would bring this down to only 11 s, or 27 heartbeats.

The results presented here, although showing a clear benefit of the proposed approach 

for accelerated parallel transmit mapping, have several limitations that could be addressed 

in further development of the method. For example, the current study only examined 
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uniform density Poisson disc k-space sampling, given the relatively small, central k-space 

sampling windows used for sensitivity mapping. Exploration of variable density sampling 

schemes would be a natural extension of this work, and initial simulations suggest that both 

convergence speed and lower RMSE could improve with such schemes (see Supporting 

Information Figure S6). Furthermore, the proposed method did not explore the use of 

phase constraints, like those used in Low-rank modeling of local k-space neighborhoods 

with parallel imaging (P-LORAKS),15 which could further improve performance by 

exploiting low-rank properties of conjugate symmetric k-space locations under smooth 

phase assumptions.

While this paper was under review, a method for multi-contrast Hankel tensor completion 

was published, which also leveraged a low-rank Hankel-structed tensor model for 

undersampled image recovery.30 In agreement with our work, they found improved 

reconstruction fidelity when multiple acquisitions are jointly reconstructed in a low-rank 

tensor framework by enforcing low-rankness on different tensor unfoldings simultaneously. 

However, there are several differences in the 2 approaches. Whereas the unfoldings used 

in the multi-contrast Hankel tensor completion approach are analogous to the  and ℛ
unfoldings, our approach did not use the virtual coil  unfolding; instead, leveraging 

unfoldings reflected the symmetry in the receive and transmit channel dimensions. 

Furthermore, the multi-contrast Hankel tensor completion work used an alternating 

projection-onto-sets algorithm for tensor recovery, whereas in this work the tensor recovery 

problem was solved using the ADMM algorithm.

The TxLR approach could also be applied to absolute B1+ mapping of pTx systems 

by reconstructing multiple transmit configurations together (see supporting informatin 

“Simulation of accelerated absolute B1+ mapping” and Figure S7). The 3D DREAM 

method proposed by Ehses31 uses GRAPPA with a receive sensitivity pre-scan to accelerate 

the acquisition and reduce the echo train length. TxLR acceleration could be used to 

apply this method to parallel transmit mapping, removing the need for a pre-scan and 

enabling higher acceleration rates. Alternatively, it could be used to accelerate methods 

such as B1 time interleaved acquisition of modes (B1TIAMO)9 or interferometry methods32 

by accelerating the relative mapping part of the acquisition and applying these maps to 

reconstruct undersampled absolute maps.

Using TxLR in practice may be limited by the reconstruction time of the current 

implementation; although not prohibitively long, care must ensure that further data can 

be acquired while reconstruction is in process. A rapid acquisition time will improve the 

robustness of the acquisition by reducing its susceptibility to motion and may further enable 

the characterisation of motion-induced field changes.

6 Conclusion

Calibrationless low-rank image reconstruction can be used to reconstruct transmit array 

sensitivity maps in highly accelerated conditions. Transmit low rank method harness 

redundancies in both transmit and receive coil profiles to enable reliable acceleration of 
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transmit maps without the need for a calibration scan. The method enables acceleration 

factors of 8, equal to the number of transmit coils.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram showing how (A) a multi-dimensional k-space dataset with dimensions kx, ky, Rx, 

and Tx can be transformed to (B), a fourth-order tensor with block-Hankel frontal slices. 

Colored circles provide a schematic representation of undersampling across k-space and Tx 

channels and illustrate how 2D k-space kernels in (A) are mapped to column vectors in (B). 

(C-E) show different matricizations or unfoldings of the tensor, corresponding to: (C) the 

, (D) the PRIMO-style ℛ , and (E) the . The proposed TxLR method uses low-rank 

constraints on both ℛ  and  unfoldings of the tensor. PRIMO; precise RF inference 

from multiple observations; RC, receive vertical concatenation matrix; TC, transmit vertical 

concatenation matrix; Tx, transmit; TxLR, transmit low rank; Rx, receive; VC, virtual coil 

matrix
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Figure 2. 
Singular value distributions for the transmit (  A) and receive (ℛ , B) unfoldings of the 

synthetic data (blue). The shaded regions show the minimum and maximum range for the 

singular values across all slices in the dataset. In orange, singular value distributions for 

random matrices are shown for comparison
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Figure 3. 
RMSE for the VC (blue), PRIMO (orange), and TxLR (yellow) methods evaluated in the 

synthetic body dataset at different acceleration factors. Shaded regions indicate the SD of the 

RMSE across 48 slices
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Figure 4. 
RMSE in the synthetic data at varying PSNR and acceleration factors. Each VC (blue), 

PRIMO (orange), and TxLR (yellow) scatter point represents the RSME for a single slice. 

Acceleration factors (A) R = 4, and (B) R = 8 are shown. PSNR, peak SNR
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Figure 5. 
Exploring the impact of various parameter choices on the TxLR approach. (A) RMSE at 

different kernel sizes and rank thresholds using a fixed 50 iteration reconstruction; (B) 

similar to (A), but with a retrospectively selected number of iterations that produces the 

smallest RMSE; (C) line plot of the parameter space outlined in the red boxes of (A,B); (D) 

the result of varying the  and ℛ  constraints independently
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Figure 6. 
(A) RMSE in the synthetic data at R = 8, resulting from reconstructions using the transmit 

and receive ( ) constraint (purple), receive (ℛ ) constraint (orange, PRIMO), and 

simultaneous transmit and receive (  + ℛ ) constraints (yellow, TxLR), with each marker 

corresponding to a single slice. (B) Reconstructed images corresponding to a single transmit 

and receive pair (transmit channel 4, receive channel 3) and (C) transmit field maps (transmit 

channel 4), at slice z = 24. The number inset in the difference images corresponds to RMSE
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Figure 7. 
Results from all 6 subjects for the in vivo body dataset at acceleration factors of R = 2-8. 

Bars denote the RMSE at the fixed rank threshold of 50, and black dots denote the RMSE 

assuming an optimal choice of rank threshold
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Figure 8. 
Estimated transmit sensitivity maps and the magnitude of the complex differences to the 

ground truth for subject 4, transmit channel 3, at (A) R = 4 and (B) R = 8. The values in each 

difference map correspond to the sensitivity map complex RMSE compared to ground truth
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Figure 9. 
Results from the in vivo brain dataset. (A) RMSE at acceleration factors R = 2, 4, 6, 

and 8, for the VC method (blue); PRIMO (orange); and TxLR (yellow), with markers 

representing the RMSE for each of the 36 slices. (B,C) Representative (transmit channel 4) 

transmit sensitivity maps showing (B) magnitude maps and magnitude differences, and (C) 

phase maps and phase difference images. The values inset on the difference maps in (B) 

correspond to the complex RMSE compared to ground truth
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