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Dysregulated Pathways in Human Monocytes Infected
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In our study, we aimed to extract dysregulated pathways in human monocytes infected by Listeria monocytogenes (LM) based on
pathway interaction network (PIN) which presented the functional dependency between pathways. After genes were aligned to the
pathways, principal component analysis (PCA) was used to calculate the pathway activity for each pathway, followed by detecting
seed pathway. A PIN was constructed based on gene expression profile, protein-protein interactions (PPIs), and cellular pathways.
Identifying dysregulated pathways from the PIN was performed relying on seed pathway and classification accuracy. To evaluate
whether the PINmethod was feasible or not, we compared the introduced method with standard network centrality measures.The
pathway of RNA polymerase II pretranscription events was selected as the seed pathway. Taking this seed pathway as start, one
pathway set (9 dysregulated pathways) with AUC score of 1.00 was identified. Among the 5 hub pathways obtained using standard
network centrality measures, 4 pathways were the common ones between the two methods. RNA polymerase II transcription and
DNA replication owned a higher number of pathway genes and DEGs.These dysregulated pathways work together to influence the
progression of LM infection, and they will be available as biomarkers to diagnose LM infection.

1. Introduction

Listeria monocytogenes (LM) is a gram-positive intracellular
bacterial pathogen and it is observed in many habitats [1]. In
human, the disease induced by LM is called listeriosis and
is most common in immunocompromised hosts, newborns,
pregnant mothers, and elderly individuals, with a mortality
of 20–30% in these risk groups [2, 3]. In the European Union,
listeriosis showed a rising trend that started in 2008, causing
2161 cases and 210 deaths in 2014, 16% more than in 2013
[4]. LM utilizes the cellular processes of host to influence
cell-cell interactions, move intracellularly, and proliferate [5].
Much of this has been completed via applying the actin-
based cytoskeleton of host [5] and by examining the alter-
ations induced by pathogen in host cell signal transduction

[6]. However, the effects of LM on host gene expression
still remain poor. Thus, a comprehensive understanding of
characterization of the LM-induced alterations in human
gene expression will shed light on the molecular mechanisms
underlying the disease process and yield biomarkers of
clinical disease.

In the recent years, with the accumulation of large amount
of “omics” data in public databases, gene expression profiles
have been widely utilized to detect signatures. Frequently,
many computational approaches have been created to iden-
tify differentially expressed genes (DEGs) between disease
and normal conditions [7, 8]. Nevertheless, for the same
disease, many of these DEGs extracted in one dataset are
later observed not to work efficiently in another dataset [9].
Because of the poor performance ability of DEGs, several
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methods have been developed to detect potential pathogenic
pathways which enhances the accuracy when the pathways
are employed as biosignatures, relative to individual genes
[10, 11]. Generally, the importance of pathways is measured
by means of hypergeometric distribution [12], and path-
ways are analyzed independently [13]. It is worth noting
that more than one pathway might be involved in a given
disease, because of sophisticated nature of biological systems.
Different pathways might have cross-talks with each other,
and the dysregulation of one pathway may influence the
activities of many related pathways. Hence, it is available to
identify more reliable pathway signatures by considering the
functional dependency or interaction between pathways. Sig-
nificantly, protein-protein interactions (PPIs) form an overall
interaction network which elaborates the global interaction
among functionalities. In addition, network-based method
has been widely applied to analyze interactions to further
provide the insights into pathogenesis mechanism [14, 15].
Thus, we integrated pathway information and PPI network
to construct a pathway interaction network (PIN) which
considered the functional dependency between pathways
[16]. Crucially, detecting dysregulated pathways will shed
light on mechanisms of a given disease and provide clues for
disease therapy [17, 18].

Herein, in the current study, we sought to extract dys-
regulated pathways based on the PIN. Specifically, gene
expression profile of human peripheral monocytes infected
by LM (accession number E-MEXP-1613) was recruited from
the public database of EMBL-EBI. Cellular pathways and
human PPIs were, respectively, obtained from the Reactome
and String databases for further analysis.Then, after the genes
were aligned to the pathways, principal component analysis
(PCA)method [19] was used to calculate the pathway activity
for each pathway based on the summary of the expression
values of all genes in this pathway, and one seed pathway was
detected based on the pathway activity scores. Afterwards, a
PIN was constructed with each node standing for a cellular
pathway on the basis of gene expression profile, PPIs, and
cellular pathways. Finally, identifying dysregulated pathways
from the PIN was performed according to the seed pathway
and classification accuracy.

2. Materials and Methods

2.1. Gene Expression Profile and Data before Treatment. The
gene expression profile under the series number of E-MEXP-
1613 [20] was recruited from the EMBL-EBI database
based on the platform of A-MEXP-162-Amersham CodeLink
UniSet Human 10K I Bioarray. A total of 40 samples were
obtained fromfive probands in the data profile E-MEXP-1613,
including data from monocytes infected with LM (𝑛 = 10),
Staphylococcus aureus (𝑛 = 10), Streptococcus pneumoniae
(𝑛 = 10), and control samples without infection by bacteria
(𝑛 = 10). In our study, with the goal of investigating the
response in human monocytes to infection with LM, we only
selected peripheral blood monocytes infected by LM and
controls to do further analysis.

Before analysis, data was log-2 transformed and nor-
malized using quantile approach [21]. After the probes were

aligned to the gene symbols, the final gene expression matrix
including 4369 geneswas created.Then, the expression values
of all genes in expression matrix were standardized based on
the following equation.

𝑧𝑚𝑛 =
𝑔𝑚𝑛 −mean (𝑔𝑚)

std (𝑔𝑚)
, (1)

in which 𝑔𝑚𝑛 represented the expression value of gene 𝑚
in sample 𝑛 and mean(𝑔𝑚) and std(𝑔𝑚), respectively, stood
for mean and standard deviation of the expression vector for
gene𝑚 across all samples.

2.2. Preparation of PPIs and Cellular Pathways. All human
PPIs were recruited from the String database [22]. String
database includes manually curated protein interactions and
uses confidence scoring to give an estimate of how likely
an association is to occur. In our study, the global PPI
dataset containing 787896 interactions among 16730 unique
human proteins was obtained.Then, in order tominimize the
ambiguity, only interactions with confidence score > 0.2 in
the global PPIs were selected to construct the background
PPIs. Next, we identified the common gene set between
background PPIs and gene expression data. Finally, a new
PPI set including 58015 interactions among 3897 genes was
extracted for subsequent analysis.

Moreover, the predefined cellular pathways (1675 path-
ways) were downloaded from the Reactome database [23].
After that, the intersection of the genes in each defined
pathway withmicroarray profile was extracted. Subsequently,
a set of informative pathways were obtained for subsequent
analysis after discarding pathways with gene size less than 5
or more than 100. To our knowledge, pathways having too
few genesmight not have enough biological information, and
pathways owning too many genes might be too generic [24].
Overall, 670 informative pathways were picked out.

2.3. Calculation of Pathway Activity. After the genes were
aligned to cellular pathways, an activity score for each path-
way was defined as the summary of the expression values of
all genes of this biological pathway. Specifically, PCAmethod
[19] was utilized to obtain the summary of expressions of
all genes belonging to each pathway, which could availably
describe the internal structure of high-dimension dataset by
reserving the variance in the data while converting the data
into low-dimension space. Briefly, for pathway 𝑘 in sample 𝑛,
the activity score 𝑃𝑘𝑛 was calculated based on the following
formula:

𝑃𝑘𝑛 = 𝑤1𝑛𝑘𝑧1𝑛𝑘 + 𝑤2𝑛𝑘𝑧2𝑛𝑘 + ⋅ ⋅ ⋅ + 𝑤𝑚𝑛𝑘𝑧𝑚𝑛𝑘. (2)

In this formula, 𝑧𝑚𝑛𝑘 stood for the standardized expression
value of gene 𝑛 from pathway 𝑘 in sample 𝑚 and 𝑤𝑚𝑛𝑘
represented the weight for 𝑧𝑚𝑛𝑘. That was to say, the activity
of each pathway was considered as the linear combination of
the expressions of all genes in this pathway, and each pathway
was believed as a meta-gene.

The first principal component from PCA especially was
utilized as the activity score for the corresponding pathway
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herein. The pathways which had different activities between
disease and control conditions were possibly associated with
the disease. That was to say, the activity score for a given
pathway among LM-infected samples and control subjects
was different, and the difference demonstrated the correlation
to LM infection. The greater the difference was, the more
close the relevance of this pathway to the LM infection was.
In our study, the pathway with maximum changes in activity
scores between disease and control conditions was selected as
the seed pathway.

2.4. Identification of DEGs and Construction of PIN. In the
present study, Student’s 𝑡-test was employed to determine
which genes were differentially expressed between the two
groups using the criteria of 𝑃 < 0.05. Moreover, we also
computed Pearson’s correlation coefficient (PCC) and the
absolute value of PCC for the PPI interactions in these two
groups.

A PIN was built with each node denoting a pathway,
where one edge was laid between two pathways if they
shared at least one gene or there were interactions between
genes from the two pathways based on PPIs. Due to the
condition specificity of gene expression and pathway activity,
we further needed that at least one of the common genes
between two pathways was differentially expressed in the
two conditions, or the two genes that coded a pair of
interacting proteins employed to lay an edge between two
pathways were highly coexpressed (PCC absolute value >
0.8). If not, the edges between two pathways were discarded.
As we all know, PCC, as a common measure, was used to
measure the strength of the association between two variables
[25]. In our study, the weight score for a pathway-pathway
interaction was determined as the total |PCC| values of all
genes. Hence, an original PIN was constructed.With the goal
of understanding the cooperation of different pathways more
fully, we simplified the original PIN mentioned above. The
score values of each pathway interactions in the PIN, for
example, summation of the absolute values of PCC for the
PPIs in every two pathways, were computed. Then, the top
5% pathway interactions were selected to build a new PIN for
the detection of dysregulated pathways.

2.5. Detection of Dysregulated Pathways from the New PIN.
Specifically, a single pathway that could best discriminate
between disease and control was firstly extracted as the seed
pathway (the first pathway biosignature), and the second
pathway that could be added to the first pathway to obtain
better classification performance was selected from those
pathways that interacted with the first pathway in the PIN.
This process was repeated to add new pathways to detect
pathway biomarkers till no more pathways could be added to
improve classification accuracy, and the final selected path-
way sets were regarded as potential dysregulated pathways in
diseases.

In the selection procedure, support vector machines
(SVMs) were utilized to formulate the detection of dysreg-
ulated pathways. The classification performance was eval-
uated using fivefold cross-validation, and Area Under The
Curve (AUC) scorewas adopted as classification performance

index. In an attempt to obtain robust results, fivefold cross-
validation was repeated for 100 times and the mean value of
classification accuracy was used as the final result.

2.6. Centrality Analysis for the Original PIN to Identify
Significant Pathways. Centrality measures are broadly uti-
lized for analyzing the properties of network, which cover
degree, closeness, betweenness, and eigenvector centrality
[26]. Among these parameters, degree is the simplest index.
As documented, the definition of degree is the number of
links that one node links with other nodes [27]. The degree
centrality of the original PIN was analyzed. In the current
work, the pathway nodes with degrees > 100 were identified
as hub pathways.

3. Results

3.1. Construction of PIN. The schematic diagram of detecting
dysregulated pathways is shown in Figure 1. Based on the
𝑃 < 0.05, a total of 1682 DEGs were selected. To construct
the PIN, we conducted the selection for the edges between
every two pathways based on the criteria of that at least one of
the common genes between two pathways was differentially
expressed in the two conditions, or the two genes that coded a
pair of interacting proteins employed to lay an edge between
two pathways were highly coexpressed (PCC absolute value
> 0.8). Finally, an original PIN including 96270 interactions
among the pathways was constructed. After we computed the
summation of the absolute values of PCC for the PPIs in
every two pathways, the top 5% pathway interactions were
selected to build a new PIN for the detection of dysregulated
pathways. Overall, a total of 4814 interactions were extracted
to construct the new PIN, as shown in Figure 2. From
this figure, we observed that pathways interacted with each
other, but the strengths were different. The weight score
for a pathway-pathway interaction was determined as the
total |PCC| scores of all genes, and interactions with higher
weight scores might be more important for LM-infected
group than the others. The weight scores ranged from 25
to 135 among 4814 interactions. Interestingly, we found that
only 9 pathway interactions owned the score values greater
than 100. Among these 9 pathway interactions, the pathway
of RNA polymerase II transcription (ID = 503) interacted
with four pathways including nucleotide excision repair (ID
= 379), RNA polymerase I (ID = 499), mRNA splicing (ID =
340), and mRNA splicing-major pathway (ID = 341). Specific
information is shown in Table 1.

3.2. Identification of Dysregulated Pathways. Since there were
differences for pathways in the new PIN, thereby how to
assess the importance of each pathway and choose a signif-
icant one of the PIN became a challenge. An activity score
was assigned to each pathway according to PCAmethod with
the goal of evaluating its significance.The pathway of activity
score with maximum changes between LM-infected samples
and control conditions was selected to be seed pathway. In
the current study, the seed pathway was RNA polymerase II
pretranscription events (ID = 501). Taking this seed pathway
as start, we conducted the identification of dysregulated
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PPI data from String Reference pathways from 
Reactome

Microarray data

Pathways interaction network

Dysregulated pathways
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Figure 1: Workflow of detection of dysregulated pathways in LM-infected samples. Specifically, gene expression profile of human peripheral
monocytes infected by LM (accession number E-MEXP-1613), cellular pathways, and human PPIs were, respectively, obtained from the
corresponding databases. The PIN was constructed with each node standing for a cellular pathway on the basis of gene expression profile,
PPIs, and cellular pathways. Finally, identifying dysregulated pathways from PINwas performed according to seed pathway and classification
accuracy. The red node represented the firstly identified pathway called seed pathway, and the blue ones were those pathway markers that
were combined with the seed pathway to obtain best classification accuracy while discriminating between LM-infected samples and controls.

pathways based on the classification accuracy increase. Over-
all, we obtained one pathway set (including 9 dysregulated
pathways) with AUC score of 1.00. The good performance
of this method demonstrated that the identified dysregulated
pathways could be served as robust biomarkers. The detailed
results are shown in Table 2. Of note, the pathway of RNA
polymerase II transcription (ID = 503) had the maximum
genes of 51, and the pathway of DNA replication (ID = 144)
owned a higher number of genes of 44. More importantly,
the pathway of DNA replication (ID = 144) and the pathway
of RNA polymerase II transcription (ID = 503) had the most
number of DEGs with 24 and the second highest number of
DEGs with 23, respectively. The DEGs enriched in the final
dysregulated pathways are shown in Supplemental Table 1
available online at https://doi.org/10.1155/2017/3195348.

Figure 3 displayed the interactions among the 9 identified
dysregulated pathways in PIN, where these 9 pathways had
cross-talk with each other.

3.3. Topological Properties of the Original PIN. With the goal
of extracting the hub pathways in the original PIN, all nodes
in the original PIN were ranked in a descending order based
on the degree distribution of all nodes. The specific infor-
mation of degree distribution is shown in Figure 4. Based

Table 1: The score distribution of the top 9 pathway interactions
with scores > 100.

Pathway interactions Scores
478:479 134.05899
379:503 104.345824
35:144 101.412355
144:463 101.412355
35:578 101.098052
463:578 101.098052
499:503 100.857179
340:503 100.525958
341:503 100.525958
Note. 478, respiratory electron transport; 479, respiratory electron transport;
379, nucleotide excision repair; 503, RNA polymerase II transcription; 35,
APC/C-mediated degradation of cell cycle proteins; 144, DNA replication;
463, regulation of mitotic cell cycle; 578, synthesis of DNA; 499, RNA
polymerase I; 340, mRNA splicing; 341, mRNA splicing-major pathway.

on degrees > 100, a total of 5 hub pathways were identified,
including DNA replication (ID = 144, degree = 176), synthesis
of bile acids, and bile salts via 7alpha-hydroxycholesterol (ID
= 578, degree = 176), RNA polymerase II transcription (ID =

https://doi.org/10.1155/2017/3195348
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Figure 2: Pathway interaction network (PIN) for LM-infected samples. Nodes were on behalf of pathways and edges stood for the interaction
between any two pathways.

503, degree = 169), mRNA splicing (ID = 340, degree = 146),
andmRNA splicing- major pathway (ID = 341, degree = 146).

In order to evaluate whether the PINmethod was feasible
or not, we compared the introduced method with traditional
topological analysis. We found that 4 hub pathways of DNA
replication (ID = 144), RNA polymerase II transcription (ID
= 503), mRNA splicing (ID = 340), and mRNA splicing-
major pathway (ID = 341) were the common pathway
obtained from PIN approach and topology method. Hence,
we demonstrated that this PIN method can provide a flexible
tool to extract pathway biomarkers for disease. Moreover,
these identified dysregulated pathways will serve to benefit
novel vaccine design and improve the therapeutic strategies
in the infection procedure mediated by LM.

4. Discussion

LM is the etiology of listeriosis, which causes a severe human
infection with 30% mortality [1]. Adaptive gene expression
allows intracellular pathogens to successfully disseminate
when encountering the immune defenses in the host cell.
Nevertheless, the nature of the molecules that controls these
processes is notwell understood. Because LMhas a facultative
intracellular lifestyle, it is very crucially important to detect

Table 2: Dysregulated pathways identified from the pathway inter-
action network (PIN).

ID Pathways Gene number
in pathway

DEG number
in pathway

501 RNA polymerase II
pretranscription events 34 17

185
Formation of HIV

elongation complex in the
absence of HIV tat

23 13

186
Formation of HIV-1
elongation complex
containing HIV-1 tat

23 13

617 Transcription-coupled
NER (TC-NER) 26 10

355
Negative epigenetic
regulation of rRNA

expression
28 13

144 DNA replication 44 24

503 RNA polymerase II
transcription 51 23

340 mRNA splicing 48 14

341 mRNA splicing, major
pathway 48 14



6 Computational and Mathematical Methods in Medicine

341

340

185

186

501

617

144 355

503

mRNA splicing-major pathway

mRNA splicing

RNA polymerase II transcription

DNA replication

Negative epigenetic 
regulation 
of rRNA expression

Transcription-coupled NER (TC-NER)

Formation of HIV 
elongation complex in 
the absence of HIV tat

Formation of HIV-1 elongation complex containing HIV-1 tat

RNA polymerase II pretranscription events

Figure 3:Dysregulated pathways interaction network (PIN). A total of 9 dysregulated pathwayswere screened out, whichwere assembled into
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The blue nodes were on the basis of the pathways that can be combined with the seed pathway to obtain best classification performance when
discriminating between diseases and controls. The number stood for the pathway ID.
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Figure 4: Degree distribution of all nodes in the original PIN. The
𝑥-axis represented log-2 based degrees, and the 𝑦-axis indicated the
log-2 based frequencies of nodes with corresponding degrees.

the biomarkers uniquely expressed intracellularly to further
understand the infection processes and develop new strate-
gies to limit listeria infections. Currently, pathway analyses
have become the first option to expound the potential func-
tions of genes, because it can enhance explanatory power [28].
Nevertheless, traditional pathway analysesmainly focused on
single dysregulated pathway but did not consider the inter-
actions among pathways [29]. Thus, we constructed the PIN
which described the cross-talks among pathways.

In the current study, to obtain information towards iden-
tifying LM transcripts that correlate with infection of human
monocytes, we used PCA method to calculate the activity
value for each pathway, and the pathway of RNA polymerase
II pretranscription events was selected as seed pathway.
Eventually, we extracted 1 pathway set with AUC of 1.00
(9 dysregulated pathways), such as RNA polymerase II pre-
transcription events, DNA replication, and RNA polymerase
II transcription. Among these 9 dysregulated pathways, the
pathway of DNA replication and RNA polymerase II tran-
scription had a higher number of pathway genes and DEGs.
Moreover, the classification performance demonstrated the
availability of this method to select dysregulated pathways in
LM-infected samples and indicated that these dysregulated
pathways were useful to be as biomarkers to diagnose disease.

Pathogen recognition and inducing immune reactions
are crucial for efficiently counteracting infection. However,
pathogen LM can use some strategies to avoid or modulate
the immune detection. Several researches have demonstrated
that LM manipulates the expression of host gene via mod-
ifying histones of immune genes which are activated by
innate receptors during infection [30, 31]. Moreover, eukary-
otic DNA is packed into chromatin, which is dependent
on histones as well as chromatin-remodeling proteins [32].
Significantly, modification of histones has been indicated
to cause the uncoiling of DNA exposing it to transcription
factors [33]. More importantly, histone modifications and
chromatin remodeling promote the regulation of eukary-
otic gene transcription, thus regulating DNA replication,
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repair, or recombination [32]. As reported, LM has been
indicated to replicate rapidly in the cytosol of host cells in
the period of acute infection [34]. LM replication seems to
represent a delicate balance between virulence factors and
innate immune mechanisms of the infected cell. Once in
the cytosol, LM replicates rapidly and usurps the host actin
polymerization machinery to move through the cytosol and
spread into neighbouring cells [34]. In our study, the pathway
of DNA replication was the one pathway with the highest
number of DEGs in the pathway set. Accordingly, we infer
that LM exploits manipulating DNA replication to regulate
the host response, thereby playing important roles in human
infection.

In our study, the pathway of RNA polymerase II pretran-
scription events was regarded as the seed pathway. Moreover,
RNA polymerase II transcription had the most number
of DEGs with 24 in the pathway set. Type I interferons
(IFNs) secreted by infected cells influence the development
of innate and adaptive immune responses [35]. IFNs exerts
deleterious functions in bacterial infections as well as autoim-
mune diseases [36]. A previous study has indicated that the
magnitude of IFNAR signaling is suppressed by opposing
mechanisms that limit the expression of IFNAR–JAK–STAT
signaling components, and suppressive mechanisms include
the pausing of RNA polymerase II at genes that encode IFN
pathway components [37]. Accordingly, RNA polymerase II
transcription might play important roles in LM infection
process, partially via regulation of the IFN pathway.

Taken together, we successfully detected 1 pathway set
with AUC of 1.00 (9 dysregulated pathways) in LM-infected
human monocytes on the basis of the PIN which presented
the functional dependency between pathways. The dysreg-
ulated pathways had cross-talks with each other. The func-
tional relationship between pathways shed light on themolec-
ular mechanisms of LM infection. Our data indicate that this
created method is helpful to predict new biosignatures and
even drug targets in robust way. Significantly, our identified
dysregulated pathways will be available to be as biomarkers
to diagnose LM infection, serve to benefit novel vaccine
design, and improve the therapeutic strategies. However,
several limitationsmust be taken into consideration. To begin
with, there is a very high number of gene expression profiles
concerning infection of diverse human cell lines with LM, but
we only used E-MEXP-1613 dataset in our study.Thus, we will
use other datasets about infection of diverse human cell lines
with LM to verify our findings. Moreover, in the dataset of
E-MEXP-1613, there was information about other bacterial
infections including Staphylococcus aureus and Streptococcus
pneumoniae infections. We did not compare the “pathway
dysfunction” upon challenge with these other pathogens, and
we would compare the specificity of the results obtained
in this study in the future. Additionally, our analysis was
implemented based on existing data using bioinformatics
method; yet the findings have not been proved by animal
experiments or patient tissue; this was the main weak point
of this study. Therefore, further investigations are needed to
uncover the changes of these pathways in the understand-
ing of the infection procedure mediated by LM based on
the animal experiments and patient tissues. Despite these

limitations, this study provided some preliminary evidence
to uncover alterative candidate therapeutic strategies for LM
infection. Our analysis implies that this 1 pathway set (9
dysregulated pathways) worked together to influence the
progression of LM infection, and making use of specific
blockage-related pathways in LM infection will shed new
insights for therapeutic and preventive methods in clinic.
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