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Does Machine Understanding
Require Consciousness?
Robert Pepperell*

Fovolab, Cardiff Metropolitan University, Cardiff, United Kingdom

This article addresses the question of whether machine understanding requires
consciousness. Some researchers in the field of machine understanding have argued
that it is not necessary for computers to be conscious as long as they can match
or exceed human performance in certain tasks. But despite the remarkable recent
success of machine learning systems in areas such as natural language processing and
image classification, important questions remain about their limited performance and
about whether their cognitive abilities entail genuine understanding or are the product of
spurious correlations. Here I draw a distinction between natural, artificial, and machine
understanding. I analyse some concrete examples of natural understanding and show
that although it shares properties with the artificial understanding implemented in current
machine learning systems it also has some essential differences, the main one being
that natural understanding in humans entails consciousness. Moreover, evidence from
psychology and neurobiology suggests that it is this capacity for consciousness that, in
part at least, explains for the superior performance of humans in some cognitive tasks
and may also account for the authenticity of semantic processing that seems to be the
hallmark of natural understanding. I propose a hypothesis that might help to explain why
consciousness is important to understanding. In closing, I suggest that progress toward
implementing human-like understanding in machines—machine understanding—may
benefit from a naturalistic approach in which natural processes are modelled as closely
as possible in mechanical substrates.

Keywords: machine learning, consciousness, naturalism, understanding, brain modelling

INTRODUCTION

The human capacity for understanding is a complex phenomenon that can involve many cognitive
processes such as learning, insight, reward, memory, recognition, and perception. To implement
this phenomenon mechanically—that is, to create machines that understand in the same way that
humans do—presents an extremely daunting challenge.

Significant progress has been made toward this goal in the field of machine learning. We
now have systems that perform very well, and sometimes better than humans, in language
processing tasks (Devlin et al., 2019; He et al., 2021), image classification tasks (Zelinsky, 2013;
Yang et al., 2019), and in playing complex games (Silver et al., 2016). Even though these systems
are very effective in some situations, questions remain about how robust and generalisable they are
(Shankar et al., 2020) and to what extent they are truly capable of human-like understanding or
whether they are just computational manifestations of the Clever Hans spurious correlation effect
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(Lapuschkin et al., 2019). In the early twentieth century, a horse of
that name was touted as being able to solve arithmetic problems
but was later found to be responding to involuntary cues in
the body language of its trainer (Pfungst, 1911). This concern
is related to the long-standing problem of authenticity raised by
John Searle’s Chinese Room argument about whether artificially
intelligent machines have semantic understanding of the data
they are processing or whether they are “blindly” following
syntactic rules (Searle, 1984).

This article addresses the question of what constitutes
understanding in humans and how it compares to the kind of
understanding that is currently being implemented in digital
computers. Partially following Les and Les (2017), I draw
a distinction between “natural,” “artificial,” and “machine”
understanding, as set out in Table 1. Natural understanding is the
kind that humans are capable of; it is instantiated in the physical
substrate of our nervous systems, in particular in our brains,
and is regarded as “authentic.” I take it that this is the kind of
understanding that we ultimately aim to implement in machines.
Artificial understanding is a kind of understanding that is
currently implemented in highly trained digital computers and
is exemplified by natural language processors like BERT (Devlin
et al., 2019) and image classifiers like AlexNet (Krizhevsky et al.,
2017). For the reasons just given, this kind of understanding
does not perform as well, and nor is it regarded as authentic as,
natural understanding.

I will analyse examples of natural and artificial understanding
to describe some of their key properties and then compare
these properties in light of the challenge of producing
machine understanding, defined here as natural understanding
implemented in a mechanical substrate1. The analysis suggests
that natural understanding is distinguished from artificial
understanding by its property of consciousness and that machine
understanding systems may require this property if they are
to overcome the limitations of current artificial understanding
systems. This leads to the formulation of a hypothesis
about why the capacity for consciousness is advantageous to
natural understanding.

With some exceptions (e.g., Yufik, 2013; Hildt, 2019) recent
theorists have argued that it is not a requirement that computer-
based systems are capable of consciousness or genuine semantic
appreciation in order to understand (e.g., Anderson, 2017; Les
and Les, 2017; Thórisson and Kremelberg, 2017; Dietterich,
2019). The primary goal of these theorists is to design
machines that perform well in problem solving, object detection,
recognition, and language processing tasks (Zelinsky, 2013; Yang
et al., 2019). Indeed, based on the levels of performance in these
tasks achieved with recent machine learning systems, which are
not claimed to be conscious, there is justification for arguing
that consciousness is not a necessary requirement for artificial
understanding, at least in some cases. But if our goal is to create
machine understanding, as defined here, then the requirements

1A mechanical substrate is taken here to be a system composed of electrical
and mechanical components that is designed to enable the processing of
understanding, such as a computer or robotic system, that can receive data as input
and produce a readable output.

may be different. Here I consider in more detail what constitutes
natural understanding.

NATURAL UNDERSTANDING

Understanding cannot be easily or precisely defined. It has several
subtly different senses in English (Oxford English Dictionary)
and interpretations can vary from field to field. But is generally
taken to mean the ability to “grasp” or “see” how different parts
relate to or depend upon each other (Grimm, 2011). In this
section I aim to provide a fuller description of some of the
key properties of understanding by reference to two concrete
examples. To take first a simple example from the domain of
natural language understanding, for each of these sets of three
words find the fourth word that they have in common:

1. PRINT BERRY BIRD

2. FENCE CARD MASTER

3. CONTROL PLACE RATE

These are examples of the Remote Associates Test commonly
used to evaluate cognitive processes such as creative potential,
problem solving, divergent thinking, and insight (Mednick, 1968;
Bowden and Jung-Beeman, 2003). Consider your train of thought
as you find the solution. When you begin the task the three given
words seem to form an unrelated sequence. You may feel a mild
sense of tension or anxiety as you struggle to find the answer.
You probably take each given word in turn and wait for it to
trigger other words, jumping between the given words until you
alight upon a new word that links all three. Having found the
common word, the three given words seem to subtly change their
meaning by association with the common word. They acquire a
new relationship with each other while retaining their distinct
identities. Once you have understood the connection between
each set of words you may feel a sudden mild sensation of
pleasure or relief2.

To take a more involved example from the domain of art
interpretation, consider the painting reproduced in Figure 1
that was painted by Pablo Picasso in 1910. It is a typical
example of the analytic cubist style, developed by Picasso and
Georges Braque in the years before world war I and depicts an
arrangement of everyday household objects. If you are unfamiliar
with the visual language of cubism it may be very hard—even
impossible— to understand what it depicts and it usually takes
some training and practice to unpick the objects it contains from
the seemingly abstract forms.

Now consider the image presented in Figure 2. This shows
the same painting, but this time some of the objects have been
outlined and labelled. If you study this painting (which is known
as “Still Life with Lemons”) and then return to Figure 1 you
should now be able to recognise at least some of the items it

2The answer in each case is 1. BLUE, 2. POST, and 3. BIRTH. In the paper from
which these examples are taken 10% of the participants tested were able to find the
correct answer to 1 in less than 2 s, while only 1% were in the case of 2 and none
were in the case of 3 (Bowden and Jung-Beeman, 2003).
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TABLE 1 | Definitions of the three kinds of understanding referred to in this article.

Definitions of kinds of understanding

Natural understanding The human-like capacity for understanding that is instantiated in our neurobiology, in particular in our brains

Artificial understanding The capacity for understanding that is implemented in machine learning algorithms as instantiated in digital computers

Machine understanding The human-like capacity for natural understanding implemented in a non-human mechanical substrate

contains without the guidelines. Given more time and effort
you should eventually be able to piece together the entire
composition. Arguably, you will then have gained a greater
understanding of the meaning of the painting. Perhaps this
understanding dawns through a gradual analysis of the relations
between objects and their position in space. Or perhaps it appears
as a momentary flash of insight—sometimes referred to as an

FIGURE 1 | A reproduction of a painting by Pablo Picasso from 1910.
©Succession Picasso/DACS, London 2022.

FIGURE 2 | A reproduction of Still Life with Lemons by Pablo Picasso from
1910 with outlined and labelled objects. The painting depicts a table
containing a number of everyday household items, including glasses, a fruit
bowl, a lemon, and a key. The edges and legs of the table can be seen to the
left and right of the central grouping of objects.

“Aha!” moment—that is accompanied by the feeling of relief or
satisfaction associated with a sudden gain of information (Muth
and Carbon, 2013; Damiano et al., 2021). Either way, a significant
shift has taken place in your perceptual and cognitive faculties
such that objects and relationships between objects that were
previously absent are now present, despite the fact that you are
looking at the same image.

What is going on at the perceptual, cognitive, and
phenomenological levels during this acquisition of
understanding? Prior to viewing Figure 2 you probably
experienced a more or less abstract array of patterns and marks,
perhaps attended by a feeling of bewilderment or frustration.
Then, using the outline guides provided in Figure 2, you
began to separate the boundaries of certain objects from their
surroundings until you established their individual identities
and how they are spatially positioned in relation to each other
and to the scene as a whole. According to the predictive coding
theory of object recognition, your brain drew upon high-level
cognitive models that influenced the processing of lower-level
perceptual input via feedback in order to rapidly anticipate the
most probable meaning of what is being perceived (Rao and
Ballard, 1999). Once this meaning has been grasped you have
created a new network of semantic associations around the image
that are grounded in the wider context of your background
knowledge and experience (Harnad, 1990).

Understanding, recognition, detection and learning are
related but distinct processes. In one sense by studying this image
you have learned to detect and classify or label the objects as any
machine learning system might be trained to do with sufficient
training examples and computer power. But in experiencing the
phenomenal Aha! insight that accompanies the understanding
you have not just produced a certain statistical output from a
certain input; your perceptual, cognitive and phenomenological
facilities have undergone a transformation from a state where
that meaning is absent to one where it is present. There is
evidence from brain imaging and behavioural studies that having
undergone this experience with a small number of examples
of cubist paintings people are able to recognise more objects
more quickly in new examples while undergoing measurable
differences in brain activation (Wiesmann et al., 2009)3.

It is also important to stress that acquiring understanding
does not merely entail local object detection and recognition
but also in holding several distinct concepts in mind at once,
along with each of their attendant associations, while forming a
global conception of their interrelations and overall significance.
These distinct concepts can be highly diverse, as is illustrated

3There is also evidence that learning to understand cubist paintings by recognising
the objects in them increases people’s aesthetic experience of the paintings (Muth
et al., 2013).
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in the cartoon by Saul Steinberg that featured on the cover of
New Yorker magazine in 1969 showing the train of thought of a
person viewing a cubist painting by Georges Braque (Figure 3)4.
And they are not necessarily logically consistent. So, for example,
a certain patch of painting composed of diagonal lines, curves
and greyish-brown paint looks very unlike a lemon at the same
time as being a lemon. This dichotomy between the material from
which an image is constructed (paint, ink, pixels, etc.) and the
objects that the material represents is a fundamental feature of all
pictorial depiction (Pepperell, 2015), even if this cubist example is
an extreme case of perceptual incongruence between the pictorial
fabric and what is depicted. Yet despite this dichotomy we are
rarely prevented from understanding that, when looking at a
picture, a certain pattern of lines or colours simultaneously stands
for a quite different object.

To summarise, these cases of problem solving and art
interpretation demonstrate some of the key properties of natural
understanding as broadly described here, namely that it is a

4It is not clear from this illustration whether the collection of ideas and associations
contained in the viewer’s thought bubble are being experienced simultaneously or
sequentially. Personal experience of studying artworks in this way suggests that it
is probably a mixture of both.

FIGURE 3 | Cover of New Yorker magazine with a cartoon by Saul Steinberg
illustrating the diverse train of thought of a person viewing a cubist painting by
Georges Braque.

form of reasoning, learning or recognition that is accompanied
by a consciously experienced insight, motivated by a desire to
overcome anxiety and gain pleasurable reward, that entails a
diverse and sometimes contradictory set of associations, some of
which depend on contextual knowledge and meaning prediction,
that are bound together in a simultaneous cognitive state. These
features are summarised in Table 2.

This list does not exhaustively describe each of the properties
of natural understanding, nor does it collectively provide a
precise definition. And it is worth noting that some forms of
understanding are arrived at by a process of logical analysis
rather than sudden insight (Jung-Beeman et al., 2004; Carpenter,
2020). But, at least with respect to the cases discussed here,
this list is indicative of the range of properties that natural
understanding entails. Assuming we can generalise from this to
other cases of natural understanding, we have identified some
of the properties that an authentic implementation of machine
understanding would require.

ARTIFICIAL UNDERSTANDING

Having described some of the key properties of natural
understanding we turn to the artificial kind as defined in the
introduction. Many existing artificial intelligence systems are
implemented in computational neural networks such as deeply
layered convolutional neural networks that roughly approximate
the function of neural cells in brain tissue. Contemporary deep
neural networks evolved from early neurally inspired machine
learning architectures such as the Pandemonium and the
Perceptron pioneered in the 1950s (Rosenblatt, 1958; Selfridge,
1959). In these early models, continuous input data is first
discretised by “feature detectors” and then passed to intervening
layers of neurons that are weighted to respond to properties of
the features. Based on the sum of all the weights the system
reaches a decision processing about the most probable output.
These models in turn inspired the later parallel distributed
approaches to artificial intelligence that were developed by
Rumelhart and McClelland (1986) and in many ways provided
the core architecture of today’s artificial neural networks and
machine learning systems.

A typical artificial neural network tasked with, say, classifying
objects in photographs will take an image as input, divide it into
sub-sections (such as pixel colour values or clusters of pixels),
pass those values to an array of nodes or neurons in one of
what may be many interconnected “hidden” layers of such arrays,
apply weights and biases in order to arrive at a probabilistic
estimate of the likely class of the input, and pass the result to an
output layer that can be read off by the user. By supplying the
network with many training images, and by gradually optimising
the weightings and bias using error correction techniques such as
backpropagation, the network will eventually learn to classify its
target objects with a degree of accuracy that depends on factors
such as the size of the training dataset, the number of layers
in the networks, and the amount of error correction provided.
A simple feedforward example of this architecture is illustrated in
Figure 4.
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TABLE 2 | Summary of the key properties of natural understanding based on the cases of the remote associates task and the interpretation of a painting.

Key properties of natural understanding

Insight Aha! moment, or sudden change in how a stimulus is perceived entailing a revelation of new meaning that was previously absent

Reward A positively valenced emotional state that intrinsically motivates effortful cognition

Learning Adaptation by acquiring new knowledge that can be generalised to cases beyond the stimulus that produced the learning

Recognition The ability to correctly classify a stimulus, or part of a stimulus, according to the features it presents or contains

Differentiation The division of the perceptual stimulus into a multiple, diverse and sometimes contradictory set of meaningful elements

Integration The unification of diverse perceptual elements into a single coherence experience, without diminishing their diversity

Context Connecting to ideas, references and meanings that are not immediately present in the stimulus but are associated with it

Reasoning A capacity to acquire new knowledge by logically inferring or extrapolating from existing data

Prediction The ability to apply feedback from higher-level cognitive models to lower-level perceptual input to rapidly anticipate meaning

Consciousness The state of being aware of the self and the environment, and in particular awareness of the stimulus and the response to it

FIGURE 4 | A simple feedforward neural network architecture showing an input layer that serves to discretise the target data, one hidden layer that contains nodes
or “neurons” that can adjust their probabilistic weights, and an output layer where the decision of the system can be read off.

Since the explosion of research in artificial neural
networks and deep learning techniques in the 2010s, and
the accompanying exponential increase in raw computing
power, a plethora of designs and methods have evolved
for implementing machine learning (LeCun et al., 2015;
Aggarwal, 2018). In the case of a contemporary deep
learning system like BERT, the Bidirectional Encoder
Representations from Transformers, several methods are
combined in order to optimise performance in a range
of natural language understanding tasks, with the relative
performance of different variants of BERT being tested
against standardised benchmarks such as SuperGLUE
(Wang et al., 2019).

In these tests, passages of text are presented to humans
or computers to elicit a correct answer. Different kinds of
understanding are tested, including reading comprehension,
choosing correctly between alternatives, or reasoning correctly
based on a hypothesis. For example, in the following causal
reasoning task (Roemmele et al., 2011), given the statement: “My
body cast a shadow over the grass” and the question: “What’s the
CAUSE for this?”, the responder must choose between alternative
1: “The sun was rising” and alternative 2: “The grass was cut,”
the correct alternative being 1. In 2021, the DeBERTa variant
of BERT was shown to surpass human performance against the
SuperGLUE benchmark by a comfortable margin in some tests
(He et al., 2021).

Image classification systems are designed to recognise,
segment, or locate objects in images using convolutional neural

networks that employ similar techniques to those of natural
language processing systems but trained on vast databases
of human annotated photographs stored on repositories such
as ImageNet5. Competing models have been pitted against
each other in contests such as the ImageNet Large Scale
Visual Recognition Challenge or ILSVRC, which began in
2010 (Russakovsky et al., 2015). The ImageNet challenge
uses a large dataset of annotated images from the database
for training and a smaller subset for testing from which
the annotations are withheld. The competing classifiers are
required to perform several kinds of recognition and detection
tasks on the test dataset, including predicting the classes of
objects present in the image and drawing bounding boxes
around objects (tasks not dissimilar to the cubist painting
example discussed above). A breakthrough in image classification
performance was made in 2012 with the introduction of the
AlexNet architecture (Krizhevsky et al., 2017) which achieved
the then unprecedented score in the ImageNet challenge
of 63.3%. By 2021, systems such as Convolution and self-
Attention Net (CoAtNet) were achieving accuracy scores of
90.8% (Dai et al., 2021).

Given that these natural language and image classification
machines are routinely achieving 90 + % accuracy, and in
some cases outperforming humans, there is a sense in which
they can be rightly said to have a capacity for understanding,
even though they are implemented in very different substrates

5http://www.image-net.org
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from the biological tissue and processes that instantiates natural
understanding. After all, show them a sentence with a missing
word or a photograph containing many objects and they will
reliably be able to predict the missing word or label the objects.
This capacity for comprehension, reasoning, recognition, and
detection implemented in digital computers is what is referred
to here as artificial understanding.

The key properties of artificial understanding broadly
described here are that it relies on training with large datasets
through which the system learns by adjusting probabilistic
weightings of the neurons, modified by error correction, resulting
in statistical models that predict the most likely output for a
given input, whether that is by detecting and labelling a class
or reasoning from contextual data about the likely solution. To
carry out this process input data is differentiated into parts and
analysed to find patterns and associations between the parts
which are then integrated to produce an output. These key
properties of artificial understanding are summarised in Table 3.

Again, this is not a comprehensive list of the key features of
nor a precise definition of artificial understanding. But on the
basis of the natural language processing and image classification
systems discussed here we are in a position to make some
instructive comparisons between the natural and artificial kinds
of understanding.

COMPARING NATURAL AND ARTIFICIAL
UNDERSTANDING

As can be seen from Table 4, natural and artificial understanding,
as described here, share several key properties, at least
superficially, while some are unique to natural understanding.
In this section, I compare these properties to establish how
closely they are shared and what might be the significance of
the differences.

Shared Properties
Prima facie, both kinds of understanding share some capacity
for learning, recognition, differentiation, integration, utilisation
of contextual information, reasoning, and prediction. These
key properties are functionally similar in humans and artificial
neural networks in that for certain tasks they can produce the
same outputs from the same inputs, even if the substrates they
are instantiated in and the ways they are implemented are
very different. In the case of natural language processing, as

TABLE 4 | Comparison between the key properties of natural and artificial
understanding based on the cases discussed above.

Comparing properties of natural and artificial understanding

Natural understanding Artificial understanding

Learning Learning

Recognition Recognition

Differentiation Differentiation

Integration Integration

Context Context

Reasoning Reasoning

Prediction Prediction

Consciousness

Insight

Reward

Properties in bold are shared.

noted, humans and computers can achieve comparable scores
when assessed against the criteria used in the SuperGLUE tests,
which are based on tests designed to measure reading ability,
reasoning and comprehension skills in humans (e.g., Roemmele
et al., 2011). Neural network-based image classification systems
also now routinely equal and sometimes out-perform humans
(Buetti-Dinh et al., 2019). And neuroscientific models of
predictive coding in humans have inspired new designs of neural
networks with enhanced object recognition capabilities (Wen
et al., 2018). All this is testament to the remarkable proficiency
of artificial understanding systems in emulating these human
cognitive faculties.

Yet despite the impressive levels of performance achieved with
some deep learning models, and their functional similarity with
human capabilities, they still differ from and fall short of human-
level performance in several ways, including in terms of how
robust and generalisable they are. As noted above in the case of
cubist painting interpretation, humans are adept at applying what
they learn in one case to novel cases (Wiesmann et al., 2009).
But because deep learning systems become very finely “tuned”
to the limited datasets used to train them there is a danger of
“shallow” learning, where the system’s competences are limited
to the training data and they are unable to adapt to new cases, as
was shown recently in the domain of natural language inference
(McCoy et al., 2019).

Meanwhile, image classification tasks using ImageNet-trained
machine learning systems are yet to achieve human-level

TABLE 3 | Summary of the key properties of artificial understanding based on the cases of natural language processing and image classification.

Key properties of artificial understanding

Prediction A capacity to estimate the correct output given a certain input based on probabilistic calculations

Learning Improving performance of the system through a process of training and adaptation guided by feedback based on correctness of outputs

Differentiation The division of the input into multiple features that can be analysed in terms of regularities and patterns

Integration The summation of probabilistic analysis of the differentiated features to produce an output

Context A table of statistical relationships that is extracted from the training data and used predict the most likely missing data

Recognition Correctly identifying or labelling an object from a given input, or part of the input, by analysing its features and predicting the correct output

Reasoning The capacity to select the correct conclusion given information that is implicit in the input but not explicitly stated
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performance in certain tasks and are rated as being less robust
and less generalisable than human agents (Shankar et al.,
2020). The problems of robustness and generalisability in image
classification algorithms were further highlighted by a study
showing that the ability of leading models to understand the
content of photographs was significantly impaired by difficult
or “harder” cases, i.e., cases where the image content was more
ambiguous (Recht and Roelofs, 2019).

The differences, or dissonances, between human and machine
understanding (natural and artificial in the terminology used
here) were explored by Zhang et al. (2019) in the context of
Biederman’s theory of human image understanding (Biederman,
1985). Biederman (1985) argued that image recognition
depends upon first differentiating or segmenting the image into
components that are invariant with respect to viewing position
or image quality and from these components the understanding
of the image as a whole is constructed. Zhang et al. (2019) asked
both humans and neural network (NN) image classifiers to
segment a set of images into “super pixels” that contained the
portions of the image most salient to recognition. They found
that humans and NNs tended to segment the image in different
ways. When asked to recognise objects from the segmented
portions only, NNs often out-performed humans on “easy”
images, suggesting that humans and NNs were using different
strategies to complete the task. But NNs performed less well than
humans on more difficult or ambiguous images.

Collectively, this evidence suggests that while natural and
artificial kinds of understanding do share the properties listed
in bold in Table 4, at least at the functional level if not at the
substrate level, and have comparable levels of performance in
some cases, there are significant differences in how robust and
generalisable they are and in how well they are able to deal
with difficult cases. Moreover, questions remain about whether
machine learning systems rely on spurious correlations—that
they can be “right for the wrong reasons”—and whether they
genuinely have a capacity for semantic appreciation. This
leaves them vulnerable to Clever Hans and Chinese Room-
style criticisms, viz., that they are not, by their essential nature,
authentically cognising or understanding at all.

Unique Properties
The essential differences between natural and artificial
understanding become more pronounced when we consider
the key properties that are unique to natural consciousness,
the most obvious being that it entails consciousness. Questions
about the nature of consciousness, how it is instantiated in
humans (or other creatures for that matter), and how it might be
implemented in non-biological substrates are vast and deep and
cannot be addressed in detail here. But it is necessary to briefly
consider what the conscious property of natural understanding
might be contributing to the phenomenon as a whole and why it
might help to explain its essential difference from and advantages
over the artificial kind. This is especially so given that two of
the other key features of natural understanding as described
here, namely insight and reward, are themselves aspects of
conscious experience.

Consciousness can be defined as the state of awareness of
self and environment, and while this begs the question of what
is meant by awareness, I will take it that we are familiar with
what it means in ourselves. One way to measure the difference
between a system that is conscious and one that is not is that a
conscious system such as a human brain displays very high levels
of simultaneous differentiation and integration in its organisation
and behaviour (Tononi et al., 1994). Of course, any system
composed of different subsystems that are coupled together, i.e.,
a system of systems, will be differentiated and integrated to some
degree (Nielsen et al., 2015). But in the case of the human brain
this degree seems to be extremely large (Tononi et al., 1994)
and far greater than in existing machine learning systems if we
take the complexity of the system as a measure: it requires a
convoluted neural network having seven layers to emulate the
complexity a single human neuron (Beniaguev et al., 2021) and
there are estimated to be around 86 billion such neurons and
around the same number of non-neuronal cells in a human brain
(Azevedo et al., 2009).

Recent evidence from the neuroscientific study of
consciousness suggests that there is something particular about
the way brain activity during conscious states is differentiated
and integrated that contributes to the production of phenomenal
states. The Global Neuronal Workspace Hypothesis (GNW)
advocated by Baars et al. (2013) and Mashour et al. (2020)
proposes a model of conscious processing in which localised,
discrete and widely distributed cortical functions are integrated
via reciprocally connected long-range axons. At any one time,
information from one or more of these discrete functional
processors can be selectively amplified and “broadcast” across
the entire system, thus producing a single integrated, coherent
experience for the conscious agent concerned. The Integrated
Information Theory (IIT) of consciousness championed by
Tononi and Koch (2015) and Tononi et al. (2016)—in some
ways a competing theory to GNW—predicts that in order
for a system such as a brain to be conscious it must display
a high degree differentiation (by which they mean richness
or diversity of information) and integration (by which they
mean interdependence or interrelatedness of the information),
the quantity of which is given by a value known as 8. A fully
conscious brain, for example, will contain a greater quantity of 8
than a partially conscious or unconscious brain.

Tononi and Koch point to work conducted by Casali et al.
(2013) as empirical support for this hypothesis. By applying a
magnetic pulse to the brains of people having varying levels
of consciousness, including severely brain damaged patients
showing little or no signs of conscious awareness, and then
measuring the resulting patterns of activation using information-
theoretical measures of complexity, the experimenters were
able to reliably discriminate between levels of consciousness
on the basis of how much differentiation and integration
the patterns of activation displayed6. They found that greater
levels of differentiation and integration reliably predicted higher

6The measure of complexity in this case was the compressibility (using the Lempel-
Ziv algorithm) of the data generated by imaging the perturbation in the brains due
to the magnetic pulse (Ziv and Lempel, 1977).

Frontiers in Systems Neuroscience | www.frontiersin.org 7 May 2022 | Volume 16 | Article 788486

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-788486 May 12, 2022 Time: 15:39 # 8

Pepperell Does Machine Understanding Require Consciousness?

levels of consciousness, and could predict which people were
unconscious when these levels fell below a certain threshold in
their brains, such as in those with severe brain damage who
were in a vegetative state. It is important to note that even
though the brains of people with impaired consciousness were
still functioning to some extent, and therefore displaying a high
degree of differentiation and integration by the standards of many
physical systems, they fell short of the threshold necessary to
support full consciousness.

Further evidence that fully conscious states rely on
maintaining a critical balance between activity in localised
and segregated networks and globally integrated networks in the
brain was provided by Rizkallah et al. (2019). Using graph-theory
based analysis on high-density EEG data, the team showed that
levels of consciousness decreased as the level of integration
between long-range functional networks also decreased while,
at the same time, information processing became increasingly
clustered and localised. Besides disorders of consciousness,
researchers have also shown that imbalances between local
segregation and global integration in brain organisation are
implicated in neuropsychiatric and other clinical disorders (Fair
et al., 2007; Lord et al., 2017).

One difficult question raised by this evidence is whether there
is a direct causal relationship between the levels of differentiation
and integration observed in the activity of the brains of conscious
people and their conscious states, or whether the correlation is
spurious (Pepperell, 2018). The question is too philosophically
involved to be addressed in depth here. But the phenomenal
character of natural understanding, as described above, which
entails an awareness of both the parts of the thing understood
and the relations between the parts at the same time, is but
one expression what seems to be a property of all conscious
states, which is that they are experienced as simultaneously
differentiated and integrated, as was observed by Leibniz (1998)
in the eighteenth century and by many since7. Although this
correlation is not proof of a causal link between phenomenology
and underlying neurobiology, and nor does it explain why the
particular kind or degree of differentiation and integration that
occurs in conscious brains is critical, it does weaken any claim
that the correlation is merely spurious.

With respect to the property of insight, which is consciously
experienced, there is evidence from neuropsychology that
comprehension or understanding, including that which is
achieved through sudden insight or Aha!, is mediated by
regions of the brain that are important for integration of
differentiated brain processes (St George et al., 1999; Jung-
Beeman et al., 2004). The same principle has been observed
in the mechanisms that bind together widely distributed brain
areas as object representations become conscious (Tallon-Baudry
and Bertrand, 1999). Other studies have demonstrated that the

7Leibniz (1998) noted on several occasions that perception is “the expression of
a multitude in a unity.” More recently, Guilio Tononi, one of the prime movers
behind IIT, stated: “consciousness corresponds to the capacity of a system to
integrate information. This claim is motivated by two key phenomenological
properties of consciousness: differentiation – the availability of a very large number
of conscious experiences; and integration – the unity of each such experience”
(Tononi, 2004).

appearance of sudden moments of insight or comprehension are
in fact the culmination of multiple preceding brain states and
processes, suggesting that insight favours the “prepared mind”
and acts to draw these largely unconscious processes together
into a single conscious state (Kounios and Beeman, 2009). This
evidence therefore also points to a link between the underlying
mechanisms that mediate consciousness and the phenomenology
of natural understanding, or insight.

With respect to the property of reward, studies on the affective
states of people who experience insights consistently show that
they are emotionally diverse but positively valenced, with the
most reported emotional states being happiness, certainty, calm,
excitation, ease and delight (Shen et al., 2016). The affective states
associated with insight and problem solving have been shown to
depend on activity in regions of the brain associated with positive
affect and reward and on task-related motivational areas as well as
being implicated in processes of learning reinforcement, memory
reorganisation, semantic coherence, and fast retrieval encoding
(Tik et al., 2018).

The motivating power of potential reward, even when cued
subliminally, was demonstrated by researchers who used a
version of the remote associate task cited above to test problem
solving performance in people (Cristofori et al., 2018). Based
on their results they speculated that the potential for reward
activated systems of the brain that reinforce behaviour, facilitate
cognition, and enhance automatic integration of differentiated
processes. The fact that they did so subliminally was argued
to promote overall performance because cognitive resources
were not diverted from conscious processes such as attention
selectivity. Further evidence shows that mood can significantly
affect a person’s performance in problem solving, with people
in positively valenced states of mind being able to solve
problems or reach insights better than those in a less positive
mood (Subramaniam et al., 2009). This finding reinforces the
association between consciously experienced affect and capacity
for understanding.

While is premature to draw firm conclusions from the
neurobiological and psychological data relating to the key
properties that are unique to natural understanding, it
does seem to point toward a general trend: that the act of
consciously understanding something is characterised by high
degrees of simultaneous differentiation and integration—both
neurobiologically and phenomenologically—and positively
valenced affect that rewards problem solving and motivates
learning. This comparative analysis between the shared and
unique properties makes clear that although there are functional
similarities between natural and artificial kinds of understanding
there are also significant differences in function and in
essence due, in part, to the conscious properties that natural
understanding entails.

HYPOTHESIS

From the evidence and argument presented it is proposed that
the present performance limitations of artificial understanding,
and the questions about its authenticity noted in the introduction,
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may arise, at least in part, because it lacks the capacity for
consciousness and the associated capacities for insight and
reward that we find in natural understanding. This proposal can
be expressed in the following hypothesis:

The capabilities deemed desirable but deficient in artificial
understanding systems, viz., robustness, generalisability,
competence in hard cases and authentic appreciation of meaning,
occur in natural understanding, at least in part, because the
motivation to gain insight, the unification of divergent concepts
that the insight entails, and the reward that comes from achieving
it are consciously experienced.

The hypothesis suggests that there may be at least two reasons
why the properties unique to natural understanding contribute to
its capabilities and essential nature:

1. The promise of reward, and the positive affective states
entailed by achieving reward, provide the system with the
intrinsic motivation (Di Domenico and Ryan, 2017) to
devote the necessary cognitive resources, such as memory
search, object recognition, and selective attention, to the
task in hand. This in turn reinforces learning and promotes
memory reorganisation which improves performance in
subsequent related tasks, particularly with respect to
difficult cases, while also contributing to robustness.

2. The neurobiological activity that produces high degrees
of simultaneous differentiation and integration, and
which is associated with the occurrence of consciousness
in humans, allows the understander to assimilate
many diverse cognitive states into a single overarching
cognitive state without effacing the differences between its
constituent states. This neurobiological activity is reflected
at the phenomenological level, as described in section
“Natural Understanding,” where natural understanding is
characterised by the simultaneous “grasping” of diverse,
and sometimes contradictory, concepts that form a
meaningful conceptual whole.

Both of these reasons would require further analysis,
investigation, and ideally empirical testing before we can draw
any conclusions about their validity.

IMPLEMENTING MACHINE
UNDERSTANDING

The question of how to implement machine understanding is
related to, but distinct from, the question of how to implement
machine consciousness (Haikonen, 2003; Pepperell, 2007; Yufik,
2013; Manzotti and Chella, 2018; Hildt, 2019). It is beyond the
scope of this article to consider in any detail the conceptual
and technical challenges that would face someone trying to
encode the properties of natural understanding, as described
here, in a non-human substrate. However, if we take it that it
is the natural form of understanding that we are seeking to
implement it follows that a naturalistic approach to creating
such machines may be beneficial. By “naturalistic” I mean an
approach that seeks to model the properties and functions of

the naturally occurring phenomenon as closely as possible8.
This would be in keeping with the early models of machine
learning, cited above, that were directly inspired by natural
biological processes.

Even though today’s artificial neural networks are the direct
descendants of these early naturalistically inspired models, they
differ in important ways from the biological processes that
underlie human cognition and consciousness. Consider, for
example, that the adult human brain accounts for around 2% of
body mass, but consumes around 20% of the body’s energy budget
when at rest, or some 20 W (Sokoloff, 1992; Laughlin, 2001). Yet
while this might suggest that the brain is extremely energy hungry
it is in fact extraordinarily efficient when compared to current day
computers, especially those carrying out machine learning tasks
(García-Martín et al., 2019). Training just one learning model just
once can consume over 600,000 kWh (Strubell et al., 2019) while
the amount of power (in terms of ATP availability) used by the
cerebral cortex to carry actual computation has been estimated at
around 0.1 W (Levy and Calvert, 2021).

Consider also that the organisation and exploitation of energy
resources by the brain may be playing a far more significant
role in the production of consciousness than is often assumed
(Shulman, 2013). It can be argued that neuroscientific models of
brain activity based primarily on digital information processing
paradigms, which tend to predominate in the current literature,
have underplayed the causal role of energy in the production
of phenomenological states (Pepperell, 2018). For example, the
groundbreaking work on measuring consciousness based on
levels of differentiation and integration by Casali et al. (2013)
noted above is commonly interpreted in information theoretical
terms, where greater “information processing” relates to greater
consciousness. Yet the same results could be equally well
interpreted in energetic terms on the basis that greater levels of
differentiation and integration of the metabolic processes in the
brain are causally related to the greater levels of consciousness
observed.

Recent attempts have been made to dramatically improve
the energy efficiency of machine learning systems using
neuromorphic hardware (Stöckl and Maass, 2021) and given
the growing awareness of the environmental impact of machine
learning computing this is likely to become a topic of more
intense research (Dhar, 2020). Alongside this there is growing
interest in better understanding the causal role that energy and
work plays in mental functions like understanding (Yufik et al.,
2017) and in thermodynamically inspired models of computing
which attempt to harness the natural computational power
of complex, self-organising, non-equilibrium systems (Hylton,
2020). At the same time arguments continue about whether the
physical substrate in which any form of machine understanding
or consciousness is implemented might have a critical bearing on
its functionality and efficiency (Koene, 2012). Such arguments
become especially relevant in the context of a naturalistic
approach where, for example, the foundational role of energy
acquisition and dissipation in artificial intelligence is highlighted

8For an example of a naturalistic approach applied to the problem of
computationally modelling human visual space see Burleigh et al. (2018).
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(Thagard, 2022). These developments suggest that considerations
about the role that energy is playing in the natural system of the
brain will increasingly inform future development of machine
understanding and machine consciousness.

There is also an active line of research into designing systems
capable of human-like faculties of perception, cognition and
consciousness that is directly inspired by current neuroscientific
theories of brain function (Marblestone et al., 2016). Prominent
among these are models based on the Global Neuronal
Workspace (GNW) theory cited above (Haqiqatkhah, 2019;
Mallakin, 2019; Safron, 2020; VanRullen and Kanai, 2021).
According to this theory, the brain contains many processes that
are highly differentiated, localised, widely distributed and yet
unconscious. Under certain conditions, these localised processes
are broadcast across the entire brain network to form an
integrated cognitive state which advocates of the theory argue
is experienced consciously. Relating this theory to the example
discussed in section “Natural Understanding,” we could imagine
the diverse perceptions, concepts, and associations generated
by the cubist painting being instantiated in such distinct
cortical processes across the brain. At the same time, the richly
interconnected global workspace area containing long-distance
axons is able to select one or more local processes to be
broadcast to the entire system, thus allowing for widespread
and simultaneous integration of the diverse processes, just
as we experience when we have gained an understanding of
the painting’s meaning. Researchers such as VanRullen and
Kanai (2021) have proposed methods for implementing the
GNW in artificial neural networks with a view to improving
the performance of current machine learning systems and
potentially endowing them with a capacity for consciousness.
If validated such brain-inspired machines would, in principle,
satisfy the requirements for a mechanical implementation of
natural understanding as defined here.

However, there are also reasons to be cautious about our
ability to emulate natural understanding given the limitations
of current computer architectures and therefore our ability to
replicate natural processes in machines. A key property of the
brain activity associated with consciousness is the presence of
highly recursive neural processing in which activity is fed forward
and backward throughout the brain, creating dynamic loops that
bind local processes into larger global networks. GNW is one of
several theories of brain function that foreground the importance
of recursive, reentrant or recurrent processing (Edelman and
Gally, 2013; Lamme, 2020) and diminution of such feedback
activity has been shown to be one of the hallmarks of loss of
consciousness during anaesthesia (Lee et al., 2009; Hudetz and
Mashour, 2016). According to GNW, recurrent processing is
one mechanism through which the simultaneity of conscious
experience, in which multiple and diverse contents are bound
into a single state of mind, is generated (Mashour et al., 2020).
Given the highly complex physiological organisation of the brain,
noted above, with its billions of interacting cells densely arranged
in a three-dimensional lattice, it is not hard to appreciate how
intricate multiscalar patterns of recurrent processing occur.

It is much harder to imagine how similar levels of recurrent
processing could be implemented, or even simulated, in today’s

digital computer architectures. The physical design and operation
of current computer hardware, which is generally controlled by
a central processing unit that executes lines of computer code
sequentially at a fixed clock rate, means that it is incapable
of producing the highly non-linear and globally interconnected
behaviour we observe among biological neurons. Moreover,
the primarily linear nature of programme execution in current
computers (notwithstanding parallel processing architectures)
mitigates against the simultaneity of processing that seems
to mark natural understanding and conscious processing. Of
course, software-implemented feedback mechanisms are often
integral to machine learning algorithms (Herzog et al., 2020)
and neural feedback can be simulated in software (Caswell
et al., 2016). Moreover, recent research into how recurrent
processing in mammalian brains aids object recognition has
also shown that it improves performance when simulated in
neural nets (Kar et al., 2019). But generating the degree of
recurrent and simultaneous processing necessary to support
the synchronised integration of highly numerous and diverse
modules, in the way that seems to mark understanding and
consciousness in humans, may be far beyond the capability of
current digital computer architectures given the requirement for
complexity noted above.

This brief survey suggests that while natural biological
processes continue to be a source of guidance and inspiration
for those seeking to implement humans cognitive faculties such
as consciousness in non-human substrates significant challenges
and problems remain to be overcome.

CONCLUSION

This article addressed the question of whether consciousness is
required for machine understanding. I have shown that although
we lack a precise operational definition of understanding we
can draw a useful distinction between the natural, artificial
and machine kinds. By analysing concrete examples of natural
understanding I have described some of its key properties and
contrasted these with some of the key properties of artificial
understanding. Although much more could be said about these
properties and the contrasts between them, it is evident from the
analysis presented here that the conscious properties of natural
understanding mark a profound difference in both function and
essence from artificial understanding, even though both share
some functional similarities.

On the basis of this analysis, I have proposed a hypothesis that
may help to explain the advantages that natural understanding
has over the artificial kind, specifically in terms of its capacity
for robustness and generalisability, its ability to deal with
difficult cases, and in the authenticity of its cognitive and
semantic processing. The practical challenges of implementing
machine understanding have been briefly considered, and are
clearly considerable. I suggest that a naturalistic approach
to addressing this challenge may be beneficial, which means
modelling the biological processes and structures that mediate
understanding in humans and implementing these as efficiently
as possible in a non-human mechanical substrate. However,
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pursuing this approach may require us to move beyond today’s
computational architectures.

There are several limitations of the present study. To
mention three: first, as stated at the outset, the phenomenon
of natural understanding is highly complex and multifaceted,
and we lack any precise definition of what understanding is.
Worse, different people in different disciplines can take it to
mean different things. As such, it is unlikely that any single
analysis will be able to capture all its many psychological
and neurobiological properties, define them all in detail, and
explain how they all interact in a way that all agree upon.
The pragmatic approach taken here has been to describe these
properties in broad terms rather than define them precisely
to provide a useful working account of the phenomenon
so that it can be compared to other implementations of
understanding in certain cases. But any future work in this
area will inevitably require more precise and generally agreed
definitions.

Second, the relationship between consciousness and
understanding as discussed here is complicated by the fact
that many of the cognitive processes that enable natural
understanding occur subliminally, as noted above. Future
investigations may need to take greater account of the role of
unconscious processing in the brain, and how this might inform
the design of machine understanding systems. This raises further
questions about the extent to which we need to replicate natural
brain processes and functions to successfully implement human-
like capabilities in non-human substrates or whether designing

machines that achieve more or less the same results, even if by
very different means, will be sufficient “for all practical purposes”
(Anderson, 2017).

Third, the problem of machine understanding is one that,
to date and to a large extent, has been addressed within
the discipline of computer science. The analysis presented in
this article is highly interdisciplinary, drawing on knowledge
from art history, psychology, neuroscience, computer science,
consciousness studies and other fields. There is always a
danger in such highly interdisciplinary studies of oversimplifying
its constituent knowledge. However, the problem of machine
understanding may be one that is so broad and so deep that
we have no option but to take such a highly interdisciplinary
approach. In which case we will need to establish protocols of
cooperation among widely dispersed areas of research.
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