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Abstract

Reading involves the functioning of a widely distributed brain network, and white matter tracts 

are responsible for transmitting information between constituent network nodes. Several studies 

have analyzed fiber bundle microstructural properties to shed insights into the neural basis 

of reading abilities and disabilities. Findings have been inconsistent, potentially due to small 

sample sizes and varying methodology. To address this, we analyzed a large data set of 686 

children ages 5–18 using state-of-the-art neuroimaging acquisitions and processing techniques. We 

searched for associations between fractional anisotropy (FA) and single-word and single-nonword 

reading skills in children with diverse reading abilities across multiple tracts previously thought to 

contribute to reading. We also looked for group differences in tract FA between typically reading 

children and children with reading disabilities. FA of the white matter increased with age across 

all participants. There were no significant correlations between overall reading abilities and tract 

FAs across all children, and no significant group differences in tract FA between children with 

and without reading disabilities. There were associations between FA and nonword reading ability 

in older children (ages 9 and above). Higher FA in the right superior longitudinal fasciculus 

(SLF) and left inferior cerebellar peduncle (ICP) correlated with better nonword reading skills. 

These results suggest that letter-sound correspondence skills, as measured by nonword reading, 

are associated with greater white matter coherence among older children in these two tracts, as 

indexed by higher FA.
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1. Introduction

The development of reading skills is vital for progress in education and communication. 

Reading disability is the most prevalent learning disability and is characterized by difficulty 

with word reading accuracy and/or fluency (Roongpraiwan et al., 2002, (Lyon et al., 

2003)). Multiple studies have reported structural and functional brain differences in children 

and adults with reading disability (Pugh et al., 2000; Eckert, 2004; Maisog et al., 2008; 

Linkersdörfer et al., 2012; Cattinelli et al., 2013; Richlan et al., 2013; Jednorog et al., 

2015), including differences in white matter pathways as measured by diffusion tensor 

imaging (DTI) (Vandermosten et al., 2012b). Studies of this nature often report the 

relationship between reading scores and tract fractional anisotropy (FA), which quantifies 

how direction-dependent water movement is in a given area (Basser and Pierpaoli, 1996; 

Hagmann et al., 2006), and has been interpreted as an index of white matter coherence 

(Beaulieu, 2002). Such associations may be important to identify because these fiber 

bundles of myelinated axons connect the gray matter regions that support reading, and 

especially the left-hemisphere reading network comprised of the angular gyrus, precuneus, 

middle temporal gyrus, superior temporal gyrus (including Wernicke’s area), fusiform gyrus 

(including the visual word form area), and inferior frontal gyrus (including Broca’s area) 

(Cattinelli et al., 2013; Wandell and Yeatman, 2013; Murphy et al., 2019).

Studies of white matter microstructural properties as they relate to reading abilities 

in children and adults have yielded interesting, albeit sometimes inconsistent, results. 

The most commonly implicated tract in DTI studies of reading skills is the superior 

longitudinal fasciculus (SLF), particularly in the left hemisphere, which connects frontal 

and temporoparietal brain regions (Wang et al., 2016). Multiple studies have found that 

higher FA in left and/or right SLF was associated with better reading outcomes, whether 

that manifested from group comparisons between dyslexic and typically reading individuals 

(Richards et al., 2008; Steinbrink et al., 2008; Carter et al., 2009; Marino et al., 2014) 

or correlations with reading test scores on a continuous scale (Steinbrink et al., 2008; 

Carter et al., 2009; Hoeft et al., 2011; Feldman et al., 2012; Lebel et al., 2013; Zhang et 

al., 2014; Horowitz-Kraus et al., 2015; Borchers et al., 2019). However, other studies that 

have investigated the SLF, whether from a whole-brain or targeted approach, have failed to 

replicate this finding (Odegard et al., 2009; Welcome and Joanisse, 2014; Nikki Arrington et 

al., 2017), and a few studies have even reported negative FA-reading associations in the SLF 

(Carter et al., 2009; Frye et al., 2011).

The temporal sub-component of the SLF, the arcuate fasciculus (AF), has also been linked 

to reading performance (Rauschecker et al., 2009), and has often been analyzed separately 

from other SLF components due to its unique contributions to the language network (Catani 

et al., 2005). Similarly, FA reductions in dyslexia have been reported in the left AF 

(Klingberg et al., 2000; Deutsch et al., 2005; Vandermosten et al., 2012a; Marino et al., 
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2014; Christodoulou et al., 2017; Su et al., 2018), and its FA has been positively associated 

with reading skills (Klingberg et al., 2000; Deutsch et al., 2005; Yeatman et al., 2012a; 

Horowitz-Kraus et al., 2014; Christodoulou et al., 2017; Borchers et al., 2019). However, 

bilateral AF regions of higher FA in dyslexia have been identified (Žaric’ et al., 2018), and 

separate studies have reported negative FA-reading associations in the left AF (Yeatman et 

al., 2012a; Christodoulou et al., 2017; Huber et al., 2018).

Two fiber bundles that run under the SLF, the inferior longitudinal fasciculus (ILF) and 

inferior fronto-occipital fasciculus (IFO), serve to connect occipital and temporal-occipital 

areas to anterior temporal and frontal regions, respectively (Martino et al., 2010; Herbet et 

al., 2018), and have been identified as candidate reading tracts (Vandermosten et al., 2012a; 

Yeatman et al., 2013). The left ILF has exhibited increased FA in typically developing 

readers compared to dyslexic readers (Steinbrink et al., 2008; Marino et al., 2014; Su et al., 

2018, and bilateral ILF FA has been positively related to reading performance (Steinbrink 

et al., 2008; Odegard et al., 2009; Feldman et al., 2012; Yeatman et al., 2012a; Lebel et 

al., 2013; Horowitz-Kraus et al., 2014; Zhang et al., 2014; Horowitz-Kraus et al., 2015). 

However, a few studies have found negative associations between FA and reading scores in 

the left ILF (Yeatman et al., 2012a; Huber et al., 2018), and one study has found increased 

left ILF FA in dyslexic individuals compared to their typically reading counterparts (Banfi et 

al., 2019). While studies have only identified positive correlations between FA and reading 

in bilateral IFO (Steinbrink et al., 2008; Odegard et al., 2009; Feldman et al., 2012; Lebel 

et al., 2013; Welcome and Joanisse, 2014; Zhang et al., 2014, Arrington et al., 2017), only a 

single study has found a reduction in left IFO FA in dyslexia (Steinbrink et al., 2008). It is 

worth noting that other investigations have also yielded null results in these tracts (Klingberg 

et al., 2000; Frye et al., 2011; Borchers et al., 2019).

The uncinate fasciculus (UF) is thought to contribute to the ventral orthographic pathways 

of reading, connecting temporal and orbitofrontal regions (Catani et al., 2002; Schlaggar 

and McCandliss, 2007). Despite reports of positive associations between FA and reading 

skills in bilateral UF (Odegard et al., 2009; Feldman et al., 2012; Welcome and Joanisse, 

2014; Zhang et al., 2014, Arrington et al., 2017), the only significant group difference in 

FA that has been reported favored higher FA in dyslexia (Arrington et al., 2017). The same 

study also reported a negative correlation between FA and one of their reading measures in 

the right UF (Arrington et al., 2017). The splenium of the corpus callosum is also thought 

to contribute to reading, as it subserves interhemispheric communication between visual 

cortices (Putnam et al., 2010). Opposing results for both group (Frye et al., 2008; Marino et 

al., 2014) and continuous analyses (Frye et al., 2008; Odegard et al., 2009; Feldman et al., 

2012; Lebel et al., 2013; Zhang et al., 2014; Huber et al., 2018) have been reported.

One theory of the etiology of dyslexia is the cerebellar hypothesis, which implicates 

cerebellar dysfunction in deficits of procedural learning and reading fluency (Nicolson et al., 

2001; Nicolson and Fawcett, 2007; Stoodley and Stein, 2011). To this end, the contributions 

of the superior (SCP), inferior (ICP), and middle (MCP) cerebellar peduncles to reading 

have been investigated. The SCP contains efferent fibers that connect the deep cerebellum 

to inferior prefrontal regions involved in reading (Bruckert et al., 2020). The ICP and MCP 

contain primarily afferent fibers which connect the brainstem with the cerebellum. Such 
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connections may facilitate automation of articulatory and oculo-motor control (Bruckert et 

al., 2020). Bilateral SCP FA has exhibited negative relations to reading skill (Travis et al., 

2015; Bruckert et al., 2020), while the left ICP has shown both positive (Borchers et al., 

2019) and negative (Travis et al., 2015) associations. In the MCP, separate studies have 

paradoxically reported a higher FA in dyslexic readers compared to typically developing 

readers (Richards et al., 2008) as well as a positive association between FA and reading 

skills (Lebel et al., 2013; Travis et al., 2015).

Despite the general trend of higher FA relating to better reading and modest agreement in 

reading tract outcomes, a meta-analysis showed no evidence for systemic FA disruptions in 

dyslexia (Moreau et al., 2018). Small cohort sizes, inhomogeneous acquisition parameters, 

employment of different reading measures, variety of age groups, and diversity in processing 

and analytical methods may underlie the inconsistencies in past results (Moreau et al., 

2018; Ramus et al., 2018; Schilling et al., 2021a,b). To address this, we leveraged a large 

database, the Healthy Brain Network (Alexander et al., 2017), to investigate white matter 

microstructural correlates of individual differences in single-word and single-nonword 

aptitude in children with diverse reading abilities. We additionally looked for tract-specific 

differences in FA between groups of children with and without reading disabilities. 

Considering the limited sensitivity of group difference analyses and the meta-analysis by 

Moreau et al. (2018), we did not expect to find significant FA group differences. However, 

with the added specificity of using tract-based ROIs and sensitivity from an individual 

differences approach, we hypothesized that several tracts, particularly in the left hemisphere, 

would exhibit positive associations between FA and reading scores.

Further, we performed exploratory analyses considering two possible factors that may have 

contributed to variable prior findings. First, we divided children into younger (ages 8 and 

below) and older (ages 9 and above) groups who are, respectively, learning to read versus 

reading to learn. Second, we examined whether findings differed between scores based on 

reading words, which includes memorized knowledge of specific words, versus reading 

pronounceable nonwords (pseudowords), which is a pure measure of knowledge of letter-

sound correspondence.

2. Methods

2.1. Participants

We downloaded data from 1221 participants across the first 8 data releases of the Healthy 

Brain Network project (Alexander et al., 2017). Participants were all scanned at Rutgers 

University. All data were accessed in accordance with a data use agreement provided by the 

Child Mind Institute. The Healthy Brain Network project was approved by the Chesapeake 

Institutional Review Board (now called Advarra, Inc.; https://www.advarra.com/). The 

research team obtained written informed consent from participants ages 18 or older. For 

younger participants, written informed consent was collected from their legal guardians, 

while written assent was obtained from the participant. Full inclusion and exclusion criteria 

are described in the project’s publication (Alexander et al., 2017). Of note, each participant 

was fluent in English, had an IQ over 66, and did not have any physical or mental 

disorder precluding them from completing the full battery of scanning and behavioral 
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examinations. Several behavioral and cognitive evaluations were collected as part of the 

project. Relevant to this study, participants completed the Test of Word Reading Efficacy 

2nd edition (TOWRE) (Torgesen et al., 1999) and the Edinburgh Handedness Inventory 

(EHI) (Oldfield, 1971).

The TOWRE consists of two subtests, Sight Word Efficiency (SWE) and Phonemic 

Decoding Efficiency (PDE). For Sight Word Efficiency, each participant is shown a list 

of words and asked to read the words aloud as quickly as possible. Raw scores are based 

on the number of words read correctly within the 45-second time limit and then converted 

to a standard score (population mean = 100, SD = 15). For Phonemic Decoding Efficiency, 

each participant is shown a list of pseudowords (pronounceable nonwords) and asked to 

read the pseudowords aloud as quickly as possible. Raw scores are based on the number of 

pseudowords read correctly within the 45-second time limit and then converted to a standard 

score (population mean = 100, SD = 15). The composite TOWRE score is the mean of the 

two standardized scores.

After quality control (QC), there were 686 participants ages 5–18 years old. We split these 

participants into two groups based on clinical diagnoses following the 5th edition of the 

Diagnostic and Statistical Manual for Mental Disorders (Edition et al., 2013). There were 

104 participants who were diagnosed with a “specific learning disability with impairment 

in reading” and assigned to the reading disability (RD) group, while the remaining 582 

participants were assigned to the typically-reading (TR) group. It is worth nothing that 

the specific criteria for diagnosing reading disabilities were not provided, and several 

participants with clinically low TOWRE scores – lower than 85 (Heath et al., 2006; Pugh et 

al., 2014; Johnston et al., 2016) – were not diagnosed with a reading disability (Fig. 1).

We compared the ages, sex distribution, handedness, intracranial volume (ICV), and global 

FA (gFA) between the groups (Table 1). The TR group was slightly but significantly older 

than the RD group (p < 0.05; two-tailed Welch’s t-test). There were overall more males 

than females in the cohort, but the proportions of sexes did not significantly differ between 

groups (p > 0.05; χ2 test). Handedness did not differ between groups (p > 0.3; two-tailed 

Welch’s t-test). ICV in TR participants was greater than in RD participants (p < 0.05; 

two-tailed Welch’s t-test). The RD group had a greater global FA than the TR group (p < 

0.05; two-tailed Welch’s t-test).

2.2. Neuroimaging acquisition

Participants were scanned using a Siemens 3T Tim Trio scanner while wearing a standard 

Siemens 32-channel head coil. A high resolution T1-weighted (T1w) sequence was collected 

with the following parameters: TR = 2500 ms, TE = 3.15 ms, Flip Angle = 8°, 0.8 

mm isotropic voxel resolution. A diffusion kurtosis imaging scan was administered with 

the following parameters: TR = 3320 ms, TE = 100.2 ms, Flip Angle = 90°, 1.8 mm 

isotropic voxel resolution, 1 b = 0 image, 64 non-collinear directions collected at b = 

1000s/mm2 and b = 2000s/mm2. A pair of PEpolar fieldmaps were collected before the 

diffusion scan to quantify magnetic field inhomogeneity. Detailed scanner protocols are 

published on the Healthy Brain Network project website (http://fcon_1000.projects.nitrc.org/

indi/cmi_healthy_brain_network/File/mri/HBN_RU_Protocol.pdf).
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2.3. Neuroimaging preprocessing

Results included in this manuscript come from preprocessing performed using QSIPrep 
0.13.0RC1 (Cieslak et al., 2021, RRID:SCR_016216) (https://qsiprep.readthedocs.io/en/

latest/) which is based on Nipype 1.6.0 (Gorgolewski et al., 2011, 2018, 

RRID:SCR_002502). Many internal operations of QSIPrep use Nilearn 0.7.0 (Abraham 

et al., 2014, RRID:SCR_001362) and Dipy 1.3.0 (Garyfallidis et al., 2014, 

RRID:SCR_000029). Much of the text in the following two sections was provided by 

QSIPrep under a CC0 license so it may be included in a manuscript for the sake of 

transparency and reproducibility. We made minor changes for succinctness.

2.3.1. Anatomical preprocessing—The T1w image was corrected for intensity non-

uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 
2.3.3 (Avants et al., 2008, RRID:SCR_004757), and used as the T1w-reference throughout 

the workflows. The T1w-reference was then skull-stripped with a Nipype implementation 

of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as the target 

template. Brain tissue segmentation of cerebrospinal fluid (CSF), white matter (WM) and 

gray-matter (GM) was performed on the brain-extracted T1w using fast (Zhang et al., 

2001, FSL 5.0.9, RRID:SCR_002823). Additionally, brain surfaces were reconstructed using 

recon-all (FreeSurfer 6.0.1) (Dale et al., 1999, RRID:SCR_001847).

2.3.2. Diffusion MRI preprocessing—MP-PCA denoising as implemented in 

MRtrix3’s dwidenoise (Veraart et al., 2016) was applied with a 5-voxel window. After 

MP-PCA, Gibbs unringing was performed using MRtrix3’s mrdegibbs (Kellner et al., 2016). 

Following unringing, B1 field inhomogeneity was corrected using dwibiascorrect from 

MRtrix3 with the N4 algorithm (Tustison et al., 2010). After B1 bias correction, the mean 

intensity of the diffusion-weighted imaging (DWI) series was adjusted so all the mean 

intensity of the b = 0 images matched across each separate DWI scanning sequence.

FSL’s (version 6.0.3:b862cdd5) eddy function was used for head motion correction and 

Eddy current correction (Andersson and Sotiropoulos, 2016). The function was configured 

with a q-space smoothing factor of 10, a total of 5 iterations, and 1000 voxels used 

to estimate hyperparameters. A linear first level model and a linear second level model 

were used to characterize Eddy current-related spatial distortion. q-space co-ordinates were 

forcefully assigned to shells. Field offset was attempted to be separated from participant 

movement. Shells were aligned post-eddy. eddy’s outlier replacement was run (Andersson 

et al., 2016). Data were grouped by slice, only including values from slices determined 

to contain at least 250 intracerebral voxels. Groups deviating by more than 4 standard 

deviations from the prediction had their data replaced with imputed values. Data were 

collected with reversed phase-encoded blips, resulting in pairs of images with distortions 

going in opposite directions. Here, b = 0 reference images with reversed phase encoding 

directions were used along with an equal number of b = 0 images extracted from the DWI 

scans. From these pairs the susceptibility-induced off-resonance field was estimated using 

a method similar to that described in (Andersson et al., 2003). These susceptibility maps 

were ultimately incorporated into the Eddy current and head motion correction interpolation. 
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Final interpolation was performed using the jac method. Slicewise cross correlation was also 

calculated. The DWI time-series were resampled to ACPC with 1.2 mm isotropic voxels.

2.4. Tract segmentation

We used TractSeg version 2.3 (Wasserthal et al., 2018a)(https://github.com/MIC-DKFZ/

TractSeg), a deep-learning based white matter segmentation method, to reconstruct fiber 

bundles. We chose this method due to its favorable balance between the accuracy of manual 

fiber tracking and objectivity of atlas-based methods (Genc et al., 2020). This involved the 

following steps: First, we reoriented images (preprocessed T1w, DWI, and brain mask) to 

the FSL standard space with fslreorient2std and accordingly corrected the diffusion gradient 

table with MRtrix3’s dwigradcheck. We used the MRtrix3 commands dwi2tensor and 

tensor2metric to fit the diffusion tensor with an iterative weighted least-squares algorithm 

(Basser et al., 1994; Veraart et al., 2013) and produce the FA map. Multi-tissue fiber 

response functions were estimated using MRtrix3’s dhollander algorithm (Dhollander et al., 

2016; Thijs 2019). Fiber orientation densities (FODs) were estimated via multi-shell multi-

tissue constrained spherical deconvolution (CSD) (Tournier et al., 2004, 2008; Jeurissen 

et al., 2014). FODs were intensity-normalized using mtnormalize (Raffelt et al., 2017). 

The first three principal FOD peaks were extracted and used as inputs into TractSeg’s 

convolutional neural network. We produced tract segmentations for the following 9 bilateral 

tracts: AF, SLF (I, II, and III), ILF, IFO, UF, SCP, and ICP. We also segmented the MCP 

and splenium of the corpus callosum (CC 7 by TractSeg naming convention), leading to a 

total of 20 fiber bundles to analyze. We extracted the average FA in each tract by calculating 

the average intensity of the intersection between the tract’s segmentation mask with the 

participant’s FA map. As a post-hoc analysis, we analyzed FA at several points along the 

fiber bundle (Yeatman et al., 2012b) instead of using a tract average. For this procedure, 

streamlines were generated for each tract. This method and its results are described in the 

Supplementary Materials.

2.5. Statistical analysis

Several covariates were included in the public data set as phenotypic information, including 

sex (binary 0 or 1), age (in years), and handedness (EHI score; from −100 to 100). We 

additionally extracted estimated total intracranial volume (ICV) from FreeSurfer, as well 

as the global white matter FA (gFA). We calculated gFA by binarizing the white matter 

probabilistic segmentation from QSIPrep’s anatomical workflow at a threshold of 0.5, and 

averaging the FA intensity within the resulting white matter mask. We did not define gFA 

on a whole-brain scale as that would have introduced variance from potential differences in 

white matter volumetric proportions. Given the novelty of our analytical tools and recency of 

the data set, we first ran Spearman correlations between these phenotypic and neuroimaging-

derived metrics, probing well-established relationships in our data as a way of validating our 

approach and informing our choice of model parameters (Fig. 2).

For each tract, we computed both a correlation between mean FA and composite TOWRE 

scores (skipped correlation (Wilcox, 2004; Rousselet and Pernet, 2012) with Spearman’s ρ) 

and group difference (Welch’s t-test) between mean FA values in the RD and TR groups. 

Before running statistical tests, we removed any participant whose tract FA was less than 
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0.2, as this indicated either a tract segmentation containing significant amount of non-white 

matter or a tract being out of the field-of-view (this happened most often for the UF in 

orbitofrontal cortex and the ICP in the cerebellum). This accounted for no more than 4 

participants in any given tract. For group difference analyses, we linearly regressed out 

the effects of sex, handedness, age, global FA, and the interaction between group and 

sex on mean tract FA. For correlation analyses, we regressed out sex, handedness, and 

ICV. Standardization of TOWRE scores accounted for differences in age. Covariates were 

demeaned and rescaled to unit variance before regression. 40 statistical inferences were 

made (20 tracts × 2 measures per tract). We used Benjamini-Hochberg FDR correction to 

account for multiple comparisons (Benjamini and Hochberg, 1995). Statistical tests were 

executed by the Python package Pingouin (0.5.0) (Vallat, 2018) and visualized with the 

Seaborn package (0.11.2) (Waskom, 2021).

We conducted several post-hoc exploratory analyses to probe additional factors that may 

contribute to variation in prior DTI studies of reading. Recognizing that reading processes 

may differ between early and late-stage readers, we divide the cohort into two age brackets 

based on a threshold of 9 years old. This resulted in 455 older participants and 231 younger 

participants. Additionally, to account for differences in neurocognitive mechanisms between 

single-word and single-nonword reading, we repeated the above correlations against the 

SWE and PDE sub-scores. We used Benjamini-Hochberg FDR correction within each 

of these secondary analyses to account for multiple testing. Finally, we ran analyses of 

tract profiles (see Supplementary Materials), in which inferences are calculated on small 

segments along the length of a bundle.

2.6. Data inclusion and quality control

Of the original 1221 participants, 862 participants had all the necessary neuroimaging 

data (T1w, diffusion, and fieldmap) and were able to be run through QSIPrep and 

TractSeg without errors. Three of those were excluded for having ubiquitously sparse fiber 

bundle reconstructions. Two additional participants had misaligned anatomical outputs from 

QSIPrep , and were excluded because gFA could not be calculated for them. Additionally, 

152 of the remaining participants were missing either FreeSurfer reconstructions or 

necessary phenotypic data. An additional 16 participants were excluded for being over 

18 years old. For the remaining participants, due to the volume of images included in the 

cohort, visual inspection of each DWI image was not practical. We instead adopted an 

automated QC procedure described in (Yeh et al., 2019, which has been integrated into 

the outputs of QSIPrep. This involves rejecting a scan if it had different or incomplete 

scanning acquisitions (no participants excluded) or if over 0.1% of slices (9 slices at 72 

slices/volume × 128 diffusion volumes) had significant signal dropout based on changes in 

slice-wise correlation (3 participants excluded). Therefore, a total of n = 686 participants 

were analyzed.

2.7. Data and code availability

Neuroimaging and phenotypic data can be collected following directions 

on the Healthy Brain Network data portal (http://fcon_1000.projects.nitrc.org/indi/

cmi_healthy_brain_network/index.html) after signing a data use agreement. We cannot 
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distribute this data publicly. All code and instructions for preprocessing neuroimaging 

data and running statistical models can be found at ⟨13:monospace ⟩https://github.com/

smeisler/Meisler_ReadingFA_Associations⟨/13:monospace⟩. With minimal modification, 

the preprocessing code should be able to run on most BIDS-compliant data sets using 

the SLURM job scheduler (Yoo et al., 2003). Some softwares we used were distributed as 

Docker (Merkel, 2014) containers, and compiled and run with Singularity (3.6.3) (Kurtzer et 

al., 2017):

• QSIPrep 0.13.0RC1 (singularity build qsiprep.simg docker://pennbbl/

qsiprep:0.13.0RC1)

• TractSeg 2.3 (singularity build tractseg.simg docker://wasserth/tractseg:master)

• MRtrix 3.0.3 (singularity build mrtrix.simg docker://mrtrix3/mrtrix3:3.0.3)

• FSL 6.0.4 (singularity build fsl.simg docker://brainlife/fsl:6.0.4-patched)

We encourage anyone to use the latest stable releases of these softwares.

3. Results

3.1. Correlations between phenotypic and neuroimaging measures

We examined relationships between phenotypic and neuroimaging metrics (Fig. 2). There 

was a significant and positive association between ICV and composite TOWRE scores 

(Spearman’s ρ = 0.21, p < 0.001). There was also a significant and positive association 

between ICV and gFA (Spearman’s ρ = 0.15, p < 0.001). In relation to age (development), 

there were strong positive correlations between age and gFA (Spearman’s ρ = 0.42, p < 

10−30) and between age and ICV (Spearman’s ρ = 0.31, p < 0.001). A negative correlation 

between sex (M = 0, F = 1) and ICV suggests that females had, on average, smaller brain 

volume than males in this cohort (Spearman’s ρ = −0.45, p < 10−30). Interestingly, we 

found a modest negative correlation between handedness quotients and TOWRE scores 

(Spearman’s ρ = −0.11. p < 0.01), suggesting that right-handedness was related to worse 

reading ability. However, this comparison was unbalanced due to the high preponderance 

of right-handed participants (Table 1). SWE and PDE scores were highly correlated 

(Spearman’s ρ = 0.79, p < 10−30).

3.2. Mean FA-TOWRE associations and group differences

Among all participants, no tract exhibited either significant associations between FA and 

TOWRE composite scores or significant FA differences between RD and TR groups. 

Correlation coefficients approximately ranged from −0.036 to 0.036, and t-statistics ranged 

from −0.92 to 0.24 (with a positive statistic indicating TR > RD). No significant correlations 

or group differences were observed when restricting analyses to specific age brackets. 

However, associations tended to be stronger and more positive, albeit still modest, among 

the older readers, with the right SLF I exhibiting a correlation coefficient of 0.09, 

corresponding to a p-value of 0.07.
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3.3. TOWRE sub-score FA correlations

No correlations between SWE scores and mean tract FA were significant within either 

age bracket. Significant associations between PDE scores and FA were significant only 

among children ages 9 years or older (Fig. 3). In this age bracket, FA in the right SLF 

I (Spearman’s ρ = 0.10, p = 0.038) and left ICP (Spearman’s ρ = 0.09, p = 0.048) were 

positively associated with PDE scores. Neither of the results remained significant after 

multiple comparison correction.

4. Discussion

This study is the first large-scale investigation of tract segmentation-derived white matter 

microstructural associations with single-word and single-nonword reading abilities across 

a diverse pediatric data set. The size of our participant cohort was large relative to other 

DWI studies, particularly those relating to reading aptitude. We used high-quality publicly 

available data and state-of-the-art analytical methods, showcasing the rapid advances 

in diffusion imaging acquisition and processing techniques. No tracts exhibited group 

differences in average FA between children with and without reading disabilities, even 

when considering more specific age brackets. Positive correlations between FA and reading 

abilities were only significant in the right SLF and left ICP when considering older 

children and PDE scores, and even then, effect sizes were modest and did not survive 

multiple comparison correction. Our hypotheses were supported in that, overall, there were 

no significant group differences in tract-specific FA values between children with versus 

without reading disabilities and no significant correlations between overall reading scores 

and tract-specific FA values.

The present findings are surprising in several ways, especially given the exceptional 

statistical power of the present sample. Firstly, we found that children with reading disability 

had higher global FA values than their typically reading counterparts. This differs from 

the frequent focus in dyslexia research on reduced FA in white matter tracts connecting 

the major occipito-temporal, temporal-parietal, and frontal nodes of the reading network. 

Secondly, while the use of age-standardized reading scores controlled for simple age-related 

gains in reading, we found little relation between composite TOWRE scores and white 

matter pathway FA. Using G* Power 3.1 (Faul et al., 2009), we conducted a power analysis 

to see how many participants would be needed for the strongest correlation achieved in the 

primary analysis to be significant. At that effect size (0.036), with a desired α = 0.05 and 

power of 0.8, 4766 participants would be required. Even if one could recruit that many 

participants, such a low effect size presents challenges in interpretation. Significant effect 

sizes were only found in our post-hoc exploratory analyses, and even these were modest. 

These secondary analyses revealed significant correlations only when using PDE scores, 

despite PDE and SWE scores reading being highly related, and only when examining older 

children (ages 9–18). At the very least, the significant correlations between FA and PDE 

scores were positive, which is consistent with most prior neuroanatomical studies of reading.

Given the left-lateralized dominance of reading and language brain circuitry, we did not 

expect FA associations to be present in the right hemisphere, at least when considering a 

cohort that is predominantly composed of typical readers. There has been some evidence 
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that poor readers utilize right-hemisphere pathways to compensate for limitations of the 

left-hemisphere pathways that are typically most associated with single-word reading. 

Several studies have reported enhanced right-hemisphere brain activation in individuals with 

dyslexia while reading, which has been interpreted as a compensatory mechanism ((Duncan 

Milne et al., 2002); Temple et al., 2003; Hoeft et al., 2011; Waldie et al., 2013). Greater FA 

in right-hemisphere white matter pathways, in particular the right SLF, has been associated 

with better reading outcomes in children with dyslexia (Hoeft et al., 2011) and in young 

pre-reading children with low scores on assessments that predict future reading difficulty 

(Zuk et al., 2021). Positive correlations between right SLF FA and reading abilities have 

also been observed among typical readers (Horowitz-Kraus et al., 2015). However, opposing 

results have been reported for correlations between right SLF FA and pseudoword reading 

ability in particular (Steinbrink et al., 2008; Frye et al., 2011).

The TOWRE composite score was the average between real-word (SWE) and nonword 

(PDE) reading ability. These two measures are typically correlated, and both are impaired 

in dyslexia, but there are distinctions between the two measures. Single-word reading 

partially reflects reading experience with real words, including memorization of words. 

Single nonword reading, although less directly related to reading experience, provides a 

more pure measure of letter-sound decoding of print. We found significant, albeit small, 

positive correlations between FA and nonword reading scores only. This finding suggests 

that white matter microstructure may be especially salient for letter-sound decoding of print.

We found that age was related to finding associations between FA and nonword reading 

skill such that only in older children (ages 9 and older) did some tracts show a positive 

correlation between PDE scores and FA. Such brain-behavior relations might differ in 

younger children who are learning to read single words and older children who have 

mastered single-word reading skills and are more focused on reading comprehension of 

advanced texts. Indeed, there is evidence that learning a skill leads to an initial increase in 

FA in putative white matter regions followed by a decline when reaching proficiency (Scholz 

et al., 2009), and similar early changes in white matter have been reported in mathematical 

abilities in dyslexia (Koerte et al., 2016), musicianship (Schmithorst and Wilke, 2002), and 

dance (Hänggi et al., 2010).

We, however, observed the opposite relation such that higher white matter FA was associated 

with nonword reading skill only in older children with more advanced reading skills. 

It is possible that we did not observe any significant relationships in younger readers 

due to reduced statistical power. In addition, our results may suggest that variation of 

microstructural properties of white matter does not relate to the etiology of reading 

ability, but rather to the long-term consequence of one’s reading ability. That is, in older 

participants, lower FA among poor readers could be the result of having lived for years with 

reading difficulties (Protopapas and Parrila, 2018; Athanassios 2019). A similar association 

of gray matter volume and reading skills was observed only in older participants in a 

different large-scale study (Torre and Eden, 2019). In that study, reading ability was 

primarily correlated with right superior temporal gyrus volume among males. Alternatively, 

differential reading instruction in early grades may confound reading experience and reading 

skill in the younger children with reading disability.
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There is debate surrounding whether dyslexia can properly be described as a 

neurodevelopmental disorder. Population reading skills tend to follow a normal distribution, 

even when including those with developmental dyslexia (Fig. 1). One may argue that 

dyslexia is not a neurodevelopmental disorder, but rather a way to group those on the lower 

end of the reading skills distribution (or bell curve). From this perspective, both reading 

differences and associated brain differences should lie along a continuum (Protopapas and 

Parrila, 2018; Athanassios 2019). At the simplest interpretation of this argument, being that 

the behavioral and neuroimaging indices lie on the same continuum, findings that would 

most strongly align with this view would be if reading-FA correlations were positively 

correlated across the entire participant cohort. We found no such association, either globally 

or within tracts. This suggests that the continua relating reading aptitude and FA are more 

complex than a shared linear relationship. Indeed, FA-behavior relationships may not be 

generalizable across domains and may index various neural and behavioral measures (Lazari 

et al., 2021).

This is the first study of reading skills that has used TractSeg, which has been shown to 

outperform several white matter segmentation methods (Wasserthal et al., 2018; Schilling 

et al., 2021b). Newer tract-based approaches, as employed here, represent a paradigm 

shift from several earlier DTI studies. Many previous papers of FA-reading relationships, 

particularly before the publication of Vandermosten and colleagues’ review of DTI 

applications to reading (Vandermosten et al., 2012b), performed whole-brain voxel-based 

analyses (VBA). VBA sensitivity suffers from stricter multiple-comparison correction across 

the entire brain. In addition, VBA methods tend to be less precise due to their being 

performed on a group-averaged image because the shape of long-range fiber bundles varies 

among people (Yeatman et al., 2011; Wassermann et al., 2011). Spatial smoothing and affine 

transformation to MNI before group analysis in VBA may obfuscate unique properties of 

a participant’s anatomy (Christensen et al., 1997). Significant findings from VBA are not 

always assigned to tracts. In fact, a single voxel may contain multiple fiber bundles, so it 

is possible early studies may have incorrectly ascribed significant voxels to fiber bundles 

due to not also considering the primary diffusion directionality in these areas. Tract-Based 

Spatial Statistics (TBSS) (Smith et al., 2006), a method that improves upon traditional 

VBA by restraining analyses to a skeletonized white matter voxel map, also suffers in 

tract localization (Tsang et al., 2010). Methodological examinations of TBSS have revealed 

bias in the FA map used for spatial normalization, sensitivity to pathologies and noise that 

affect brain anatomy, incorrect voxel-to-tract assignments (Bach et al., 2014), and instability 

dependent on tensor-fitting methods (Maximov et al., 2015). VBA can still be valuable as 

a data exploratory tool, but tract-based methods likely provide for superior sensitivity and 

reduced ambiguity of fiber bundle localization (Ramus et al., 2018). These benefits have 

already been observed in multiple clinical populations (Kamagata et al., 2013; Kuchling et 

al., 2018; Wasserthal et al., 2020; Forkel et al., 2021).

With these limitations in mind, it may not be surprising that tract-based methods have 

yielded some opposing findings to voxel-based methods. For example, in the left AF, 

tract-based studies have yielded observations of lower FA being associated with better 

reading scores (Yeatman et al., 2012a; Christodoulou et al., 2017; Huber et al., 2018), as 

well as findings of higher FA in dyslexic readers compared to typical readers (Žaric’ et al., 
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2018). However, tractography applications to reading are still in their infancy, and different 

tractography measures may provide different insights. For example, CSD methods are better 

at resolving fiber bundles that pure DTI methods have difficulty with, such as the right AF 

(Catani et al., 2007; Yeatman et al., 2011; Zhao et al., 2016). The field may best be served 

by harmonizing diffusion acquisition and analysis protocols (Ramus et al., 2018; Cieslak 

et al., 2021; Schilling et al., 2021a,b) particularly scanning with multiple shells at high 

b-values (at least b = 1300) to optimally use CSD.

While our largely null results stand in opposition to previous studies reported significant 

FA-reading associations or group differences, a recent meta-analysis of VBA studies has 

suggested that these findings are not robust (Moreau et al., 2018). The present study extends 

this in a tract-based paradigm, using a single data set to mitigate concerns of variability from 

scanning protocol confounding results (Schilling et al., 2021b). Our findings also underscore 

the importance including global confounds to isolate local from global effects (Ramus et 

al., 2018). Intracranial volume and TOWRE scores were significantly related (Fig. 2), and 

groups differed in global fractional anisotropy (Table 1). If we had not included these factors 

in our models, we would have likely reported significant effects in several bilateral tracts, 

despite the effects being driven by global differences.

Unrelated to reading skill, we found strong correlations between age and global FA. Indeed, 

the present study is the largest investigation of linear white matter development patterns 

to date (for a review, see Lebel et al. (2019); for a similarly-sized group-based analysis, 

see Chiang et al. (2011)). Our findings are consistent with prior reports of linear FA-age 

relationships during child development (Mukherjee et al., 2002; Schmithorst et al., 2002; 

Barnea-Goraly et al., 2005; Bonekamp et al., 2007; Muetzel et al., 2008), although more 

recent studies suggest an exponential trajectory (Lebel et al., 2008; Tamnes et al., 2010; Taki 

et al., 2013; Simmonds et al., 2014) which we did not evaluate in this study. Several of 

our other findings unrelated to reading skill are also consistent with well-established trends, 

including worse readers having smaller brain volumes (Ramus et al., 2018), males having 

larger brain volumes than females (Courchesne et al., 2000), and brain volumes correlating 

with global FA (Takao et al., 2014). These agreements with prior studies support the quality 

of the DWI acquisition and the validity of our analytic method.

The results of this study should be interpreted in the context of some limitations. Firstly, 

the composition of the participant cohort is unique in that most participants in the Healthy 

Brain Network have at least one psychological, neurodevelopmental, or learning disorder 

(Alexander et al., 2017). Incentives for participating in the study included a cash reward 

as well as a free behavioral examination, and advertisements were targeted towards parents 

who may have been concerned about their child’s psychological state. RD participants 

comprised approximately 15% of the cohort. This figure exceeds estimates of dyslexia 

prevalence which tend to range from 5 to 10% (Roongpraiwan et al., 2002). Secondly, we 

used FA as our tract metric of interest since it has largely been interpreted as a measure 

of structural integrity. There is often an implicit assumption that higher FA may relate to 

more myelination, which in turn may increase synaptic efficiency (Lebel and Deoni, 2018). 

While myelination certainly modulates FA, other factors such as axonal diameter, density, 

and coherence also influence it (Beaulieu, 2009; Shemesh, 2018; Friedrich et al., 2020. 
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The dueling mechanisms underlying FA may confound results, as both axonal pruning and 

increased myelination may relate to typical brain development but have opposing effects on 

FA (Yeatman et al., 2012a). FA is also prone to underestimation and noise in voxels that 

contain both gray and white matter or crossing fibers (Oouchi et al., 2007), which would 

especially confound measurements of the corpus callosum. Analysis of T1 relaxation time 

in tracts using quantitative MRI may better quantify the degree of myelination per se (Lutti 

et al., 2014; Schurr et al., 2018). Thirdly, we could not account for FA alterations related 

to nonverbal IQ, since this information, in the form of the Kaufman Brief Intelligence 

Test (Kaufman, 1990), Second Edition, was not available for most participants. Next, 

our significant results should be interpreted with some caution, as they originated from 

exploratory anl-yses for which we did not develop a priori hypotheses. Finally, while our 

results lend themselves to theories of the etiology of dyslexia, we cannot interpret our 

findings to make causal statements of white matter microstructural properties’ connection to 

reading disabilities. Longitudinal interventional studies should continue to be performed to 

better understand this relationship (Huber et al., 2018). Multivariate pattern analysis could 

shed insight into the relative contributions of different tract microstructural properties to 

classifying reading aptitude, similar to what was done in the study by Cui et al. (2016).

The tract-based approach employed in the Supplementary Materials, in which FA is sampled 

at several points across the length of the tract, allows researchers to report group differences 

and correlations that may be localized to certain portions of a tract, even if such tests using 

the mean FA may be null (Yeatman et al., 2012a). Using this method, we found segments of 

greater FA in the TR group within the left SLF and UF (Figure S1). However, it is unclear 

if these localized phenomena are a result of true structural differences in a given tract, or 

more global structural differences such as inhomogeneities in the location of a crossing fiber 

(Ramus et al., 2018). It also is not well-established what effect, if any, a local disruption 

in FA might have on synaptic efficiency between disparate areas on a fiber bundle. This 

presents a trade-off between anatomical specificity and interpretability. For these reasons, 

we keep the tract profile analyses in the Supplementary Materials.

5. Conclusion

In several ways, this study of the relation between white matter microstructure and single-

word reading ability had features that ought to have yielded conclusive findings, but the 

study raises some open questions. The number of participants was exceptionally large, the 

TOWRE is a widely used and well-established measure of single-word reading ability, and 

the analyses took advantage of progress in DWI analytic methods. Our largely null findings, 

while not consistent with several individual DTI studies of reading, are consistent with 

recent larger-scale meta-analyses of neuroanatomical studies of dyslexia (Moreau et al., 

2018; Ramus et al., 2018). Without replicating individual processing pipelines, it is difficult 

to identify precise reasons previous results were or were not consistent with this study. In 

this respect, we believe that large-scale population studies and longitudinal studies with 

reproducible methods should be emphasized to account for inter-participant variability not 

reliably represented in small cross-sectional samples. Only future research can resolve the 

apparent contradictions among findings, but one possibility is that there is greater diversity 
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among readers than has been heretofore imagined, perhaps combined with developmental 

variation from infancy to beginning readers to more advanced readers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Distribution of standardized TOWRE composite scores across all participants. Bar colors 

denote whether the participant was formally diagnosed with a specific learning disability 

with impairment in reading (RD; teal) or not (TR; red). The black dotted line marks 

a TOWRE score of 85 which is conventionally used for diagnosing reading disabilities. 

TOWRE: Tests of Word Reading Efficiency.
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Fig. 2. 
Correlations between phenotypic and neuroimaging-derived metrics. The color of each 

cell corresponds to the Spearman’s ρ of the correlation between the metrics in the 

respective row and column. * denotes p < 0.01, ** denotes p < 0.001, adjusting 

for multiple comparisons (Benjamini-Hochberg FDR). gFA: global fractional anisotropy, 

HAND: Edinburgh Handedness Inventory score, ICV: intracranial volume, TOWRE: Tests 

of Word Reading Efficiency (age-standardized composite score).
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Fig. 3. 
Significant correlations between mean tract FA and TOWRE Phonemic Decoding Efficiency 

(PDE) scores among older participants (n = 455). The dots map participants’ age-

standardized PDE scores against average tract FA after regressing out sex, handedness, 

and intracranial volume. Teal denotes a RD participant, and red denotes TR participants. 

The black line represents the best fit line across all participants, and the shaded region 

surrounding it depicts the 95% confidence interval of the fit. Summaries of the statistical 

tests are written out below each plot, including test coefficients, 95% confidence intervals 

surrounding the test coefficient, and uncorrected p-values. Tract shapes and anatomical 

image come from a single subject. Tract color relates to streamline direction. SLF: superior 

longitudinal fasciculus, ICP: inferior cerebellar peduncle.
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