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Current treatment for patients with non-small-cell lung cancer (NSCLC) is suboptimal
since therapy is only effective in a minority of patients and does not always induce a long-
lasting response. This highlights the importance of exploring new treatment options. The
clinical success of immunotherapy relies on the ability of the immune system to mount an
adequate anti-tumor response. The activation of cytotoxic T cells, the effector immune
cells responsible for tumor cell killing, is of paramount importance for the immunotherapy
success. These cytotoxic T cells are primarily instructed by dendritic cells (DCs). DCs are
the most potent antigen-presenting cells (APCs) and are capable of orchestrating a strong
anti-cancer immune response. DC function is often suppressed in NSCLC. Therefore,
resurrection of DC function is an interesting approach to enhance anti-cancer immune
response. Recent data from DC-based treatment studies has given rise to the impression
that DC-based treatment cannot induce clinical benefit in NSCLC by itself. However, these
are all early-phase studies that were mainly designed to study safety and were not
powered to study clinical benefit. The fact that these studies do show that DC-based
therapies were well-tolerated and could induce the desired immune responses, indicates
that DC-based therapy is still a promising option. Especially combination with other
treatment modalities might enhance immunological response and clinical outcome. In this
review, we will identify the possibilities from current DC-based treatment trials that could
open up new venues to improve future treatment.

Keywords: dendritic cells, lung cancer, immunotherapy, immunology and lung cancer, non-small cell lung cancer
INTRODUCTION

Lung cancer is the leading cause of cancer-related death worldwide (1). This type of cancer is a
heterogeneous disease (2). Based on histology, lung cancer is divided into small-cell lung cancer
(SCLC) and non-small-cell lung cancer (NSCLC). NSCLC is the most prevalent form, accounting
for about 80-85% of the lung cancer cases (3). The five-year overall survival rate (OS) for NSCLC is
around 20% in the western world, highlighting the importance to explore the current and future
therapeutic approaches in this field (4, 5).
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Although surgery remains the cornerstone of therapy for
early-stage NSCLC, a wide range of therapeutic options for
adjuvant treatment or treatment of advanced stage disease
have been introduced over the last decade. Targeted therapy
and immunotherapy are examples of these novel therapies (6, 7).
Targeted therapy targets specific alterations in NSCLC cells that
stimulate tumor growth, for example mutations in the epidermal
growth factor receptor (EGFR). Many other specific targets in
NSCLC have been identified over time. Targeted therapy often
leads to prolonged survival and greatly enhanced quality of life in
this subgroup of patients (8, 9). Most patients with NSCLC lack
actionable therapy targets. Therefore, immunotherapy, with or
without chemotherapy, is the first-line treatment for the majority
of NSCLC patients with advanced stage disease. Although
targeted therapy and immunotherapy greatly improved clinical
outcome in NSCLC, not all patients respond (10). Moreover, the
patients who do respond eventually develop therapy resistance.
Therefore, a high clinical need for new systemic treatment
modalities remains. During this review we will shine our light
on the rather unexposed field of dendritic cell (DC)-based
therapies, to explore whether these could be a valuable
treatment option for NSCLC.
IMMUNOTHERAPY IN NSCLC

The role of the immune system in prevention of cancer development
and progression has been widely recognized. Immunotherapy
exploits this role by stimulating the patient’s immune system to
eliminate the tumor. Different immunotherapeutic strategies are
being used or currently studied for their use in cancer. These can be
largely subdivided into cancer vaccines, cellular therapies, immune
stimulatory agonists and immune checkpoint inhibitors (ICIs).
NSCLC is a promising potential target for immunotherapeutic
approaches due to its high tumor mutational burden, which
enhances immunogenicity of the tumor (11). ICIs are the only
currently approved immunotherapy option for NSCLC. The most
frequently used ICIs are directed against programmed-death
receptor 1 (PD-1), expressed on immune effector cells such as T
cells and natural killer (NK) cells, or its ligand programmed-death
ligand 1 (PD-L1), which is expressed on antigen-presenting cells
(APCs) and tumor cells. Receptor binding of PD-1 can lead to
inhibition of effector cell function and survival, while it induces T
regulatory cells (Tregs) (12–14). Immune cells in tumors frequently
demonstrate a non-functional or ‘exhausted’ phenotype which
hampers an anti-cancer immune response. ICIs aim to revert this
immunosuppressive phenotype, thereby inducing an efficient anti-
cancer immune response (15).

Recently, anti-cytotoxic T-lymphocyte associated protein 4
(CTLA-4), which is another ICI, has been registered to be used in
combination with a PD-1 inhibitor in the United States and is
registered for the combination with a PD-1 inhibitor and
chemotherapy in Europe (16, 17). CTLA-4 is expressed on T
cells after activation. It is also constitutively expressed on Tregs.
CTLA-4 binds CD80 and CD86 on APCs. Receptor binding
transmits an inhibitory signal to the T cell. Furthermore, binding
Frontiers in Immunology | www.frontiersin.org 2
of CTLA-4 to CD80 and CD86 blocks their binding to T cell
receptors thereby hampering T cell activation (18).

Nowadays, it is known that the tumor and its surrounding
microenvironment (TME) can modulate anti-tumor immune
responses. Recent data suggest that the low response rate to ICIs
could be partly explained by the lack of immune cells in the TME
or other regulatory factors that prevent an anti-tumor immune
response (19). Therefore, other forms of immunotherapy to
enhance the anti-tumor immune response are currently being
studied, such as DC-based therapy.
DC-BASED THERAPY

DC-based therapy depends on the fundamental link that DCs
form between tumor antigen recognition and an anti-tumor
immune response. More specifically, DCs are highly specialized
APCs that show the highest antigen-presenting potential when
inducing naïve T cell activation (20). In tissue, DCs are
constantly scanning their surroundings. Upon antigen
encounter in the presence of pathogen-associated molecular
patterns (PAMPs) or damage-associated molecular patterns
(DAMP), DCs get activated, undergo maturation and secrete
large amounts of pro-inflammatory cytokines to shape the local
inflammatory environment (6, 21, 22). After maturation, DCs
migrate to the lymph node where they activate T cells to induce
an immune response directed against their presented antigen. In
absence of PAMP or DAMP signals during antigen encounter,
DCs remain immature, migrate to the lymph nodes and induce
antigen-specific tolerance in T cells. DC-based therapies showed
promising results in several malignancies such as melanoma,
prostate cancer, and glioma (23–25). In NSCLC only early-phase
clinical trials have been performed, which show disappointing
clinical results but were not powered to evaluate clinical effect. In
this review, we will analyse these studies and discuss different
possibilities to optimize DC-based therapy in order to improve
therapeutic effects.
DC VACCINATION MONOTHERAPY
FOR NSCLC

The DC-based therapy in NSCLC consists of the vaccination of
patients with DCs. In all studies investigating DC vaccination in
NSCLC patients, monocytes derived from autologous peripheral
blood mononuclear cells (PBMCs) were differentiated to moDCs
ex vivo (Table 1) (26–36). These DCs were then primed with a
combination of several synthetic peptides of commonly
expressed tumor antigens in NSCLC or autologous tumor
lysate. In the majority of studies, primed DCs were
administered via multiple subcutaneous injections. In vivo,
these DCs are supposed to activate cytotoxic T cells that will
induce a tumor-directed immune reaction.

All studies showed DC vaccination to be safe. In addition,
many studies examined vaccine-specific immunological
responses by determining ex vivo T cell responses directed
June 2021 | Volume 12 | Article 704776
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towards the vaccine or by performing a delayed-type
hypersensitivity (DTH) test. The principle of a positive DTH
test is that if T cells are activated by DC vaccination, this DC
vaccine will be recognized upon injection in the skin. This will
Frontiers in Immunology | www.frontiersin.org 3
cause a local immune reaction resulting in erythema. Most
studies initially confirmed expression of their used tumor
antigen in the tumor or used autologous tumor lysate for DC
priming. Interestingly, vaccine-specific immunological responses
TABLE 1 | Characteristics of studies in which DC vaccination monotherapy was performed in NSCLC.

Ref. Subject
number

Clinical
stage

Antigen source DC
maturation

status

Type and regimen of DC
administration

Most important results after
vaccination

Ueda et al.,
Int. J. Oncol.
(26)

N = 3 III and
IVa

CEA peptide Immature 5 biweekly i.d. and s.c.
vaccinations

• 2 out of 3 patients showed a DTH
response.

Hirschowitz
et al., J. Clin.
Oncol. (27)

N = 16 I, II and
III

Irradicated tumor lysate or
lysate of a NSCLC cell line

Mature 2 i.d. vaccinations • 6 out of 16 patients showed tumor-
specific IFN-g T cell responses.

• No correlation between
immunological response and OS
or DFS was determined.

Chang et al.,
Cancer (28)

N = 6 III and IV Tumor lysate Not fully
matureb

4 weekly vaccinations followed
by 2 biweekly boost vaccinations
in the inguinal lymph nodes

• 2 out of 6 patients demonstrated
increased tumor-specific IFN-g
T cell responses.

• These 2 patients demonstrated
stable disease.

Hirschowitz
et al., Lung
cancer (29)

N = 14 I, II and
III

Irradicated tumor lysate or
lysate of a NSCLC cell line

Immature 2 i.d. vaccinations • 10 out of 14 patients showed
tumor-specific IFN-g T cell responses.

• No correlation between
immunological response and OS
or DFS was demonstrated.

Um et al.,
Lung cancer
(30)

N = 9 IIIB and
IVa

Tumor lysate Mature 3 i.d. DC vaccinations at 2
weeks interval

• 5 out of 9 patients showed
increased tumor-specific IFN-g
T cell responses.

• All patients demonstrated disease
progression.

Perroud
et al., J. Exp.
Clin. Cancer
Res. (31)

N = 5 III and IV Peptides of WT-1, MAGE-1,
and Her-2/neu

Unknownc 2 biweekly s.c. and i.v.
vaccinations

• Ex vivo, T cell responses directed
towards the DC vaccine were increased.

• 2 out of 5 patients showed an
unexpectedly long OS.

Engell-
Noerregaard
et al., World
J. Of Vaccine
(32)

N = 22 III and IV Lysate of a melanoma cell line
expressing among others
MAGE-A/B

Mature A weekly s.c. vaccination for 5
weeks, followed by a booster
vaccination after 6 weeks, with
s.c. IL-2, COX-2 inhibitors, and
TLR7 agonistd

• Ex vivo, vaccination-specific IFN-g
T cell responses were mostly observed in
patients showing stable disease.

• Some patients showed unexpected
long survival.

Takahashi
et al., Eur. J.
Cancer (33)

N = 47 II, III and
IVe

Tumor lysate or multiple
peptides of WT-1, MUC1,
and CEA

Immature ≥ 1 biweekly s.c. vaccinationf • Patients who received WT-1
vaccine showed increased OS.

Takahashi
et al., Cancer
Immunol.
Immunother.
(34)

The
above
study
group
was
extended
to N =
240

II, III and
IVb

WT-1 and/or MUC-1 peptide Immature ≥ 5 biweekly s.c. vaccinationsf • Having a DTH response was
correlated with increased survival.

• No difference in OS between
patients vaccinated with WT-1 DCs and
patients vaccinated with other DC
vaccines was determined.

Ge et al.,
BMC Cancer
(35)

N = 15 I, II and
IIIA

Survivin and MUC-1
peptidesg

Partly
matureh

3 weekly i.v. vaccinations • Circulating Tregs were significantly
decreased 2 weeks after vaccination.

• Improved quality of live was reported.
Li et al.,
Oncol. Lett.
(36)

N = 16 I, II and
III

MAGE-A3 and Survivin
peptides

Mature 16 rounds of two monthly i.d.
vaccinations

• All patients showed a DTH response.
• In 15 out of 16 patients, tumor-

specific IFN-g T cell responses were
increased.
Studies are displayed in order of publication (old to new). aPatients without response to first-line treatment or who declined first-line treatment were included, bDCs were HLA-
DR+CD86+CD40+CD80lowCD83-CCR7-, cNo established maturation method was used and no data that showed the maturation status of the DCs was available, dWhen patients showed
no disease progression after vaccination, 1 boost vaccination per 4 weeks was administered, ePatients who had inoperable tumors or relapsed quick after surgery, fWhen patients showed
no disease progression, vaccination was repeated. gDCs were also incubated with inhibitors of suppressor of cytokine signalling 1 (SOCS1), hDCs were HLA-
DR+CD80+CD83+CD86+CD40+CD14-CCR7-; MUC-1, Mucin-1; CEA, carcinoembryonic antigen; i.d., intradermal; s.c., subcutaneous; DTH, delayed-type hypersensitivity; WT-1,
Wilms’ tumor protein 1; MAGE-1, melanoma-associated antigen 1; her-2/neu, human epidermal growth receptor 2; i.v., intravenous; IFN, interferon; Tregs, T regulatory cells; IL-2,
interleukin 2; COX-2, cyclo-oxygenase 2; TLR-7, Toll-like receptor 7; DFS, disease-free survival.
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were demonstrated in most studies after vaccination. However,
this induced tumor-specific immune response was almost never
linked to a radiological response or improved survival.
DC VACCINATION COMBINATION
THERAPIES FOR NSCLC

Investigators have also been focusing on the effect of combining
DC vaccination with other therapies. For instance,
chemotherapy and radiotherapy are hypothesised to enhance
anti-tumor immunity and could therefore synergize with
immunotherapy. A well-described effect of chemotherapy and
radiotherapy is immunogenic cell death of cancer cells, exposing
high levels of tumor antigen and DAMP molecules to immune
cells in the TME (37–39). The superior immune-activating
ability that chemotherapy and radiotherapy induce in cancer
cells is highlighted in DC vaccination studies of cancer mouse
models exploiting this strategy. In these studies, DC vaccination
of DCs loaded with radiation-treated or chemotherapy-treated
cancer cells, resulted in reduced tumor volume compared to mice
vaccinated with DCs loaded with untreated tumor cells (40–43).
Moreover, chemotherapy and radiotherapy were reported to
stimulate human leukocyte antigen I (HLA-I) expression of the
tumor, making tumor cells more sensitive to cytotoxic killing by
CD8+ T cells (38). It is important to define the optimal dose of
chemotherapy or radiotherapy for combination treatment with
immunotherapy, as high doses of chemo- and radiotherapy can
induce cell death of immune cells as well (37). The synergistic
effect of chemotherapy to DC vaccination was recently validated
in a human melanoma study (44). For NSCLC, this synergistic
effect of both chemotherapy and radiotherapy with DC
vaccination was confirmed in mouse models (45–47). In
human NSCLC, only one study examined the combination of
chemotherapy with DC monotherapy, but many studies
investigated the combined effect of chemo- and/or
radiotherapy, DC vaccination and cytokine-induced killer cells
(CIK) (Table 2) (48, 50–55). CIK cells consist of a heterogeneous
group of T cells, NK cells, and NKT cells. CIK cells are derived
from autologous PBMCs, activated and expanded ex vivo under
influence of anti-CD3 and cytokines, such as interferon g (IFN-g)
and interleukin 2 (IL-2) (56). CIK therapy was shown to be safe
and had a response rate of 39% in various tumors. Moreover,
CIK treatment was associated with increased survival (57). Co-
culture of CIK cells and DCs enhanced cytolytic function of CIK
cells and increased both IL-12 secretion by DCs and levels of
immunostimulatory receptors on DCs as well as CIK cells (58).

Importantly, all studies showed that combination therapy was
safe and well-tolerated. From all studies that combined DC-based
therapy with radio- and/or chemotherapy in NSCLC, four out of
seven demonstrated improved OS in the combination therapy
group compared to radiotherapy or chemotherapy alone. Two
studies of combined DC-CIK therapy that showed no differences
in OS between groups, did show improved disease-free survival
(DFS) in the combination therapy group. Unfortunately, the study
investigating the effect of chemotherapy and DC vaccination alone
Frontiers in Immunology | www.frontiersin.org 4
included no control group to compare treatment efficiency or
clinical outcome.

In addition to chemotherapy and radiotherapy, one study
investigated the combination of DC-CIK and the EGFR tyrosine
kinase inhibitor erlotinib in patients with advanced stage NSCLC
(Table 2) (49). This study demonstrated increased progression-
free survival (PFS) in the combination therapy group, while OS
did not differ between the groups. This synergistic effect is
particularly interesting considering that EGFR-mutated NSCLC
is insensitive to anti-PD-1/anti-PD-L1 therapy (15, 59, 60).
Erlotinib is normally not combined with other systemic
treatment, because it shows no benefit in survival to
monotherapy, while toxicity potentially increases (61, 62).

Whereas the current DC-based monotherapy studies could
not show clinical benefit in NSCLC patients, combinations with
chemotherapy, radiotherapy, and targeted therapy showed to
improve clinical outcome. However, in almost all combination
studies CIK cells were administered simultaneously with the DC
vaccine. Hence, whether the observed clinical advantage of
combination therapy over the standard therapy is an effect of
the DC vaccine, the CIK cells, or the combination of both cannot
be discerned from those studies.

A combination of therapies that was not studied in NSCLC
before is DC-based therapy and other immunotherapy, such as
ICIs. Several studies have pointed out that when there is no anti-
tumor immune response, ‘releasing the brakes’ by checkpoint
inhibition will not lead to improved clinical results. Hence, a
combination with an immune strategy that actively induces an
anti-tumor immune response might improve therapy response
rate (63). Vice versa, therapies that actively stimulate the
immune response, often result in increased expression of
immune checkpoint molecules and might therefore also benefit
from a combination treatment with ICIs. In addition, in single-
cell RNA sequencing data from NSCLC tissue a mature DC
subset with high expression of regulatory molecules, such as PD-
L1, was identified which could be targeted by anti-PD-L1
therapy (64).

The potential synergistic effect of ICIs and DC vaccination is
currently examined in advanced stage melanoma patients.
Accordingly, two studies showed that a combination strategy
of anti-CTLA-4 and DC vaccination resulted in an improved
clinical response compared to similar cohorts that received anti-
CTLA-4 treatment alone, without causing additional toxicity
(65–68). In addition, ICI therapy was shown to be effective in
advanced stage melanoma patients with recurrent disease after
adjuvant DC vaccination (69). Until date, no results are available
of studies that examine whether the synergistic effect of
combined ICI and DC-based therapy also applies for NSCLC.
FROM PERIPHERAL IMMUNE
ACTIVATION TOWARDS A
LOCAL RESPONSE

An important question is whether the current administration
route for DC vaccination in NSCLC can induce a tumor-specific
June 2021 | Volume 12 | Article 704776
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TABLE 2 | Characteristics of studies in which DC vaccination combination therapy was performed in NSCLC.

Ref. Subject number Clinical
stage

Antigen
source

DC
maturation

status

Type and regimen of DC
administration

Most important results after vaccination

Zhong et al.,
Cancer
Immunol.
Immunother.
(48)

N = 28 (DC-CIK +
chemotherapy = 14;
chemotherapy = 14)

III and IV CEA
peptide

Immature • All patients received 4 cycles of
vinorelbine with cisplatin
chemotherapy.

• The DC-CIK + chemotherapy group
in addition received 4 monthly cycles
of i.v. DC-CIK vaccinations.

• Patients in the DC-CIK + chemotherapy
group demonstrated significantly increased
PFS compared to the chemotherapy only
group.

• There was no difference between 1-, 2-,
and 5-year OS between the different
groups.

Shi et al., J.
Immunother.
(49)

N = 54 (erlotinib +
DC-CIK = 27,
erlotinib = 27)

III and IV Tumor
lysate

Immature • All patients received erlotinib.
• The DC-CIK + erlotinib group in

addition received 4 s.c. DC
vaccinations and 5 i.v. CIK
vaccinations within the erlotinib
treatment.

• Patients received treatment cycles
until disease progression or
withdrawal from the study (≥ 2
cycles).

• Circulating CD4 T cells, CD8 T cells and the
CD4/CD8 ratio were significantly increased
after erlotinib + DC-CIK treatment, while
there were no differences in these
parameters in the erlotinib only group..

• PFS was significantly increased in the
DC-CIK + erlotinib group compared to the
erlotinib only group.

• There was no difference in OS between
both treatment groups.

Hu et al.,
Med. Oncol.
(50)

N = 27a III and IV Tumor
lysate

Immature • Patients received pemetrexed
chemotherapy followed by i.d. DC
vaccination at day 12.

• Patients received multiple rounds of
DC vaccination until disease
progression (≥ 2 cycles) or up to a
maximum of 6 rounds.

• Primary endpoint was safety and
combination therapy was shown safe.

• No clinical nor immunological effect could
be determined, since no control group was
available.

Zhao et al.,
Exp. Ther.
Med. (51)

N = 157 (DC-CIK +
chemotherapy = 79;
chemotherapy = 78)

IIIA – Immature • All patients received surgery.
• Chemotherapy consisted of four

cycles of gemcitabine and cisplatin.
• 2 i.v. DC-CIK vaccinations were

administered after the second cycle
and after the fourth cycle of
chemotherapy in the DC-CIK +
chemotherapy group.

• The 3-year cumulative recurrence rate was
significantly reduced in the DC-CIK +
chemotherapy group.

• The 3-year cumulative survival was
significantly increased in the DC-CIK +
chemotherapy group.

Zhu et al.,
Genet. Mol.
Res. (52)

N = 65 (DC-CIK +
radio-/
chemotherapy = 30;
radio-/
chemotherapy = 35)

IIIB - Unknownb • All patients received 4 cycles of
docetaxel and cisplatin
chemotherapy combined with a total
dose of 60-70 Gy radiotherapy.

• The DC-CIK + radio/chemotherapy
group received 4 rounds of 2 or 3
i.v. DC-CIK vaccinations in between
the chemo- and radiotherapy cycles.

• Patients in the DC-CIK + radio/
chemotherapy group demonstrated
significantly increased CD3 and CD4 T cells
4 weeks after treatment. This difference
was not observed in the radio/
chemotherapy group only.

• Patients in the DC-CIK + radio/
chemotherapy group demonstrated
significantly increased 6-months and 12-
months OS compared to the radio-/
chemotherapy alone group.

Zhang et al.,
Oncol. Lett.
(53)

N = 507 (DC-CIK +
standard therapy =
99; standard
therapy = 408)

III and IV NSCLC
cell line
lysate

Unknownb • Standard therapy consisted of
surgery, chemotherapy, and
radiotherapy.

• DCs were administered i.v. once a
week for 3 weeks.

• In the first week of treatment,
patients received i.v. CIK
vaccinations once a day for 4 days.
After 3 weeks, patients received i.d.
DC vaccinations once a week for 3
weeks.

• 59 out of 97 patients from the combination
therapy group demonstrated a DTH
response (the control group was not
tested).

• Patients who received DC-CIK showed
significantly improved survival compared to
patients who received standard therapy.

Zhang et al.,
Radiot.
Oncol. (54)

N = 82 (DC-CIK +
radiotherapy = 21;
radiotherapy = 61)

III and IV MUC-1
peptide

Unknownb • All patients received a total dose of
60-66 Gy radiotherapy.

• The DC-CIK + radiotherapy group
received 4 s.c. DC vaccinations and
4 i.v. CIK vaccinations between
radiotherapy fractions.

• Peripheral blood of before and after
treatment was available for 20 patients. No
differences in circulating CD8 T cells, CD4 T
cells and NK cells were observed between
before and after treatment in both treatment
groups.

(Continued)
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immune response in the lungs. The most promising results from
human DC-based therapies are achieved in melanoma. In these
trials, DCs were injected in the skin and migrated to cutaneous
lymph nodes in which maturated DCs can initiate an anti-tumor
immune response. For melanoma, this is often in close proximity
to the tumor. For NSCLC this same route of administration is
chosen, although the tumor is located at a large distance from the
cutaneous lymph nodes. This difference in environment of T cell
activation might lead to a decreased amount of T cells that reach
the tumor. This is illustrated in a pancreatic cancer mouse model
in which intraperitoneal administration of a DC vaccine
suppressed tumor growth and inhibited tumor progression to a
larger extent compared to subcutaneous injections of the same
DC vaccine (70). It might therefore be interesting to study the
effect of DC-based therapy that is administered into the local
lymph nodes. Although this is more invasive, it might induce a
more locally effective anti-tumor immune response.

The local environment during T cell activation might not be
the only element causing the suggested suboptimal lung T cell
infiltration. In an inflammation mouse model, it was shown, that
after local immunization with the immunogenic ovalbumin
protein (OVA), DCs isolated from lung-draining mediastinal
lymph nodes induced increased lung homing of CD4 T cells
compared to DCs isolated from muscle-draining inguinal lymph
nodes (71). The authors linked this increased ability to induce
lung-homing of CD4 T cells to a CD24+ DC subset that is highly
expressed in the mediastinal lymph node compared to the
inguinal lymph node. To induce a local immune reaction in
the lung, it therefore seems pivotal to specifically target this DC
subset. Interestingly, in another inflammation mouse model it
was demonstrated that this specific DC subset is probably not
induced in the lung-draining lymph node itself, but rather in the
lungs before lymph node migration (72). This is illustrated by an
experiment in which DCs isolated from lung tissue, lung-
draining lymph nodes, and other lymph nodes received
antigen and were co-cultured with T cells ex vivo. DCs isolated
from lung were superior at inducing lung-homing T cells, while
Frontiers in Immunology | www.frontiersin.org 6
there was no difference between DCs originating from lung-
draining lymph nodes and other lymph nodes. This finding that
lung-derived DCs induced superior homing of T cells to the lung
was also confirmed in another mouse model of viral infection. In
this model, mice were intranasally challenged with viral particles
after which DCs were isolated from both lung and lung-draining
lymph nodes at multiple time points after infection. Their results
demonstrate that at 30 minutes after infection lung DCs were
superior at inducing T cell homing compared to DCs originating
from lung-draining lymph nodes, while at 24 hours after
infection this difference was abolished. Since transport of
soluble antigen from the lung towards the local lymph node
already occurs within a few minutes after infection, this
experiment validates that DCs that migrated from the lung are
the main stimulants for lung-homing T cells. Although these are
all pre-clinical data, a lung-derived DC subset paramount for
optimal local tumor-specific T cell immune response might also
be present in humans. DCs used for DC vaccination in NSCLC
are not lung-derived. Therefore, means to equip DCs with an
optimal capacity to induce lung-homing T cells should
be developed.
IN VIVO TARGETING OF DCS

The clinical trials using DC-based therapy in NSCLC were
performed with DCs that were earlier isolated from the
patient’s peripheral blood, after which the DC vaccine was
finalized in the lab. This procedure to construct DC vaccines
has disadvantages: it is demanding for patients, laborious and
expensive. For that reason, targeting DCs in vivo is a promising
approach. Moreover, specific DC subsets in the tumor could be
directly targeted when a monoclonal antibody directed against
specific endocytic DC receptors would be used as guide for
antigen delivery. For example, C-type lectin domain containing
9A (CLEC9A) on conventional type 1 DCs (cDC1s). Since
CLEC9A is involved in cross-presentation, this specific
TABLE 2 | Continued

Ref. Subject number Clinical
stage

Antigen
source

DC
maturation

status

Type and regimen of DC
administration

Most important results after vaccination

• Patients in the DC-CIK + radiotherapy
group showed a significantly increased PFS
compared to the radiotherapy only group.

• No difference in OS between both
treatment groups was observed.

Zhao et al.,
Clin. Transl.
Oncol. (55)

N = 135 (DC-CIK =
45; chemotherapy =
40; DC-CIK +
chemotherapy = 50

III and IV – Partly
maturec

• Chemotherapy consisted of
pemetrexed or docetaxel.

• DC-CIK was administered i.v. daily
for 3 days.

• Patients of all groups received ≥

2 rounds of treatment.

• In multivariate analysis, combination therapy
of DC-CIK and chemotherapy was an
independent prognostic factor for increased
1-year PFS and OS.

• There was no difference in 1-year OS
between the DC-CIK only and the
chemotherapy only group.
Studies are displayed in order of publication (old to new). DC-CIK therapy or DCs for DC vaccination were derived from autologous PBMCs. aAll patients failed gefitinib or erlotinib
maintenance therapy. bNo established maturation method was used and no data that showed the maturation status of the DCs was available, cshowed a CD80+CD86+ population > 80%
in their vaccine; SCC, squamous cell carcinoma; TNF-a, tumor necrosis factor a; CEA, carcinoembryonic antigen; i.v., intravenous; s.c., subcutaneous; MUC-1, Mucin-1; PFS,
progression-free survival.
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targeting could also skew the antigen-processing towards this
direction (73). This strategy of specific DC-targeting is not yet
performed in humans, but some mouse studies show
promising results.

In melanoma mouse models, receptors targeting among
others, CLEC9A, CD11c, and DEC-205 (receptor on
circulating DCs of mice and human, involved in cross-
presentation) were bound to OVA (74–77). With concurrent
activation, such as Polyinosinic:polycytidylic acid (poly I:C) and
anti-CD40, the administered tumor antigen-receptor complex
was shown to elicit effective immune responses and inhibit
tumor growth. Hence, in the study using DEC-205 it was even
demonstrated that in vivo vaccination showed larger inhibition
of tumor growth compared to vaccination with ex vivo spleen-
derived DCs which were also primed with OVA and maturated
using anti-CD40 (74).

In the previous examples, antigens were chemically
conjugated to a monoclonal antibody, or the DNA sequence of
the antigen was genetically fused to the monoclonal antibody,
while DC activation signals were injected separately. Currently,
however, many studies focus on more complex manners of
antigen delivery in vivo that could improve antigen uptake and
DC activation efficiency. Examples are lipid vesicles or
nanoparticles with surface-bound DC targeting receptors, and
containing tumor antigens and DC activation signals (78). An
important advantage of this technique is that the maturation
signals are selectively delivered to the DCs. This is important
because maturation molecules have been shown to have a tumor-
supporting function when binding to other cells in the TME
(79–81).

There are also studies that only focus on in vivo DC
activation, without loading the DC with antigen. In a
lymphoma mouse model, it is shown that intratumoral
injection of TriMix mRNA, encoding costimulatory molecules
CD70, CD40 ligand, and constitutively active toll-like receptor 4
(TLR4), induces systemic tumor-specific T cell responses
independent of the co-delivery of tumor antigen (82).
Moreover, in animal cancer models they show increased
survival after injection of TriMix mRNA. The uptake of Trimix
mRNA relies on the ability of DCs to rapidly and selectively
Frontiers in Immunology | www.frontiersin.org 7
internalize free RNA and avoids off-target effects. These results
suggest that tumor-infiltrating DCs may have acquired antigen,
and that the problem in their malfunctioning phenotype is rather
the lack of sufficient activation signals in their surroundings.
CONCLUSION

Nowadays, DC-based therapy in NSCLC is still at a
developmental stage. The DC vaccination studies performed
are all early-phase studies that demonstrated low toxicity of
the treatment, but were underpowered to show clinical benefit.
However, most of these clinical trials showed that DC
vaccination can induce the desired immune response. The
latter highlights the potential of DC-based therapy in NSCLC
and encourages further research that could advance the
peripheral immunological effect to a radiological response or
improved survival. In particular, studies that examine whether
the anti-tumor immune response in peripheral blood or skin
could also be induced in the tumor environment could provide
more insight. The immune-activating ability of DC vaccination
and the low toxicity of treatment make this therapy an excellent
candidate for combination with other anti-cancer treatment.
Clinical success of combination therapies is illustrated by the
results of combination studies of chemotherapy and/or
radiotherapy and even targeted therapy with DC-CIK
vaccination in NSCLC. Likewise, studies in melanoma
demonstrated the synergizing effect of DC-based therapy and
ICIs. Especially this latter combination with ICIs, which inhibit
the immunosuppressive TME, could allow the optimal immune-
activating potential of DC based therapy to be revealed
in NSCLC.
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