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Abstract 

Mycobacteria regulate transcript degradation to facilit ate adapt ation to environment al stress. However, the mechanisms underlying this regula- 
tion are unknown. Here we sought to gain understanding of the mechanisms controlling mRNA stability by investigating the transcript properties 
associated with variance in transcript st abilit y and stress-induced transcript stabilization. We measured mRNA half-lives transcriptome-wide in 
Mycolicibacterium smegmatis in log phase growth and hypoxia-induced growth arrest. The transcriptome was globally stabilized in response 
to h ypo xia, but transcripts of essential genes were generally stabilized more than those of non-essential genes. We then de v eloped machine 
learning models that enabled us to identify the non-linear collective effect of a compendium of transcript properties on transcript st abilit y and 
stabilization. We identified properties that were more predictive of half-life in log phase as well as properties that were more predictive in hy- 
po xia, and man y of these v aried betw een leadered and leaderless transcripts. In summary, w e f ound that transcript properties are differentially 
associated with transcript st abilit y depending on both the transcript type and the growth condition. Our results reveal the complex interplay 
between transcript features and microenvironment that shapes transcript st abilit y in mycobacteria. 
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egulation of mRNA degradation serves as a response mech-
nism of mycobacteria to energy-limited microenvironments.
he mycobacteria include Mycobacterium tuberculosis , the
ausative agent of tuberculosis which led to over 1 million
eaths in 2022 ( 1 ). Transcriptome-wide profiling of mRNA
egradation in M. tuberculosis showed variance in transcript
tability among genes and a global stabilization of the tran-
criptome in hypoxia, a stress condition that M. tuberculosis
ncounters within granulomas during infection ( 2–4 ). How-
ver, the regulatory mechanisms that govern transcript sta-
ility and stress-induced stabilization remain poorly under-
tood. Further study of the regulation of mRNA degradation
n mycobacteria is needed to facilitate our understanding of
he stress response strategies that M. tuberculosis employs to
dapt and persist within the host. 

Global mapping of transcription start sites revealed that ap-
roximately 25% of RNA transcripts lack a 5 

′ untranslated
egion (5 

′ UTR) in mycobacteria (referred to as leaderless tran-
cripts) ( 5–7 ). Studies have shown that the presence of Shine-
algarno (SD) ribosome binding site sequences within the 5 

′ 

TR is associated with higher mRNA expression levels in bac-
eria, measured by RNAseq expression data ( 5 ,7 ). However, it
s also known that some leaderless transcripts have compara-
le translation efficiencies with leadered transcripts in both M.
megmatis and M. tuberculosis ( 6 ,8 ), potentially due to an al-
ernative translation initiation mechanism and unique RNA
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characteristics, such as less structured start codon regions
( 9 ,10 ). In M. tuberculosis , SD-independent translation of lead-
erless transcripts is less affected during adaptation to stress en-
vironments than canonical leadered translation ( 5 ,11 ). While
it is likely that the 5 

′ regions of transcripts can contribute to
the variability in mRNA half-life through either translation ef-
ficiency or degradation initiation ( 5 , 7 , 12–18 ), the mechanisms
are not fully characterized. 

Various transcript properties (features) have been reported
to be associated with mRNA stability either transcriptome-
wide or for individual transcripts in various organisms.
Transcriptome-wide associations with mRNA stability have
been shown for growth rate in L. lactis and E. coli ( 19 ,20 ),
transcript abundance in E. coli and L. lactis ( 21 ,22 ), GC con-
tent in B. cereus , E. coli and S. cerevisiae ( 21 , 23 , 24 ), 5 

′ UTR -
related features in S. cerevisiae and E. coli ( 21 , 25 ), 3 

′ UTR -
related features in S. cerevisiae ( 25 ), gene function and es-
sentiality in B. cereus and E. coli ( 21 ,23 ), transcript length
in L. lactis , E. coli , and S. cerevisiae ( 19 , 21 , 24 ), ribosome
density in S. cerevisiae ( 24 ), and adjacent codon pair usage
in S. cerevisiae ( 26 ). The impacts of some transcript features
such as start codon identity and GC content in S. cerevisiae
( 24 ), 5 

′ UTR-related features in L. lactis , A. baumannii , H.
pylori , E. coli , B. subtilis , and M. smegmatis ( 8 , 12 , 22 , 27–35 ),
and transcript abundance in E. coli and L. lactis ( 22 ) were
also validated experimentally with individual transcripts. In
mycobacteria, the transcript features that impact mRNA
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degradation rates are largely unexplored, with existing analy-
sis limited mainly to a few transcript features and their indi-
vidual broad correlations with transcript half-life in log-phase
growing M. tuberculosis ( 2 ). It is unknown which of the wide
range of potentially associated features impact transcript sta-
bility, how the impacts of these features interact, and how they
differ according to growth condition. 

To model the underlying collective effect of multiple tran-
script features on stability, recent studies in E. coli and S.
cerevisiae have used linear regression models to incorporate
multiple features and quantify their contributions to variance
in degradation rates ( 21 , 24 , 25 ). However, a limitation is that
these models simplify the relationship between the features
by assuming that they can be combined linearly to determine
transcript half-life. Although more advanced sequence-based
machine learning models could also be applied to predict sta-
bility, their performances rely on large amounts of data for
training with the focus more on achieving accurate predic-
tion rather than understanding the underlying mechanisms
( 36 ,37 ). 

Given our lack of understanding of the impact of RNA
features on mRNA degradation in mycobacteria, we sought
to develop a comprehensive machine learning framework
to identify the transcript properties associated with tran-
script half-life in the model organism Mycolicibacterium (nee
Mycobacterium ) smegmatis in both log phase growth and
hypoxia-induced growth arrest. We found that in contrast to
some previous reports on M. tuberculosis and E. coli , no sin-
gle feature had a dominant association with mRNA half-life;
rather, half-lives were best explained by the non-linear interac-
tions of many features. The features that best explained tran-
script half-lives differed between log phase growth and hy-
poxia, and while the half-lives of most transcripts were longer
in hypoxia, those of essential genes were lengthened the most.
Features associated with efficient translation were generally
predictive of longer half-lives in log phase but not in hypoxia,
consistent with the idea that translation protects mRNA from
degradation in rapidly growing cells and lower levels of trans-
lation in non-growing cells limit its impact. mRNA secondary
structure was also generally predictive of longer half-lives in
cases where it did not negatively impact translation, but in
ways that varied by condition and transcript leader type. 5 

′

UTR features were predictive of half-life in ways that ap-
peared to extend beyond mediating translation initiation. Sur-
prisingly, gene length was predictive of slower degradation in
hypoxia, consistent with models in which diffusion of large
molecules is slower in non-growing cells. Taken together, our
results reveal the landscape of the collective effect of diverse
transcript features on stability under different conditions in
M. smegmatis . 

Materials and methods 

Strains and culture conditions to generate 

transcriptome-wide mRNA degradation datasets 

Transcriptomic data were obtained from M. smegmatis strain
SS-M_0424, a derivative of mc 2 -155 previously described in
( 38 ), in which a hyg R gene was inserted upstream of, and diver-
gent from, the rne gene promoter, and a kan 

R -marked plasmid
expressing tetR38 was integrated at the L5 site. This strain
was constructed as a control for an rne knockdown strain,
and its genetic modifications did not affect expression of rne .
M. smegmatis was grown at 37 

◦C with 200 rpm shaking in 

Middlebrook 7H9 broth supplemented with final concentra- 
tions of 0.2% glycerol, 0.05% Tween-80, 3 mg / l catalase, 2 

g / l glucose, 5 g / l bovine serum albumen fraction V and 0.85 

g / l sodium chloride. RNA was extracted from cultures at de- 
fined time-points following addition of 150 μg / mL rifampicin 

to block transcription initiation. The log phase cultures are 
described in ( 38 ). Cultures for hypoxia were sealed in vials 
as described in ( 39 ). The volume of culture in each bottle was 
13.5 ml and the OD at the time of sealing the bottles was 0.01.
19 h after sealing the bottles, rifampicin was injected through 

the rubber cap with a needle, and at the indicated timepoints 
(0, 3, 6, 9, 15, 30 and 60 min) bottles were opened, contents 
poured into 15 ml conical tubes, and the tubes submerged 

in liquid nitrogen. The elapsed time between opening the hy- 
poxia bottles and submerging the cultures in liquid nitrogen 

was approximately 6 seconds. Frozen cultures were stored at 
−80 

◦C. Cultures were thawed on ice and RNA extracted as in 

( 39 ). The RNAs were submitted to the Broad Institute Micro- 
bial ‘Omics Core where Illumina libraries were constructed as 
described in ( 40 ) and sequenced. The hypoxia cultures were 
grown and their RNA extracted and sequenced together with 

the log phase cultures described in ( 38 ). Separately, the RNA 

samples were used to synthesize cDNA and perform quantita- 
tive PCR as described in ( 39 ) and the resulting data were used 

for normalization of the RNAseq data as described in ( 38 ). 

M. smegmatis genome sequence and gene 

annotations 

The transcript features were quantified using the genome se- 
quence of M. smegmatis strain mc 2 -155 (NC_008596.1) from 

Mycobrowser Release 4 ( 41 ). The gene annotations were up- 
dated as described ( 38 ) and listed in Supplementary Table 
S1 . Using these annotations, we defined 1939 leadered tran- 
scripts and 960 leaderless transcripts with high confidence 
( Supplementary Table S1 ). For transcripts with multiple tran- 
scription start sites (TSSs), the leader type was determined by 
the TSS with the highest read coverage in log phase ( 7 ). 

RNAseq data processing and half-life calculations 

RNAseq data were processed and normalized to quantify 
the transcript abundance for a series of time points after ri- 
fampicin addition (referred to as transcript degradation pro- 
files) for log phase and hypoxia as described ( 38 ). Log phase 
half-lives were calculated as described ( 38 ). To calculate half- 
lives in hypoxia with high confidence, we only used genes for 
which linear regression of log 2 transcript abundance between 

first 5 time points (0, 3, 6, 9, 15 min) had a mean squared er- 
ror (MSE) < 0.5 ( 38 ). The 30 and 60 minute timepoints were 
not used for half-life calculation. Genes with zero read counts 
for any replicate for any of the first 5 time points were also 

excluded. Half-life was calculated as −1 / slope. 

UMAP visualization of transcript degradation 

profiles in log phase and hypoxia 

The log 2 normalized RNAseq coverage of 7120 genes in 

42 samples (3 replicates of each of the 7 time points in 

log phase and hypoxia) were used to visualize the global 
similarities among replicates, the differences between 

conditions, and the temporal changes in transcript abun- 
dance following RIF addition. UMAP plots were made 
in R v4.3.2 using package umap v0.2.10.0 with the 
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arameters n_neighbors = 20, min_dist = 0.25,
_component = 2, random_state = 77 . The seed
alue in R was set to be 7. 

ranscript property quantification 

o identify the transcript properties that are associated with
egradation, we quantified many potential candidate proper-
ies ( Supplementary Tables S1 and S2 ) for each of the 7120
DSs ( Supplementary Table S1 ). 

ucleotide frequency 
his group of properties was quantified through the nu-
leotide frequency percentage relative to 5 

′ UTR or CDS re-
ion length. It contains usage of single nucleotides, adjacent
inucleotide motifs, and total G + C content. For each CDS,
e quantified nt frequency for the 5 

′ 18 nt, the 3 

′ 18 nt, and
he entire CDS as separate properties. 

odon frequency 
n addition to the percentage of each nonstop codon calcu-
ated in the same manner as the nucleotide frequency, we
dded binary indicators for the choice of start codon (AUG,
UG and UUG) and stop codon (U AA, U AG and UGA). We

alculated the Codon Pair Bias (CPB) using the Codon Pair
core (CPS) of all codon pairs that make up the CDS ( 42 ).
he CPS was calculated for each of the 3904 possible codon
airs (61 * 64), including stop codons only being used as the
econd codon to capture potential bias at the 3 

′ end of the
DS. 

NA secondary structure 
hese properties were quantified using the ViennaRNA
2.5.0 package ( 43 ) through the following three metrics:
he �G of the minimum free energy (MFE) structure for a
iven transcript segment, the number of unpaired nucleotides
t the 5 

′ end of the MFE structure, and the probability of spe-
ific nucleotides near the 5 

′ end being unpaired. The �Gs of
FE structures were calculated using RNAfold v2.5.0 . To

vercome the positive correlation between �G and sequence
ength, we calculated �G of MFE ( �G MFE ) structures in a
liding window manner. Each sequence was split into subse-
uences by M nt windows, each with M / 2 nt overlap. The
G MFE for a given sequence is the averaged �G MFE of all its

ubsequences generated by a sliding window. For 5 

′ UTRs and
DSs, we divided each sequence into thirds and used such

liding window �G MFE s to quantify the predicted structure
f the 5 

′ third, middle third, and 3 

′ third as well as the entire
equence. For the 5 

′ UTRs, we sought to distinguish between
econdary structure directly affecting ribosome binding and
ther secondary structure. We therefore excluded the 3 

′ -most
5 nt before dividing the sequence into thirds. Additionally,
nly 5 

′ UTR sequences longer than 35 nt before removing the
5 nt ribosome binding site were used, and only a 20 nt se-
uence window was used. For the CDS region, we calculated
G MFE s using 20, 50, and 100 nt windows. The 3 

′ UTRs were
pproximated as 60 nt after the stop codons. The MFE for 3 

′

TRs were calculated using a 20 nt window only. 
We also used the �G MFE structures to measure the ac-

essibility of the mRNA translation initiation region (TIR)
or ribosome binding ( 10 ). We calculated �G unfold separately
or leadered transcripts that have 5 

′ UTRs at least 12 nt
long (1809 transcripts) and leaderless transcripts (960 tran-
scripts). To calculate �G unfold , �G mRNA 

was first calculated
using RNAfold v2.5.0 to represent the folded state of the
mRNA TIR in the absence of ribosome binding. For leadered
transcripts with 5 

′ UTRs at least 25 nt long, this region was
defined as 25 nt upstream of the start codon and the first 25 nt
of the coding sequence. For leadered transcripts with 5 

′ UTRs
shorter than 25 nt and for the leaderless transcripts, this region
was defined as 50 nt downstream of the transcription start
sites (TSSs). Then to approximate the ribosome-bound state of
the mRNA TIR, �G init , the TIR structure prediction was pro-
cessed using RNAstructure v6.3 to break any base pair-
ing within the ribosome footprint. The ribosome footprint was
assumed to be 12 nt upstream of the start codon and the first
13 nt of the CDS for leadered transcripts, and the first 13 nt
of the CDS for leaderless transcripts ( 44 ). Then �G unfold was
calculated as �G init − �G mRNA 

. 
The number of unpaired nucleotides at each transcript

5 

′ end was predicted from MFE structures produced by
RNAfold v2.5.0 when folding the entire CDS (leadered
and leaderless genes), the 5 

′ UTR (leadered genes only), the 5 

′

UTR plus the first 18 nt of the CDS (leadered genes only), or
the first 20 nt of the transcripts (leadered and leaderless genes).
Separately, the probabilities of certain transcript regions be-
ing unpaired were predicted using RNAplfold v2.5.0. To
assess the base-pairing status of the 5 

′ ends of transcripts in
a different way, we folded the first 20 nt of each transcript
and calculated for the first 3 nt and 5 nt (i) the probabilities
that all the nucleotides are unpaired or (ii) the averaged un-
paired probability of each nucleotide. To predict accessibility
of ribosome-binding regions in leadered transcripts, we folded
the last 30 nt of the 5 

′ UTR plus either the first 20 nt of the
CDS or the start codon only. We then quantified the proba-
bility of the entire start codon being unpaired as well as the
averaged dinucleotide unpaired probability over either the en-
tire folded sequence or the Shine-Dalgarno region (-6 to -14
relative to the start codon) ( 6 ). 

Ribosome occupancy 
We used RNAseq data from GSE127827, which included
libraries made from total rRNA-depleted RNA (referred
to henceforth as mRNA libraries) as well as libraries
made from ribosome footprints. After retrieving data us-
ing SRA Toolkit v3.0.0 , we processed the sequenc-
ing data following the original methods with some mod-
ifications ( 45 ). First, quality control was performed us-
ing FastQC v0.11.9 ( 46 ). The ribosome footprint data
were further processed using Trimmomatic v0.39 with the
options ILLUMINACLIP: ∼/ adaptors_SE.fa:2:30:10
SLIDINGWINDOW:4:20 MINLEN:25 , which included re-
moving adaptors, cutting reads when average quality per nu-
cleotide was lower than 20 within a 4-nt sliding window, and
discarding reads less than 25 nt long ( 47 ). This was not neces-
sary for mRNA libraries due to their higher quality. Next, for
both ribosome footprint and mRNA libraries, we performed
alignment to discard reads aligned to tRNA and rRNA us-
ing Bowtie2 v2.4.5 with the option –very-sensitive
( 48 ). The remaining reads were then aligned to the genome se-
quence of Mycolicibacterium smegmatis strain mc 2 -155 using
Bowtie2 v2.4.5 with the option –sensitive-local .
Reads and alignments were processed and sorted using SAM-
tools v1.16.1 ( 49 ). To further remove unmapped reads,

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data


4 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCR or optical duplicate reads, reads that were not primary
alignments and alignments with MAPQ smaller than 10, we
filtered the alignments using SAMtools v1.16.1 with the
options -q 10 -F 1284 . The remaining alignments were
then quantified in TPM for both ribosome footprint and
mRNA libraries using StringTie v2.2.1 ( 50 ). Such quan-
tification was done separately for four different transcript re-
gions: (i) the entire CDS, (ii) the entire CDS plus the 20 nt up-
stream, (iii) the 5 

′ end of the transcript (the first 18 nt of the
CDS for leaderless transcripts or the last 20 nt of the 5 

′ UTR
plus the first 18 nt of the CDS for leadered transcripts) and (iv)
the CDS excluding its first 18 nt. We also quantified the cover-
age for each third of every CDS (5 

′ third, middle third, 3 

′ third)
to capture regional differences. Then for each of the two affin-
ity tag swapped strains, we calculated the TPM ratios of ribo-
some footprint library coverage over mRNA library coverage
using the averaged TPMs of two replicates. At the end, the
normalized ribosome occupancy for each CDS in these tran-
script regions was calculated as the averaged TPM ratios of
these two dual-RpsR-tagged strains. 

Shine-dalgarno sequence 
To approximate the strength of the Shine-Dalgarno sequences
of leadered genes, we quantified the GA percent and GA fre-
quency within the region of -17 to -4 relative to the start
codon, as well as the frequencies of 17 specific Shine-Dalgarno
motif variants in the 25 nt upstream of the start codon. GA
percent is the percentage of Gs and As in the sequence. GA
count is the total frequency of four di-nucleotide sequences
(GG, AA, AG and GA) in two ‘reading frames’ of the sequence,
one starting at the first nt and one starting at the second nt of
the sequence. 

Other properties 
This group of properties includes the sequence length and
steady-state transcript abundance (0 min RIF treatment; ‘ini-
tial abundance’). We quantified length for 5 

′ UTRs and CDSs
based on the annotation of 7120 CDSs ( Supplementary Table 
S1 ). CDS abundance was normalized by CDS length. The ini-
tial abundances in log phase and hypoxia were used respec-
tively for log phase and hypoxia model development. 

Feature selection procedure 

Our complete feature set includes five different feature types
(nucleotide frequency , codon frequency , secondary structure,
ribosome occupancy, and others) in four transcript regions
(5 

′ UTR, 5 

′ end of transcript, CDS, and 3 

′ UTR) (Figure 3 A;
Supplementary Tables S1 and S2 ). The design of this feature
set was driven by our hypothesis that the transcript stability
is controlled by the unknown combination of multiple tran-
script properties. However, the intersection of multiple fea-
ture types within and across transcript regions leads to high
correlations among several features. Although those correla-
tions might not directly affect machine learning model perfor-
mance, the shared credit of correlated features contributing to
the predictions could affect the importance rankings of fea-
tures. Such correlations also complicate the interpretation of
feature contributions. 

We therefore sought a feature selection algorithm to min-
imize the influence of the correlated features without los-
ing potentially important features. Commonly used selection
techniques lack the ability to consider both the relationships 
among the features themselves and the relationships between 

the features and the predicted class ( 51 ). To perform feature 
selection in a manner suitable for our feature structure and 

goals, we developed the following algorithm. Our algorithm 

only targeted the highly correlated features (| Spearman’s ρ
| ≥ 0.6) that were of the same type and within the same tran- 
script region. We also took into account correlations between 

the individual features’ values and classes, measured by the 
Kendall rank correlation coefficient ( 52 ). For this process, we 
considered the 5 

′ UTR and 5 

′ end of the transcript to be the 
same transcript region. Our goal was to select features that 
have less correlations with other features, while potentially 
contributing the most to the model performance. The selec- 
tion procedure was done separately for each of six models that 
used the combined feature set to predict half-life class: lead- 
ered genes and leaderless genes each in log phase, hypoxia, and 

fold change in hypoxia relative to log phase. The algorithm 

returned a list of features to be used for the machine learning 
model training and evaluation (See Supplementary Materials ).

Machine learning classifier training 

Given the limited number of leadered and leaderless tran- 
scripts and the imbalanced number of genes in the half-life 
classes, random forest emerged as an optimal choice given its 
fast training convergence and ability to avoid overfitting ( 53 ).
To train and evaluate the classifiers, we implemented 5-fold 

nested cross-validation using the scikit-learn 1.2.1 
package ( 54 ). Each dataset was split into 5 folds in a strati- 
fied manner for outer cross-validation. The same training and 

testing sets were used for random class prediction models and 

random forest classifiers at each fold iteration to compare 
their performances. To measure the performance of the classi- 
fiers given the numerically imbalanced yet equally important 
classes, we used the macro F 1 score, i.e. the unweighted mean 

of F 1 scores for each class. See below formula for the F 1 score 
and the macro F 1 score. 

F 1 = 

2 ∗ T P 
( 2 ∗ T P ) + F P + F N 

Macro F 1 = 

∑ n 
i =1 F 1 _ i 

n 

where TP is the number of true positives, FN is the number 
of false negatives, and FP is the number of false positives. n is 
the number of classes. 

In order to perform hyperparameter tuning for random 

forest classifiers, the training set was split in the same man- 
ner as before for inner cross-validation to do a random- 
ized search on hyperparameter sets H (max_depth: [3, 5, 7],
min_samples_leaf: [20, 30, 50], min_samples_split: [5, 10,
20]). The optimal hyperparameters set h* selected by inner 
cross-validation was used for training with the entire train- 
ing set to obtain the optimal model RandomForestModel* ,
which was then evaluated using the outer testing set. To quan- 
tify the contributions of individual features, we used both the 
impurity-based Gini importance and the SHAP values of pre- 
dictions made on outer testing sets. To reduce the bias of ran- 
dom sampling, the nested cross-validation was repeated 10 

times with a different random split of training and testing 
sets each time. Ultimately, the outputs of the nested cross- 
validation include the F 1 scores of all fold iterations for 10 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
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epetitions; the averaged F 1 scores of the 10 repetitions; av-
raged Gini importance scores of 10 repetitions; and SHAP
alues for each stability class across all fold iterations for 10
epetitions (See Supplementary Materials ). 

tatistical comparison of machine learning models 

or machine learning models developed using cross-
alidation, there are two potential issues in testing the
tatistical significance of model performance differences.
irst, the performance of classifiers could be driven by a
pecific split of training and testing sets. To better ensure that
 potential significant difference between classifier F 1 scores
s not due to a random split, ideally the difference in F 1 score
hould be calculated using the same fold iteration of data
or each pair of compared classifiers. Second, in the case of
tatistically testing the significance of differences between
wo distributions of F 1 scores or F 1 score differences, the
ommonly used Student’s t-test could provide misleading
esults in the context of cross-validation. The reason is that
he resampled data in training and testing makes the F 1 

cores, and thereby the F 1 score differences, dependent across
terations. This violates the independence assumption in the
tudent’s t-test, and could lead to high Type I error due to the
nderestimated variance of difference ( 55 ). To address these
roblems, Nadeau and Bengio proposed a corrected paired
-test, which can take into account the dependency in samples
nd reduce the number of false positive errors ( 56 ). In our
ase, the classifiers were trained and evaluated using 5-fold
ested cross-validation. The entire procedure was repeated
0 times to get averaged performance. Each time, the model
as trained and tested using the subsampled training and

esting sets that were overlapped in different fold iterations.
e implemented Nadeau and Bengio’s corrected paired t-test

o evaluate the differences between our random forest clas-
ifiers and random estimators that predict class membership
andomly without using any of the features. Each classifier
nd a random estimator are trained and tested using the
ame fold of the dataset through the cross-validation. At the
nd, 50 pairs of F 1 scores (5 folds * 10 repetitions) for these
wo classifiers were collected to test for the significance of
ifference. For the classifiers that were trained separately
or the genes, conditions, or features being compared, we
ere not able to train and evaluate their performances with

he same dataset. We therefore calculated �F 1 score as the
ifference between F 1 score from the random forest classifier
nd the random estimator for each comparison of interest
nd used the Wilcoxon rank-sum test to compare the �F 1 

cores from 10 repetitions between conditions, gene types and
eatures. 

ssential gene enrichment analysis 

ssentiality of 6642 M. smegmatis genes were defined us-
ng the CRISPR interference system ( 57 ). To statistically test
he enrichment of essential genes in each stability class, only
enes with essentiality designations and half-lives calculated
n both log phase and hypoxia were used. This resulted in
680 genes, of which 1327 were classified as leadered, and 793
ere classified as leaderless. These genes were tested for es-

entiality enrichment in half-life classes using a hypergeomet-
ic test with FDR correction for multiple hypothesis testing
Figure 2 G). 
Results 

Overview of an experimental and computational 
framework to unravel the intrinsic transcript 
properties that impact transcript stability in M. 
smegmatis 

Bacterial mRNA half-lives are known to vary among tran-
scripts and between conditions. To identify the transcript
properties that contribute to the variance in transcript stability
within and across conditions in M. smegmatis , we developed
an experimental and computational framework consisting of
the following four stages (Figure 1 ). We will summarize the
stages here and describe them in greater detail in subsequent
sections. First, we used RNAseq to quantify transcript half-
lives transcriptome-wide by measuring transcript abundance
over time following addition of rifampicin (referred to as tran-
script degradation profiles). To characterize the impact of the
microenvironment on transcript stability, half-lives were de-
termined in log phase growth and hypoxia-induced growth
arrest. We calculated transcript half-lives by linear regression
of log 2 transcript abundance over time for each condition.
High-confidence half-lives were determined for 4857 genes in
log phase and 4864 genes in hypoxia. The log phase half-lives
were published previously in ( 38 ). Second, transcripts were
classified into quartiles based on half-life in log phase or hy-
poxia, or by fold-change in half-life in hypoxia compared to
log phase. Third, we compiled transcript properties (features)
that we hypothesized could affect half-life and developed ran-
dom forest classifiers to identify properties predictive of half-
life class membership. This was done separately for leadered
and leaderless genes given differences in their features and
the idea that their half-life determinants might differ. Fourth,
the values of features identified as important were plotted by
half-life class to provide an overview of the association be-
tween transcript properties and classes. We also implemented
SHAP (SHapley Additive exPlanations) during classifier devel-
opment to further explore the impact of features on each class
( 58 ). Together, our pipeline reveals a comprehensive landscape
of transcript half-lives and the transcript features influencing
these half-lives in M. smegmatis in commonly studied rapid-
growth and growth-arrested conditions. 

Transcript degradation profiles capture variance in 

transcript stability both within and between growth 

conditions 

To obtain transcriptome-wide mRNA degradation profiles in
M. smegmatis , we used rifampicin (RIF) to block promoter
escape following transcription initiation, and then extracted
RNA at various time-points. Hypoxia was produced by a vari-
ation of the Wayne model in which cultures were sealed with a
defined volume of headspace and incubated with shaking for
19 h ( 39 ). RIF was injected through rubber caps with a needle
to minimize introduction of oxygen, and bottles were sacri-
ficed at each time-point. Transcript abundance was quantified
by RNAseq for samples harvested after 0, 1, 2, 4, 8, 16 and 32
min of RIF exposure in log phase and 0, 3, 6, 9, 15, 30 and 60
min of RIF exposure in hypoxia. Transcript abundance was
normalized by relative abundance values determined for a set
of genes by qPCR ( 38 ). A two-dimensional overview of the
degradation profiles obtained by UMAP revealed a global dif-
ference between log phase and hypoxia (left panel), and differ-
ences between time points following RIF addition (right panel)

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
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Figure 1 . Sc hematic of the frame w ork to identify transcript properties that impact transcript st abilit y in M. smegmatis . T he frame w ork w as designed to 
re v eal the transcript properties that were differentially associated with transcript st abilit y depending on the transcript type and condition. Stage 1: 
Transcriptome-wide mRNA degradation profiles were collected after inhibition of transcription initiation with rifampicin (RIF) in log phase and hypoxia 
using RNAseq. Stage 2: In each condition, transcripts were classified into four groups according to their half-lives. Stages 3 and 4: A series of random 

forest classifiers were trained to classify transcripts into their assigned half-life class based on the values of a set of transcript properties (features), and 
identify the features important for these classifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Figure 2 A) ( 59 ). This result is consistent with expectations
from previous work indicating the hypoxia causes changes
in gene expression patterns as well as longer transcript half-
lives in mycobacteria ( 2 , 7 , 39 , 60 , 61 ). Samples also clustered by
time-point after addition of RIF, corresponding with the tem-
poral changes in transcript abundance and indicating that our
method successfully captured the global degradation trends in
both conditions. 

To further describe the transcript degradation process, we
used linear regression models to calculate transcript half-lives
from the degradation profiles (Figure 2 B; Supplementary 
Table S1 ). The time-points used for half-life determination
were carefully chosen to avoid confounding from continued
elongation by RNA polymerase following addition of RIF as
well as decreases in degradation rate that appear to be in-
duced by RIF over time ( 38 ). As expected, there were wide
ranges of half-lives in each condition. The half-life measure-
ments also confirmed the expected global difference between
log phase and hypoxia, with stabilization of all transcripts evi-
dent in hypoxia (Figure 2 B). These findings are consistent with
a previous assessment of bulk transcript stability in hypoxia-
exposed M. tuberculosis ( 2 ), and our previous work show-
ing stabilization of several transcripts in hypoxia-exposed
M. smegmatis ( 39 ). However, this is the first transcriptome-
wide report of mRNA half-lives in any hypoxia-exposed my-
cobacterial species. The observed global variance in tran-
script stability and transcript stabilization in response to hy-
poxia was maintained when we examined the transcripts of
subsets of genes with defined transcription start sites (TSSs)
( Supplementary Figure S1 A, C). These subsets were composed
only of genes that were monocistronic or the first in a poly-
cistron, according to the annotations in ( 7 ) (Materials and
methods), and classified as leadered (having a 5 

′ UTR of 5
nt or more) or leaderless (lacking a 5 

′ UTR). Genes that were
second or beyond in a polycistron or lacked annotated TSSs
were excluded. For genes with multiple TSSs, we used the TSS
with the highest read coverage in log phase to define the 5 

′ 

UTR or lack thereof ( 7 ). Direct comparison of leadered and 

leaderless transcripts showed a statistically significant yet bi- 
ologically limited difference in half-lives, with more leadered 

transcripts having longer half-lives in both log phase and hy- 
poxia ( Supplementary Figure S1 E-H). 

To facilitate construction of machine learning models to 

identify transcript features affecting half-life, we grouped 

transcripts into classes based on half-life (see supplemental 
methods). Since the classes were split from a continuous range 
of half-lives, in theory one could define any number of classes.
To select the number of classes that most accurately repre- 
sented the degradation landscape, we first performed hierar- 
chical clustering of the degradation profiles (see supplemen- 
tal methods). The clustering produced four major classes with 

distinct degradation patterns ( Supplementary Figure S2 A, E).
We therefore decided to create four half-life classes. We chose 
to define classes based on half-life quartiles rather than by 
clustering of the complete degradation profiles to avoid con- 
founding from continued elongation by RNA polymerase af- 
ter addition of RIF as well as RIF-induced stress responses 
(Figure 2 C, D ). Nonetheless, the classes defined by half-lives 
had very similar gene composition to the clusters defined by 
hierarchical clustering ( Supplementary Figure S3 A-F) and sim- 
ilarly separated genes according to transcript degradation rate 
( Supplementary Figure S2 ). 

When comparing the gene sets in each half-life class in 

log phase and hypoxia, we found that many genes switched 

classes in the two conditions (Figure 2 E). This was true 
for both leadered and leaderless transcripts ( Supplementary 
Figure S1 B, D). This suggested that the relationship between 

transcript features and half-life differs in different conditions.
To facilitate later identification of those features, we addition- 
ally classified genes according to the extent of stabilization 

in hypoxia vs log phase (defined by fold-change in half-life,
Figure 2 F). 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
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Figure 2. Transcriptome-wide mRNA degradation profiles in M. smegmatis . ( A ). UMAP projection showing condition differences and temporal changes 
in global degradation profiles. Each dot represents an RNAseq library from which normalized mRNA abundance values for each gene were obtained. The 
same UMAP projection is shown in the two panels with different coloration of the dots. In the left panel the dots are colored according to condition (dark 
blue, log phase; light blue, h ypo xia). In the right panel the dots are colored according to timepoint after adding RIF (black, early timepoints; successively 
lighter shades of gra y, successiv ely later timepoints). ( B ). Distributions of transcript half-lives in log phase and h ypo xia. Distribution plots w ere made in R 
v4.3.2 using package ggbreak v0.1.2 ( 79 ). ( C, D ) . Half-life distributions with classes defined by half-life quartiles in log phase and h ypo xia. ( E ). 
Comparison of half-life class membership between log phase and hypoxia. ( F ). Distribution of half-life fold changes in st abilit y with classes defined by 
fold change quartile. ( G ). Frequency of essential genes in each half-life class. Significance of enrichment and depletion of essential genes within each 
class were tested using a hypergeometric test with FDR correction (Materials and methods). P.adjust < 0.05 *, P.adjust < 0.01 **, P.adjust < 0.001 ***. 
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Interestingly, we found that in hypoxia, genes classified as
essential by CRISPR interference ( 57 ) were significantly en-
riched in the slowest degradation class while significantly de-
pleted in the fastest degradation class (Figure 2 G). Consistent
with this, genes with a larger fold-change in stability in re-
sponse to hypoxia were more likely to be essential than those
with a smaller fold-change (Figure 2 G). However, there was
no consistent relationship between essentiality and half-life
in log phase. This result supports the idea that global tran-
script stabilization in response to hypoxia is likely a regula-
tory mechanism as well as an energy-saving mechanism in
mycobacteria. The significant stabilization of essential genes
in hypoxia was only observed for leadered genes and not
for leaderless genes, which suggests the possibility of differ-
ent regulatory mechanisms for those two types of transcripts
( Supplementary Figure S4 A, B). 

Nonlinear combinations of transcript properties 

(features) appear to specify half-life 

We sought to identify the transcript properties that specify
transcript half-life in M. smegmatis . To address this question
as agnostically as possible, we compiled and quantified hun-
dreds of properties, which we refer to as features. These in-
cluded nucleotide and sequence features, predicted secondary
structure features, and other features such as length, steady-
state abundance, and ribosome occupancy from a published
dataset ( 45 ). We categorized the features by type as well as by
the gene region under consideration (Figure 3 A), because we
expected that some features would have different impacts de-
pending on their location; for example, A / U-rich codons are
expected to promote translation when located near the start
codon due to their impact on secondary structure ( 62 ,63 ),
but be translated less efficiently when located elsewhere in
a coding sequence due to being less preferred codons in
mycobacteria. 

Random forest classifiers were then trained separately for
each transcript type (leadered and leaderless) in each condi-
tion (log phase, hypoxia, and fold change in hypoxia relative
to log phase) (Figure 3 B). The classifiers were trained using
5-fold nested cross-validation and evaluated by the difference
in F 1 score compared to random prediction models ( �F -score;
see Materials and methods). We trained classifiers using com-
bined feature sets as well as using only features of each of
the six types (5 

′ UTR, CDS nucleotide, CDS secondary struc-
ture, codon, translation, and others) in order to evaluate the
contribution of each feature type (Figure 3 B). For the com-
bined feature sets, we used a customized feature selection pro-
cedure to reduce the number of correlated features (Materi-
als and Methods). As we predicted, classifiers that used the
combined feature sets achieved the best performances, sug-
gesting that the stability of transcripts is specified by the com-
bination of various types of transcript properties. The �F-
scores were low compared to those typically reported for ran-
dom forest classifiers designed to distinguish between distinct
clinical or physiological states ( e.g. diseased tissue vs healthy
tissue), but were consistent with expectations for our data
type, in which classes were made from continuous distribu-
tions of half-life values. A majority of the classifiers performed
significantly better than random, and were strong enough
to facilitate our overarching goal of identifying the features
that impact half-life. Interestingly, most of the feature types
could individually predict transcript stability with perfor-
mance that varied depending on transcript type and condition 

(Figure 3 B). 
Our results confirmed the association of 5 

′ UTR fea- 
tures with transcript stability as suggested in multiple studies 
( 8 , 12 , 21 , 22 , 25 , 27–35 ). We also found that translation-related
features were more important in log phase than in hypoxia 
for both transcript types, which is further explored below.
Notably, �F-scores resulting from the combined feature sets 
were far less than the sum of the �F-scores from the individ- 
ual feature types, indicating that the collective effect was not 
a result of linearly accumulated contributions of each feature 
type. This is consistent with the idea that transcript features 
interact in a non-linear fashion with respect to their impact on 

transcript half-life, which is further supported by our obser- 
vation that linear regression methods could not meaningfully 
predict half-life in our datasets (see supplemental methods).
Additionally, and in contrast to some previous reports ( 2 ,21 ),
we found that no individual feature or feature type appeared 

to be a dominant determinant of half-life. Rather, our results 
indicate that the underpinnings of mRNA stability in M. smeg- 
matis are complex, arising from non-linear combinations of 
diverse transcript properties. 

The importance of secondary structure and 

translation in predicting mRNA half-life varies by 

transcript type and condition 

To determine if some feature types were differentially im- 
portant depending upon transcript type (leadered or leader- 
less) or condition, we directly compared the performances of 
classifiers for leadered vs leaderless transcripts in each con- 
dition (Figure 3 C-E) and for log phase vs hypoxia for each 

transcript type (Figure 3 F, G). To rigorously compare �F- 
scores, the same feature set should be used in the models be- 
ing compared. However, there were cases where the features 
differed between models, such as the absence of 5 

′ UTR fea- 
tures in the leaderless gene models. We therefore compared 

the leadered and leaderless models to each other using classi- 
fiers trained with only the features that were present in both 

(Figure 3 C–E). 
When considering the feature types separately, we found 

that CDS secondary structure features (as measured by the 
�G of minimum free energy, ‘MFE’ structures, �G MFE ) were 
significantly more important for leaderless transcripts than for 
leadered transcripts in log phase (Figure 3 C), which was ex- 
actly the opposite of the situation in hypoxia (Figure 3 D). In 

direct comparisons between conditions the same trend was 
observed for CDS secondary structure features, which were 
more important in hypoxia than log phase for the leadered 

genes but more important in log phase than in hypoxia for 
the leaderless genes (Figure 3 F, G). These results indicate that 
secondary structure differentially contributes to the stability 
of leadered and leaderless transcripts in different conditions. 

A different pattern was seen for codon features, which were 
more important for leadered genes than for leaderless genes in 

log phase only, and more important in log phase than in hy- 
poxia for leadered genes only (Figure 3 C, F). The impact of 
codon content on half-life is likely related at least in part to 

translation having a greater influence on half-life in log phase,
as observed for both transcript types in Figure 3 B. However,
comparing the impact of translation-related features between 

conditions was complicated by the inclusion of ribosome 
profiling data, which was performed only in log phase. We 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
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Figure 3. Non-linear combinations of diverse transcript properties specify half-life in M. smegmatis . ( A ) Summary of transcript features used for random 

forest classifiers. The features were grouped into six types and quantified for specific transcript regions. Numbers in square brackets indicate the 
number of features of each type selected by our feature selection process. Numbers in the colored bo x es indicate the number of features of each type 
in each transcript region. Asterisks indicate cases where the total number of unique features is less than the sum of the numbers abo v e because some 
features are classified as 5 ′ UTR-type features for leadered transcripts and translation-type features for leaderless transcripts (see 
Supplementary Table S2 ). ( B ) Comparisons of classifier performance to random prediction models. Random forest classifiers were trained separately for 
leadered and leaderless transcripts to predict st abilit y class in three conditions using various feature sets. The combined feature sets were selected by 
the log phase model for each transcript type (see Materials and methods) and were used to train models in all three conditions. The 5 ′ UTR feature set 
includes both translation-related and non-translation-related features. The translation feature set includes log phase ribosome profiling. �F-score 
represents the difference in a v eraged F-score between random forest classifiers and random prediction estimators. Dots and bars represent mean and 
standard deviation of �F-scores for 10 repetitions of each model. The significance of the performance differences between random forest classifiers and 
random prediction estimators was tested using Nadeau and Bengio’s corrected paired t-test (Materials and methods). P < 0.05 *, P < 0.01 **, P < 0.001 
***. ( C–E ). Comparisons of �F-scores between leadered and leaderless transcript random forest models in log phase, hypoxia, and fold change in 
h ypo xia relativ e to log phase. F or each condition, the combined f eature sets w ere selected b y the leaderless model and w ere used to train models of 
both transcript types. ( F , G ). Comparisons of �F-scores between log phase and hypoxia random forest models for leadered and leaderless transcripts. 
For each transcript type, the combined feature sets were selected by the log phase model and were used to train models of both log phase and hypoxia. 
The translation feature set excludes log phase ribosome profiling. The significance of the differences in model performance in ( C–G ) were tested using 
the Wilco x on rank-sum test (Materials and Methods). For all panels, P < 0.05 *, P < 0.0 1 **, P < 0.00 1 ***. F eature types with significantly diff erent 
model performance between leadered and leaderless transcripts ( C–E ) or between log phase and hypoxia ( F, G ) are highlighted in red. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
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therefore trained classifiers excluding ribosome profiling fea-
tures (Figure 3 F, G) and directly compared their performance
in log phase vs hypoxia for each transcript type. We still ob-
served better performance of translation features in log phase
than in hypoxia, suggesting that translation has a larger im-
pact on transcript half-life in log phase than in hypoxia re-
gardless of the transcript type. 

We hypothesized that translation influenced transcript half-
life more in log phase because in that condition most mR-
NAs were being translated at rates that varied according to
transcript properties, while in hypoxia most transcripts were
not being actively translated. For technical reasons, we tested
this experimentally using carbon starvation rather than hy-
poxia. In previous work, we found that carbon starvation
induced transcript stabilization similar to that seen in hy-
poxia ( 39 ). Here, we performed polysome profiling and found
that indeed, while monosomes and polysomes were read-
ily detected in log phase cells, they had much lower abun-
dance relative to ribosomal subunits in carbon-starved cells
( Supplementary Figure S5 ). We furthermore collected frac-
tions from the polysome profiling gradients and used qPCR
to compare the relative abundance of four arbitrarily se-
lected mRNAs in various fractions. For all four transcripts,
the amount of transcript associated with monosomes and
polysomes compared to unbound transcript decreased in car-
bon starvation compared to log phase ( Supplementary Figure 
S5 ). These results are consistent with the idea that in non-
growing cells, a larger portion of transcripts are unassociated
with ribosomes compared to in actively growing cells. 

To compare the collective effect of all features between lead-
ered and leaderless transcripts, we trained classifiers for both
using the same set of features selected for leaderless models
in each condition (Figure 3 C-E). The combined features were
better able to predict stability for leadered transcripts than for
leaderless transcripts in log phase, and vice versa in hypoxia
(Figure 3 C, D). Similarly, we compared the collective effect of
all features between log phase and hypoxia using the same sets
of features selected for log phase models for each transcript
type (Figure 3 F, G). The result showed better performance in
log phase than hypoxia for leadered transcripts and the oppo-
site for leaderless transcripts, consistent with the results of the
direct transcript type comparisons. For the classifiers predict-
ing the extent of stabilization in response to hypoxia, we ob-
served no significant difference between leadered and leader-
less transcripts for the majority of the shared feature types ex-
cept CDS nucleotide and codon content features (Figure 3 E).
However, the leadered / leaderless comparison by necessity ex-
cluded 5 

′ UTR features, and we noted that the 5 

′ UTR features
were the feature type that best predicted fold change stability
for leadered genes (Figure 3 B). This contrasted with the in-
dividual log phase and hypoxia classifiers where the 5 

′ UTR
feature group was relatively weak (Figure 3 B). Overall, our
results indicate that the specific ways that various properties
contribute to transcript stability are tied to the leader type as
well as the condition. 

Identification of specific features differentially 

predictive of half-life for leadered and leaderless 

transcripts 

In order to identify the transcript features that were differ-
entially important for classification of leadered vs. leaderless
transcripts, we evaluated the Gini importance rankings of the
same set of features, selected by leaderless models, when used 

to train both leadered and leaderless models. For each condi- 
tion, we combined the top 20 most important features identi- 
fied in the leadered and leaderless models and compared the 
relative importance levels of these features for the two gene 
types (Log phase, Figure 4 A; Hypoxia and fold-change in hy- 
poxia, Supplementary Figure S6 A, B; Compare to 20 least im- 
portant features in log phase, Supplementary Figure S6 C). We 
found that the most important features included features from 

each of the feature types in all three conditions, which further 
confirmed the collective effect of many features on dictating 
transcript stability. Furthermore, these comparisons also high- 
lighted the different importance levels of many of the features 
between transcript types. 

To determine the specific relationships between features of 
interest and half-life, we plotted the feature value distribu- 
tions for each stability class (Figure 4 B. SHAP distributions 
in Supplementary Figure S11 ). This allowed us to better un- 
derstand why these features were important for model predic- 
tions and, more interestingly, how they were associated with 

transcript stability. Consistent with our finding that codon fre- 
quencies were more important for leadered than leaderless 
transcripts in log phase, we observed a number of specific 
codons with higher importance levels for leadered compared 

to leaderless transcripts. Among them, CGC (Arg), CGG (Arg) 
and UUG (Leu) are examples of codons with higher impor- 
tance for leadered transcripts. Their distributions exhibited 

inverse correlations with stability for both leadered and lead- 
erless transcripts, suggesting that they may negatively impact 
transcript stability (Figure 4 B). However, these inverse rela- 
tionships were stronger for leadered transcripts than for lead- 
erless transcripts, which may explain the differences in impor- 
tance for the classifiers (Figure 4 B). In contrast, another Arg 
codon, CGU, was more important for leaderless transcripts 
compared to leadered transcripts and had a more complex re- 
lationship with half-life class (Figure 4 B). 

For leaderless transcripts, both the frequency of CG dinu- 
cleotide motifs and extent of CDS secondary structure were 
positively correlated with stability (Figure 4 B). These trends 
were weaker for leadered genes. These results support the con- 
clusion that in log phase, CDS secondary structure plays a 
more important role for leaderless transcripts compared to 

leadered transcripts. 

5 

′ UTRs appear to influence transcript half-life 

through both translation-related and 

translation-independent mechanisms 

The differences in stability determinants between leadered and 

leaderless transcripts were not limited to these shared fea- 
tures. Although we showed that the 5 

′ UTR itself was capable 
of predicting transcript stability (Figure 3 B, Supplementary 
Figure S6 D), the mechanisms by which it impacts stability 
were unclear. To further explore this, we categorized 5 

′ UTR 

features as translation-related (e.g. Shine-Dalgarno sequence 
and predicted secondary structure in the ribosome binding re- 
gion) and non-translation-related (e.g. nucleotide content and 

predicted secondary structure outside of the ribosome bind- 
ing region) and trained models separately using these two 

feature groups (Figure 4 C, Supplementary Figure S6 E). Sur- 
prisingly, our results suggest that the non-translation-related 

features have a larger impact on transcript stability than the 
translation-related features in both log phase and hypoxia.

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae147#supplementary-data
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Figure 4. Transcript features differentially predict half-life for leadered and leaderless transcripts in log phase. ( A ). Summary of the most important 
features for the leadered and leaderless half-life class prediction models in log phase. Random forest classifiers were trained using the same set of 
features, selected by the leaderless model, for leadered and leaderless transcripts. The 20 features with the highest Gini importance rankings for each 
model were combined and their relative importance rankings indicated by intensity of coloration in the heatmap. See Supplementary Table S2 for feature 
definitions and details. ( B ). Feature value distributions within each half-life class for selected features that differentially predicted half-life class for 
leadered and leaderless transcripts. Dimmed plots indicate that the feature was less important for that gene type. Boxes around the plots indicate that 
the feature was more important for that gene type. Dots and bars represent median and interquartile range. ( C ). Comparisons of leadered gene models 
using only 5 ′ UTR features in three conditions. Models were trained and compared using the complete set of 5 ′ UTR features, translation-related 5 ′ UTR 

features only, or non-translation-related features only. See Supplementary Table S2 for the specific features in each category. The performance 
differences between random forest classifiers and random prediction estimators were tested using Nadeau and Bengio’s corrected paired t-test. The log 
phase and h ypo xia models using translation-related features were compared to each other with the Wilcoxon rank-sum test. ( D ). Comparison of the 
importance of Shine-Dalgarno sequence features and secondary structure features in the ribosome binding regions of 5 ′ UTRs in the log phase model 
for leadered transcripts. Each dot is the average Gini importance value of a feature from 10 repetitions of the model. The difference in Gini importance 
was tested using the Wilcoxon rank-sum test. ( E ). Examples of 5 ′ UTR features that differentially predicted half-life class between log phase and 
h ypo xia. For all panels, P < 0.05 *, P < 0.01 **, P < 0.001 ***. 
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However, the model performance of translation-related fea-
tures was significantly better in log phase compared to hy-
poxia, which is consistent with our finding that translation is
more important for predicting transcript stability in log phase.
Among all the translation-related features in 5 

′ UTR, the sec-
ondary structure seemed to be more important than the Shine-
Dalgarno sequence (Figure 4 D), which is the opposite of what
was previously reported in E. coli ( 21 ). Such a difference could
be because of the GC-richness of mycobacteria, which may
cause secondary structure to have a bigger impact on ribo-
some access compared to less GC-rich species. 

Consistent with our finding that CDS secondary structure
was more important in hypoxia for leadered transcripts, sev-
eral 5 

′ UTR features associated with secondary structures
were more predictive of transcript half-life in hypoxia. The
overall 5 

′ UTR G + C frequency was positively correlated
with stability, while 5 

′ UTR �G MFE and U nucleotide fre-
quency were negatively correlated with stability (Figure 4 E,
SHAP distributions in Supplementary Figure S11 ). The fre-
quency of the GC dinucleotide motif showed a similar trend
although it was more predictive in log phase. For both the
GC dinucleotide and the overall G + C content, the rela-
tionships with half-life were monotonic in hypoxia but were
more complex in log phase, with the slowest half-life class
having lower frequencies than the medium-slow class. This
could be a result of GC-rich sequences producing secondary
structure that reduces ribosome binding in some cases. Given
the greater apparent impact of translation on half-life in
log phase, we expect that impediments to ribosome binding
would negatively affect half-life in log phase more than in
hypoxia. 

Leaderless gene start codons appear to affect 
transcription rate but not transcript half-life 

Mycobacteria use both AUG and GUG start codons at high
frequencies. However, in M. smegmatis , leaderless transcripts
have more GUG start codons while leadered transcripts have
more AUG start codons ( Supplementary Figure S7 A, D), lead-
ing us to investigate the relationship between start codon and
half-life. Start codon identity had low Gini importance rank-
ings for both leadered and leaderless genes, suggesting that it
may not be a major determinant of translation efficiency for
either transcript type. Despite its low Gini importance, AUG-
initiating leadered transcripts had slightly longer half-lives on
average than GUG-initiating leadered transcripts in log phase
( Supplementary Figure S7 B, E). When we examined steady-
state transcript abundance as a function of start codon, we
found that GUG-initiating transcripts had higher abundance
on average, and that this effect was substantially stronger for
leaderless transcripts ( Supplementary Figure S7 C, F). Since
the relationship between start codon usage and steady-state
abundance was stronger for leaderless transcripts and not ex-
plained by half-life, we considered that the identity of the first
nt of a transcript may affect the efficiency of transcription ini-
tiation. It is well known that E. coli RNA polymerase pref-
erentially initiates transcription with purines ( 64 ), and con-
sistent with this, mycobacterial transcripts most often begin
with purines ( 5 , 6 , 38 ). We examined the identity of the first nt
of the 5 

′ UTRs of leadered transcripts and found that while
transcripts beginning with As and Gs had equivalent half-
lives, those beginning with G had higher average abundance
( Supplementary Figure S7 G-I). Together, these data suggest
that mycobacterial RNA polymerase initiates transcription 

more efficiently with GTP than ATP. 

Identification of specific features differentially 

predictive of half-life in log phase and hypoxia 

In order to identify the specific transcript features that were 
differentially important for classification among conditions,
for each transcript type we used the same set of features, se- 
lected by log phase models, was used to train models in log 
phase, hypoxia and fold change in hypoxia. We then combined 

the top 20 features from each condition and compared the 
relative importance levels of these features across conditions 
(Figure 5 A). Our results further confirmed the collective ef- 
fect of various features on dictating transcript stability in each 

condition, but more importantly, revealed the ways in which 

the contributions of these features differed among conditions.
Consistent with results of training with 5 

′ UTR-related fea- 
tures only (Figures 3 B, 4C ), the 5 

′ UTR features remained im- 
portant across conditions in the combined feature models for 
leadered transcripts (Figure 5 A). These results further support 
the idea that 5 

′ UTRs influence transcript stability. 
The �G of unfolding secondary structure at translation ini- 

tiation regions (TIRs) is a feature that can be used to predict 
the ribosome accessibility ( 10 ). We found that the �G of un- 
folding TIRs was an important transcript feature associated 

with half-life for leadered transcripts in log phase (Figures 4 A,
5B , SHAP distributions in Supplementary Figure S12 ). In line 
with our finding that translation was more important in log 
phase, the �G of unfolding TIRs exhibited a stronger inverse 
correlation with half-life in log phase than in hypoxia (Figure 
5 B). This is consistent with a model in which higher accessibil- 
ity of TIRs to ribosomes leads to greater translation efficiency 
or greater association of transcripts with ribosomes, thus pro- 
tecting transcripts from degradation in log phase. The greater 
importance of translation in log phase was also supported by 
the stronger correlation between frequencies of certain codons 
and half-life, such as AAA (Lys) (Figure 5 B). However, the 
effects of codon frequency on transcript half-life might be a 
mixture of translational and non-translational effects, as sug- 
gested by the higher importance of ACG (Thr) in hypoxia (Fig- 
ure 5 B), where translation overall appears to have less impact 
on half-life. 

In contrast, for leaderless transcripts in log phase, our re- 
sults indicated a more complicated relationship between sec- 
ondary structure and translation, and their correlations with 

transcript stability. Although it was not reflected by the �G of 
unfolding TIRs, 5 

′ end secondary structure was important for 
leaderless transcripts in log phase. Particularly, we observed 

a low A nucleotide frequency in the first 18 nucleotides of 
the CDS for transcripts in the fast half-life class and a low 

G + C frequency for those in the slow half-life class (Figure 
5 C, SHAP distributions in Supplementary Figure S12 ). No- 
tably, these features associated with secondary structure of the 
first 18 nt of CDSs were more predictive of half-life class for 
leaderless than leadered genes. While low secondary structure 
in this region is typical in many organisms ( 63 ) and was ex- 
perimentally shown to increase translation efficiency for lead- 
ered transcripts in E. coli ( 62 ), it may have a larger influence 
on translation of leaderless genes because these lack the addi- 
tional ribosome recruitment signals found in 5 

′ UTRs. 
We found that the impact of secondary structure con- 

tinued beyond the 5 

′ 18 nt of leaderless transcripts. We 
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Figure 5. Transcript features differentially predict half-life in log phase and h ypo xia. ( A ). Summary of the most important features for the log phase, 
h ypo xia and log-to-h ypo xia-f old-change models for leadered and leaderless transcripts. For each transcript type, random forest classifiers were trained 
for all three conditions using the set of features selected by the log phase model. For each transcript type, the 20 features with the highest Gini 
importance scores in each condition were then combined and their relative importance rankings indicated by intensity of coloration in the heatmap. See 
Supplementary Table S2 for feature definitions and details. ( B–D ) . Feature value distributions within each half-life class for selected features that 
differentially predicted half-life class in different models. Dimmed plots indicate that the feature was less important for that condition and / or gene type. 
B o x es around the plots indicate that the feature was more important for that condition and / or gene type. Dots and bars represent median and 
interquartile range. ( B ). Selected features that were differentially important for log phase and hypoxia models for leadered genes. ( C ). Selected features 
that were more important for log phase leaderless transcript models and are expected to impact the secondary str uct ure of the 5 ′ ends of coding 
sequences. Plots for leadered genes are shown for comparison even though these features were not highly ranked for any leadered transcript models. 
( D ). Selected secondary-str uct ure-related feat ures that w ere relativ ely highly rank ed f or leaderless genes in both log phase and h ypo xia models but 
sho w ed different patterns of distributions across half-life classes for the two conditions. ( E ). Log phase ribosome occupancy was quantified separately 
for each third of the CDS of each leaderless transcript. The x axes denote abundance of reads from ribosome-bound RNAs mapping to the indicated 
transcript regions. ( F ). For leaderless genes, the log phase ribosome occupancy for the first third of each CDS was plotted as a function of the �G MFE of 
the first third of the CDS. r s denotes Spearman correlation, with the statistical significance in square brackets. P < 0.01 **. 
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calculated �G MFE with different sequence window sizes to
measure the secondary structure of the 5 

′ third, middle third,
and 3 

′ third of each CDS. Compared to leadered transcripts,
leaderless transcripts seemed to be more structured within
the middle and 3 

′ thirds of the CDS region, as indicated by
the significant lower �G MFE in these regions ( Supplementary 
Figure S8 ). Consistent with our previous observation that CDS
secondary structures features were collectively more predic-
tive of half-life class for leaderless genes in log phase (Fig-
ure 3 C), we found generally negative correlations between
CDS �G MFE and transcript half-life (Figure 5 D, SHAP dis-
tributions in Supplementary Figure S12 ). These correlations
were maintained when �G MFE was calculated using different
window sizes ( Supplementary Figure S9 A). The trends of CG
dinucleotide and UA dinucleotide frequency also supported
this idea (Figure 5 D). Overall, our results suggested that the
CDS secondary structure outside of the ribosome binding re-
gion is positively correlated with transcript half-life, consis-
tent with the idea that secondary structure generally protects
transcripts from cleavage by RNases. These relationships were
monotonic in hypoxia, but more complex in log phase where
transcripts in the slow half-life class deviated from the oth-
erwise monotonic trend, having less secondary structure than
those in the medium-slow class (Figure 5 D). We hypothesized
that stronger secondary structure might compete with ribo-
some binding, and since translation appears to have a strong
protective effect in log phase only, transcripts in the slow class
in log phase might be protected more by ribosome binding
than by secondary structure. To test this, we quantified the ri-
bosome occupancy within the 5 

′ third, middle third, and 3 

′

third of each CDS and evaluated their correlations with tran-
script half-life. As expected, we observed that the slow half-life
class had the highest average ribosome occupancy across the
entire CDS (Figure 5 E). The idea of competition between sec-
ondary structure and ribosome binding was further supported
by a positive correlation between �G MFE and ribosome occu-
pancy for the first third of transcripts in the slow class (Figure
5 F). This trend was maintained when �G MFE was calculated
using a different window size, but was not observed for the
middle and 3 

′ thirds of transcripts ( Supplementary Figure S9 B-
E). Together, our results highlight the complexity of interplay
between transcript features. 

Transcript abundance and length are more 

predictive of half-life in hypoxia 

Among the most important features, steady-state abundance
and CDS length were identified by models across transcript
types and conditions (Figures 4 A, 5A , Supplementary Figure 
S6 A, B). The relationship between transcript abundance and
half-life has been investigated in various bacteria, yet the re-
sults are conflicting (Reviewed in ( 65 )). Broadly consistent
with some studies in M. tuberculosis ( 2 ), E. coli ( 20–22 ,66–
68 ) and L. lactis ( 19 , 22 , 69 ), we found that the distributions
of transcript abundance exhibited an inverse correlation with
half-life for both transcript types and conditions (Figure 6 A,
SHAP distributions in Supplementary Figure S13 ). However,
the correlations we observed were substantially weaker than
what was reported for M. tuberculosis in log phase ( 2 ). In-
terestingly, in M. smegmatis the inverse correlations between
transcript abundance and half-life were substantially stronger
in hypoxia than log phase for both transcript types (Fig-
ure 6 B). Comparing the correlations for leadered and lead-
erless transcripts did not reveal differences in log phase, but a 
stronger correlation was seen for leaderless transcripts com- 
pared to leadered transcripts in hypoxia (Figure 6 B). These 
results indicate that, underlying the broad inverse correlation 

between transcript abundance and half-life, the strength of the 
relationship varies depending on condition and to a lesser ex- 
tent on transcript type. 

5 

′ UTR length was an important feature in hypoxia but 
not in log phase (Figure 5 A), and consistent with this, had a 
clear monotonic positive correlation with transcript half-life 
in hypoxia (Figure 6 C, SHAP distributions in Supplementary 
Figure S13 ). In contrast, the relationship between 5 

′ UTR 

length and transcript half-life was weaker and less straight- 
forward in log phase (Figure 6 C). CDS length was an im- 
portant feature for both transcript types in both conditions 
(Figure 5 A), exhibiting a roughly monotonic positive rela- 
tionship with half-life class in hypoxia but a non-monotonic 
relationship in log phase (Figure 6 D, SHAP distributions in 

Supplementary Figure S13 ). This is consistent with the find- 
ing in M. tuberculosis that CDS length has little broad corre- 
lation with transcript half-life in log phase ( 2 ). In contrast,
CDS length has been shown to have negative correlations 
with transcript half-life in L. lactis , E. coli and S. cerevisiae 
( 19 , 21 , 24 ). While the strong predictive power of CDS length 

in M. smegmatis was intriguing, there were two potential con- 
founding factors. First, RIF only inhibits promoter escape fol- 
lowing transcription initiation, having no impact on elongat- 
ing RNA polymerases. We attempted to control for this dur- 
ing the process of half-life determination by identifying tran- 
scripts with delays in degradation following the addition of 
RIF and excluding the 1–2 minute delay periods from the half- 
life calculation (see Figure S2 in ( 38 )). However, for longer 
transcripts the elongating RNA polymerases may continue for 
longer than 2 min, leading to an overestimation of half-life.
Secondly, recent studies of transcript 3 

′ ends in M. tubercu- 
losis ( 70 ) and E. coli ( 71 ) suggested that a sizable fraction of
transcripts present in cells are degradation intermediates or 
incomplete transcripts resulting from premature transcription 

termination or paused RNA polymerases. We cannot distin- 
guish these from complete transcripts in our RNAseq libraries,
and it is possible that longer transcripts give rise to more in- 
complete transcripts that are long enough to be captured in 

RNAseq libraries and these have different degradation kinet- 
ics than complete transcripts. 

To account for these potential confounders, we calculated 

the half-life of only the first 300 nt of each CDS (the ‘5 

′ end 

half-life’). For each condition, we then divided genes into five 
groups according to the ratio of the 5 

′ end half-life to the en- 
tire gene half-life (‘log 2 half-life ratio’, Supplementary Figure 
S10 A, D). We also calculated the steady-state (0 minute RIF) 
RNAseq coverage ratio of the 5 

′ 300 nt versus 3 

′ end 300 nt of 
each gene within these groups ( Supplementary Figure S10 A,
D). As expected, those genes with differential abundance of 
transcript 5 

′ and 3 

′ regions often had non-zero log 2 half- 
life ratios, consistent with the idea that incomplete transcript 
fragments often have different degradation kinetics than full- 
length transcripts. On the other hand, genes with similar cov- 
erage of their 5 

′ and 3 

′ 300 nt generally had similar log 2 
half-life ratios ( Supplementary Figure S10 A, D, groups 3 and 

4 respectively), indicating that these genes are likely less af- 
fected by the confounders described above (colored group in 

Supplementary Figure S10 A, D). For these non-confounded 

genes, there was no correlation between 5 

′ end half-life and 
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Figure 6. Steady-state transcript abundance is negatively correlated with half-life, while transcript length is positively correlated with mRNA half-life in 
h ypo xia. ( A ). Distributions of steady-state transcript abundance within each half-life class in log phase and hypoxia for leadered and leaderless 
transcripts. ( B ). Correlations between steady-state abundance and transcript half-life. While abundance was highly ranked in all models (see Figure 5 A), 
its negative correlation with half-life was stronger in hypoxia. ( C ). Distributions of 5 ′ UTR lengths within half-life classes for leadered transcripts in log 
phase and h ypo xia. T his feature had a high importance ranking in h ypo xia only. ( D ). Distributions of CDS length within each half-life class in log phase and 
h ypo xia. T his feature w as highly rank ed in all models. ( E,F ) . Half-liv es w ere calculated f or only the first 300 nt of each CDS and genes were selected that 
had similar half-lives for the 5 ′ 300 nt and the whole CDS (see Supplementary Figure S10 ). For these subsets of genes in log phase and h ypo xia, the 
correlation between CDS length and 5’ 300 nt half-life are shown. In (B, E, F) , r s denotes Spearman correlation, with the statistical significance in square 
brackets. P < 0.05 *, P < 0.01 **, P < 0.001 ***. 
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DS length in log phase (Figure 6 E), but there was a signif-
cant positive correlation in hypoxia (Figure 6 F). These rela-
ionships were maintained when leadered and leaderless tran-
cripts were analyzed separately ( Supplementary Figure S10 B,
, E, F). Consistent with the idea that the positive correlation

n hypoxia was due to the condition rather than the selection
f genes, we found little to no correlation between 5 

′ end half-
ife and CDS length for the genes in Figure 6 F in log phase
 Supplementary Figure S10 G-I). In summary, although able
o contribute to model predictions for both transcript types
n log phase, transcript abundance and CDS length seemed
o have stronger correlations with half-life in hypoxia. Con-
istent with this, the 5 

′ UTR length exhibited a positive cor-
elation with half-life in hypoxia, suggesting that the overall
ranscript length is more important for predicting half-life in
ypoxia than in log phase. 

iscussion 

n this study, we used transcriptome-wide mRNA half-life
atasets to investigate the intrinsic features that impact tran-
cript stability in aerobically growing and hypoxia-arrested
. smegmatis . This led us to discover the microenvironment-

ependent differential associations between mRNA stability
nd transcript features, including translation-related features,
5 

′ UTRs, CDS secondary structure, transcript abundance,
CDS length, and codon content. Our results indicate that
translation likely has a larger impact on mRNA degradation
in log phase than in hypoxia. We further found that, coupled
with the impact of conditions, transcript leader type (leadered
vs leaderless) also impacted transcript stability through vari-
ous transcript features. Importantly, our results showed that it
is the collective effect of diverse transcript features that shapes
the transcript stability landscape of M. smegmatis , with no sin-
gle feature dominating. A collective impact of transcript fea-
tures on mRNA half-life has been reported in other organisms
as well ( 21 , 24 , 25 ), but in some studies transcription rate (as
inferred from steady-state abundance and half-life) appeared
to be a dominant feature with a much greater impact than
other features ( 2 ,21 ). Additionally, our study further revealed
the non-linear character of interactions between features and
ways in which their impacts differ according to transcript type
and growth condition. 

We developed machine learning models with the goal of as-
sociating transcript features with half-life by predicting half-
life using a wide-ranging feature set, as well as to further iden-
tify likely determinants of transcript half-life by quantifying
the strength of their associations. Initially, we attempted to de-
velop regression models given the continuous nature of tran-
script half-life values. However, the models failed to provide
accurate prediction of half-life values as needed to draw re-
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5281/zenodo.11664435 . 
liable conclusions about feature relationships with transcript
half-life. Therefore, we grouped transcript half-life values into
four classes to predict half-life through classification instead.
The decision to define four half-life classes was informed
by the hierarchical clustering of degradation profiles to esti-
mate the number of groups to best represent transcriptome-
wide stability. Besides the innate difficulty of the four-class
prediction task, the intertwined non-linear correlations, ex-
isting not only between transcript features and half-life but
also among transcript features themselves, make the classi-
fications even more challenging. Despite the difficulties, our
models achieved significantly better performance than ran-
dom predictions. To compensate for the suboptimal model
performance, we implemented SHAP visualization to enhance
our interpretation of model predictions by showing the predic-
tion direction along with the feature values for each half-life
class ( Supplementary Figure S11 - S13 ). We found that these re-
sults were consistent with the correlations observed from the
distributions of individual transcript features. Together, these
computational tools provided us with enough confidence and
information to draw conclusions about the associations be-
tween transcript features and half-life. Nonetheless, our cur-
rent models still lack the ability to fully explain the relation-
ships between transcript features themselves, and the mecha-
nism of how they work together to determine transcript sta-
bility. Future studies on the relationships among those impor-
tant transcript features will greatly improve model predictions
and advance our understanding of the mechanisms regulating
transcript degradation. Additionally, experiments with other
treatments besides hypoxia could be helpful to investigate the
associations of specific features with mRNA degradation. 

Like M. tuberculosis , M. smegmatis exhibited variance in
transcript half-lives during log phase growth and showed
transcriptome-wide stabilization when exposed to hypoxia
(Figure 2 B) ( 2 ,39 ). Despite the potential differences in regu-
latory mechanisms between species, our study of M. smegma-
tis still provides insights to facilitate understanding of tran-
script stability in M. tuberculosis . Unlike in the previous study
in M. tuberculosis ( 2 ), we were able to quantify mRNA half-
lives transcriptome-wide in hypoxia, showing that the extent
of stabilization varied among genes and indicating that the
determinants of half-life differ between the two conditions. It
was reported that transcript abundance was the single feature
strongly correlated with transcript half-lives in log phase in M.
tuberculosis , while features like CDS length and G + C content
showed little correlation ( 2 ). Here, we greatly expanded the
scope of candidate features and found diverse transcript fea-
tures that could contribute to predicting half-life in M. smeg-
matis . Whether the collective and differential effect of the wide
range of transcript features on half-life we observed in M.
smegmatis also exists in M. tuberculosis awaits further investi-
gation. Our results also suggested that the lack of broad corre-
lations between transcript features and half-lives could be due
to not only condition, but also to transcript-type-dependent
regulatory mechanisms in mycobacteria. 

In log phase, transcripts in both M. tuberculosis and M.
smegmatis exhibited little correlation between CDS length
and half-life. However, we found that the correlation became
stronger in hypoxia for M. smegmatis . A previous study sug-
gested that motion of large cytoplasmic components was dra-
matically reduced in Caulobacter crescentus and E. coli when
metabolic activity was reduced, due to decreased fluidity of the
cytoplasm ( 72 ). The positive correlation between CDS length 

and half-life is consistent with this idea, as longer transcripts 
would be more affected by the reported changes in diffusion 

rates ( 72 ), leading to reduced encounters between transcripts 
and RNases in the hypoxic cytoplasm. 

Transcript abundance was another feature whose influence 
was affected by growth condition. Similar to M. tuberculo- 
sis ( 2 ), we observed an inverse correlation between transcript 
abundance and half-life in log phase, although this relation- 
ship was much weaker in M. smegmatis than in M. tubercu- 
losis . However, we found that the strength of the correlation 

was stronger in hypoxia compared to log phase. Such an as- 
sociation has been reported for other bacteria as well ( 19–
22 , 66–69 , 73 , 74 ), although conflicting reports exist for E. coli ,
where some report a negative correlation ( 20–22 ,66–68 ) while 
others report no correlation or a positive correlation ( 73 ,75 ).
We note that the studies showing strong negative correlations 
between transcript abundance and half-life in E. coli and M.
tuberculosis were done by microarray, while our study and 

those E. coli studies that didn’t find a negative correlation were 
done by RNAseq. It is therefore possible that technical factors 
contribute to these differences. The mechanistic basis of the 
negative correlation reported in many studies is unknown, al- 
though it has been suggested to be a function of the impact of 
transcript abundance on encounters with RNases ( 21 ,22 ). 

It has been shown in E. coli and S. cerevisiae that translation 

efficiency is positively correlated with mRNA half-life in log 
phase ( 76 ,77 ). Our results also provided evidence to support 
this association in M. smegmatis as we observed translation- 
related features were more important for half-life predictions 
in log phase compared to hypoxia. Besides the previously 
identified differences in translation mechanisms between lead- 
ered and leaderless transcripts ( 10 , 11 , 78 ), our results indicate 
that mRNA degradation mechanisms may also differ between 

leadered and leaderless transcripts. We first confirmed that 5 

′ 

UTR features were predictive of mRNA half-life in leadered 

transcripts. There were also differences in the importance of 
CDS features in predicting half-lives of leadered vs leaderless 
transcripts. For example, G + C content was particularly low 

in the first 18 nt of the CDS specifically for leaderless tran- 
scripts with the slowest half-lives, consistent with the idea that 
secondary structure in this region has a larger impact on trans- 
lation efficiency for leaderless transcripts compared to lead- 
ered transcripts. Future studies could focus on using transla- 
tion inhibitors to further detangle the impacts of translation 

vs other features on mRNA degradation. 
In summary, our results suggest that underlying the ob- 

served transcript stability patterns in mycobacteria lies a com- 
plex interplay between inherent transcript features and mi- 
croenvironments. Additionally, our study provides a founda- 
tion to facilitate further investigation of transcript stability in 

mycobacteria, as well as an experimental and computational 
framework to study transcript stability more broadly in other 
organisms. 
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