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Abstract

Modal-gating shifts represent an effective regulatory mechanism by which ion channels control 

the extent and time course of ionic fluxes. Under steady-state conditions, the K+ channel KcsA 

displays three distinct gating modes, high-Po, low-Po and a high-frequency flicker mode, each 

with about an order of magnitude difference in their mean open times. Here, we show that in the 

absence of C-type inactivation, mutations at the pore-helix position Glu71 unmask a series of 

kinetically distinct modes of gating in a side-chain-specific way. These gating modes mirror those 

seen in wild–type channels and suggest that specific interactions in the side-chain network 

surrounding the selectivity filter, in concert with ion occupancy, alter the relative stability of pre-

existing conformational states of the pore. The present results highlight the key role of the 

selectivity filter in regulating modal gating behavior in K+ channels.
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INTRODUCTION

Potassium channels are ubiquitous membrane proteins with a fundamental role in generation 

and modulation of the electrical excitability in cells1. Channel function is finely controlled 
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by the interplay between activation gating at the stimulus-driven bundle crossing, and C-

type inactivation gating at the selectivity filter2. Recent high resolution crystallographic 

analyses have provided atomic level details of K+ channels trapped with the activation gate 

in the closed3-5 or open conformation6-9 and the inactivation gate in the conductive or non-

conductive conformations5,9.

A series of crystal structures of KcsA trapped in various degrees of gate opening and ion 

occupancy9 have shown that entry to the C-type inactivated state is associated with a 

sequential reduction in ion occupancy at the S2 and S3 binding sites correlated to the extent 

of opening at the inner bundle gate. Although these structures provide unique insights into 

the basic structural transitions underlying the K+ channel gating cycle, a cursory look at 

most single-channel recordings reveal that even the simplest ion channels exhibit kinetically 

complex behaviors beyond the present set of structures. This functional heterogeneity 

involves conductive and non conductive states10-13 as well as a variety of sub conductance 

levels12,14-17 for which there are no current structural correlates. We have provided 

evidence showing that under saturating stimulus conditions and at steady-state (when the 

activation gate is in its fully-open conformation), most of these gating fluctuations arise 

from conformational changes at the selectivity filter11,12,18,19. Not unexpectedly, the nature 

of the permeant ion20-24 as well as a variety of mutations near the filter17,25-28 have been 

shown to dramatically modulate the frequency and lifetimes of these gating events. In many 

cases, the structural consequences of these perturbations are reflected in changes in the ionic 

occupancy at the filter, which partly explains the divergence from normal functional 

behavior26,29.

Modal gating appears to be a characteristic feature of many K+ channels, where time-

dependent single-channel activity can switch abruptly between periods of high and low open 

probability under fixed experimental conditions30-32. In several channels, differential 

inactivation rates underlie some of these gating regimes31-34. The KcsA selectivity filter and 

adjacent regions display a considerable amount of conformational flexibility, as revealed 

from a comparison of existing KcsA structures in high and low K+5, partial and fully-open 

states9, in the presence of blockers35 and in the (so-called) “flipped” structure observed in 

the E71A mutant11. It is easy to speculate that this intrinsic structural flexibility might 

underlie some of the heterogeneous functional behavior of the selectivity filter that leads to 

multiple gating modes 12.

Here, we have probed the functional and structural origins of modal gating in KcsA by 

studying a series of side-chain substitution at Glu71 position. These mutations sharply 

reduce entry into the C-type inactivated state while stabilizing three kinetically defined 

gating modes, depending on the type of side chain at position 71. These gating modes are 

reminiscent of those seen in wt KcsA, based on their distinct intra-burst open probability 

(Po), and were named high-Po mode (for mutants E71A/G/C/V/S/T), low-Po mode (E71I) 

and Flickery mode (E71Q). High-resolution closed-state crystal structures of some of these 

mutations, together with molecular dynamics (MD) simulations reveal changes in the ion 

profiles and water occupancy in and around the selectivity filter. These observations provide 

an initial rational to the origins of the conformational fluctuations occurring at the selectivity 

filter of the open-conductive channel.
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RESULTS

Variable modal kinetic behavior of wt KcsA

At steady-state, and under saturating proton concentrations, KcsA predominantly resides in 

the non-conductive C-type inactivated state11,12. These long silent periods are interrupted by 

brief sojourns into the conductive conformation, before transitioning back to the non-

conductive inactivated state11 (Fig. 1a). KcsA has been reported to exhibit a highly variable 

single channel kinetic behavior, displaying at least three distinct patterns or “modes” of 

gating12 (Fig. 1b). These modes are characterized by set variations in mean open and mean 

closed times: a high-Po mode with long open times τo ~100 ms, a low-Po mode with 

intermediate open times τo ~ 10 ms and a Flickery mode characterized by very short open 

times τo < 1 ms. The distribution of these modes is found to be random in nature with no 

obvious evidence for pH or voltage dependence. The proportion of time spent in the 

individual modes varies greatly from one patch to another; however the predominant mode 

is that of the high-Po. Steady-state single-channel recordings show that transitions between 

modes can take place within the same burst (Fig. 1c), supporting the view that modal 

behavior in KcsA results from the conformational heterogeneity of individual channels. 

However, these transitions are infrequent and modal changes are typically observed after 

sojourns into the C-type inactivated state.

Mutations at position 71 stabilize diverse gating regimes

While in voltage-dependent channels modal gating has been associated with specific 

biochemical modifications36,37, the origin of KcsA’s kinetic heterogeneity and sub-

conductance levels has remained unclear. Mutations near the selectivity filter have shown to 

substantially reduce this variability. In particular, the C-type inactivation-removing mutation 

E71A also unmasks a kinetically homogeneous high-Po behavior, indistinguishable from the 

high-Po gating mode seen in wt KcsA11,12. We therefore carried out an in-depth analysis of 

the role of different side-chain substitutions at position 71 on the steady-state single channel 

kinetics of KcsA. Out of a total fifteen substitutions, nine mutations: Ala, Cys, Thr, Ser, Val, 

Ile, Gln, His and Gly were well tolerated. Mutations to Arg, Lys, Leu, Asp, Asn and Phe 

severely compromised channel folding and stability and were not analyzed further.

Analysis of macroscopic currents from the nine functional Glu71 mutants revealed that 

while there were no major effects on the time course of activation gating, all mutations 

directly affect the stability of the C-type inactivated state (Fig. 2a). As shown earlier11,38, 

E71A eliminates C-type inactivation, E71H severely enhanced it, and E71S stabilized an 

intermediate level. Mutants E71C, E71I, E71V, E71T and E71Q also slow down C-type 

inactivation with steady-state Po larger than 0.5 (Fig. 2b). The steady-state single channel 

activity faithfully reflected each of the mutants macroscopic behavior, where the long silent 

periods characteristic of wt KcsA recordings (>100 ms), were mostly absent (Fig. 2c).

However, the key observation from this set of mutants is that, besides slowing down C-type 

inactivation, these side-chain substitutions displayed unique intra-burst kinetic patterns 

arising from differences in the duration of opening and closing dwell times. Substitution to 

Ala, Gly, Cys, Thr, Val and Ser resulted in a common phenotype with long opening bursts 
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and few short intra-burst closures. Substitution to Ile displays very homogenous kinetics 

with similar mean open and closed times, while Gln leads to a sustained, high frequency 

flickering behavior with very short open and closed sojourns. Interestingly, substitution to 

Gly also reduced the single channel conductance by factor of 10 (to 1.2 pA), a feature that 

was also reflected in the small amplitude of its macroscopic currents.

Overall, mutations that slowed down inactivation displayed a very homogenous kinetic 

behavior (Supplementary Fig. 1). All of the tested Glu71 mutants were fully selective to K+ 

against Na+ under bi-ionic conditions (Fig. 2d). Given their kinetic homogeneity and the 

obvious similarities to the pre-existing gating modes in wt-KcsA, we chose the mutants that 

best represented each type of kinetic mode for further analysis: E71A for the high-Po mode, 

E71I for the low-Po mode and E71Q for the Flickery mode.

Kinetic analysis of Glu71 mutants

The high open probability of E71A, E71I and E71Q (>0.7) allowed us to easily target 

recordings arising from a single active channel. This way, experiments carried out at 

different proton concentrations confirmed that the effect of increasing pH lies mostly in 

decreasing the burst length, as a result of the closure of the activation gate, with no major 

effects on the behavior of the burst itself. This is a clear indication that the transitions within 

the burst fully reflect the conformational fluctuations at the selectivity filter (Supplementary 

Fig. 2).

The rate constants to and from the conductive state for the various gating mode mutants 

were determined by fitting open and closed dwell times distributions to a model with one 

conductive and three nonconductive states (Fig. 3). These three non conductive states were 

defined as the “Slow” inactive state (Is), with dwell times (τc) around 100 ms; an 

Intermediate Inactive state (Ii) having dwell times between 1-10 ms; and the Flicker (F) state 

with dwell times in the 0.1-0.5 ms range. This classification is based on the lifetimes from 

single wt KcsA patches11,12. The behavior of the severely C-type inactivated mutant E71H 

was also analyzed to set a kinetic baseline for the transitions from a fully inactivated state. In 

Figure 3 (right panels) the kinetic schemes and the shaded region show the predominant 

transition in each of the mutants. Our key observation is that each mutation is associated 

with changes in the rate constants governing transitions to and from each of the states that 

define modal gating in KcsA. Thus, while the E71Q mutation mostly affects transitions into 

and out of the F state, E71I favors transitions to Ii and E71H is fundamentally biased 

towards Is. As expected, most Glu71 mutants had a profound influence on the lifetime of Is, 

a fact that might suggest that destabilization of Is is a precondition to the stabilization of Ii or 

F.

Individual rate constants derived from the fitted experimental dwell time distributions in the 

context of our basic four state model (Table 1) were used to simulate single-channel and 

macroscopic ensemble currents. Since these mutants did not alter activation, we used rate 

constants previously determined for wt KcsA to describe the proton-dependent transitions12. 

As expected, the models reproduced all of the unitary characteristics of the different gating 

modes as well as the time course for the macroscopic responses to pH pulses 

(Supplementary Fig. 3).
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Crystal structures reveal subtle changes in ion occupancy

The discovery of individual mutants that greatly stabilized each of the major gating modes 

in KcsA provides a unique opportunity to probe the structural basis of each gating mode. As 

the E71A structure is already available in the putative conductive conformation (closed 

inner gate)11, we focused on mutations E71I, that favor the Ii state, and E71Q, favoring the F 

state. Crystals of mutants E71I and E71Q were obtained as Fab complexes, diffracting at 

resolutions of 2.3 Å and 2.7 Å, respectively, and were solved by molecular replacement 

methods5 using the structure of wt KcsA (1K4C) as search model.

Experimental 2Fo – Fc electron density maps corresponding to the filter region and Fo – Fc 

omit maps for the ion distribution profile are shown in Figures 4 for E71I and 5 for E71Q. 

Overall, the selectivity filter structures of all gating mode mutants (Figs. 4 and 5) showed no 

major changes in backbone conformation and thus, corresponds to the conductive 

conformation of the filter observed in most closed KcsA structures (RMSD with respect to 

1K4C is 0.25 Å for E71I and 0.12 Å for E71Q). This result was not surprising, given that 

these mutations decrease the rate and extent of C-type inactivation and should indeed 

stabilize the conductive conformation. However, close observation of the electron density 

maps around the filter region revealed interesting differences in terms of the relative ion 

occupancy and the number of water molecules behind the filter (Figs. 4 and 5).

The one-dimensional electron density profile along the pore axis of E71I points to a clear 

loss of ion occupancy at the S2 binding site, together with an apparent decrease in the 

occupancy at S1 (Fig. 4b). On the other hand, the E71Q mutant shows a modest increase in 

the occupancy at the S2 binding site in comparison to wt KcsA (Fig. 5b). Besides these 

changes, the most striking difference among the mutants is the number of water molecules 

buried between the pore-helix and the selectivity filter, bridging the filter region to the rest 

of the protein. In wt KcsA, a water molecule is coordinated by hydrogen bond interactions 

with Glu71, Asp80 and the backbone of Tyr78 in the selectivity filter. In the E71I structure, 

the “cavity” formed by the reduced side chain volume is filled by 3 crystallographic waters 

interacting with the filter through a network of hydrogen bonds connecting the backbone of 

Gly79, Asp80, Leu81 and Tyr78 and the carboxyl group in Asp 80 (Fig 4c, d). There was no 

observable coordinated water in this region in E71Q (Fig 5c, d) but this is likely due 

resolution issues (at 2.7 Å).

Glu71 mutants affect filter conformational dynamics

With the availability of individual crystal structures underlying each of the major gating 

modes, we then addressed the question of whether increased stability of Ii and F in the E71I 

and E71Q mutants might be reflected in the conformational fluctuations of the filter. 

Molecular dynamics (MD) simulation studies suggest that water molecules behind the 

selectivity filter can affect the filter’s conformational flexibility during ion permeation39. 

The timeframes of the single channel transitions observed for Ii and F (and of course, Is) can 

be orders of magnitude away from the dynamic window available to straightforward MD 

simulations, however the present structures offer a unique opportunity to evaluate short 

timeframe differences that might point to subsequent events directly linked to these gating 
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transitions. We carried out a series of 20 ns MD simulations for mutants E71A, E71I, E71Q 

and E71G along with wt KcsA, in a fully explicit system embedded in a lipid bilayer.

From these MD runs, we observed two events of particular interest: First, the amide plane at 

Val76-Gly77 in the selectivity filter (in one of the subunits at a given time) underwent a 

180° reorientation, pointing the backbone carbonyl oxygen of Val76 away from the 

conduction pathway (Fig. 6a). This type of transition has been observed in a number of MD 

simulations40-43 and leads to the loss of a favorable interaction at the S3 binding site, 

potentially affecting the free energy barrier associated to the translocation of K+ from S3 to 

S2
44. A plot of the backbone torsion angle as a function of the simulation time shows that 

the outward-facing (away from the conduction pathway) Val76 carbonyl is greatly stabilized 

in E71Q, where this conformation occurs ~40% of the total simulation time at least in a 

single subunit (Fig. 6b). In contrast, in wt KcsA the Val76 carbonyl remained outward-

facing some 13% of the time, while for the E71I mutant it was only 3% (Fig. 6b). At the 

functional level, the dwell time ratio between the F and O states in the E71Q mutation was 

approximately 40:60 (Fig 3), essentially mirroring the outward-facing/straight 

conformations in the simulation above.

Given the known differences in the timescales of single channel kinetic and MD 

simulations, this comparison between relative populations of states in simulations with the 

single channel kinetics only represent part of a global sequence of events and at best, should 

be considered only as a qualitative piece of the filter dynamics puzzle. Still, we draw 

attention to the fact that out of five MD runs (wt, E71A, -I, -Q and -G), only the flicker-

prone E71Q mutant showed a considerable increase in the frequency and lifetime of Val76 

reorientation (Fig. 6 and Supplementary Fig. 4). Therefore, we would like to suggest that the 

reorientation of the Val76 carbonyl might indeed be associated to the conformational 

changes that eventually lead to short-lived flicker states in single-channel records.

The second observation involves the outward “flipping” of the Asp80 side-chain relative to 

its position in wt KcsA, a movement reminiscent of the conformation observed in one of the 

crystal forms of E71A11 (the so-called “flipped” structure) and in the selectivity filter of Kir 

3.145. Monitoring the Cα-Cα distance between the Glu71 and Asp80 reveals a very narrow 

distribution in wt KcsA, indicative of a strong interaction between these two residues (Fig. 

6c, top). On the other hand, E71Q and E71I display a broader distribution with a distinct 

second population that corresponds to channels with “flipped” Asp80 (Fig. 6c, bottom two). 

In fact, this dual-population behavior is observed in all gating mode mutants at position 71, 

suggesting that the overall mobility of the Asp80 side chain is enhanced in the absence of an 

interaction with Glu71 (Fig. 6 and Supplementary Fig. 5).

DISCUSSION

K+ channel stationary gating is known to involve non-conductive kinetic states with 

lifetimes ranging from sub millisecond to several seconds. Transitions between these and 

conductive states define burst properties at the single-channel level, while changes in the 

equilibrium between these gating events lead to gating mode-shifts. Modal gating is a 

common feature in a wide range of channels, particularly Kv
30-32, Nav

34, Cav
46-48, BK49,50 
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channels as well as the AChR51-53, and NMDA receptors54,55. In some channels, the 

mechanism for modal inter-conversion is subject to cellular control via phosphorylation and 

other post-translational modifications30,31,36,37,56, but the molecular underpinning of these 

events has remained unknown in the majority of channels. In this study we show that 

kinetically diverse conformational states that give rise to modal gating shifts can also 

originate from conformational fluctuations at or near the filter. Conveniently, in KcsA each 

of the naturally occurring modes can be individually stabilized, depending on the nature of 

the side-chain at position 71 in the pore-helix. Given that a wide range of mutations 

converged on a limited set of gating modes, we suggest that the various side-chain 

substitutions at position 71 do not introduce new kinetic behaviors, but actually modulate 

the relative stability of pre-existing conformational states that are intrinsic to wt KcsA. 

These states were defined by their intrinsic dwell time distribution (each roughly tenfold 

faster) as the slow (or deep) inactivated state Is, and intermediate inactivated conformation 

(Ii) and the highly fluctuating F or flicker state.

The question still remains as to why the wt channel exhibits gating heterogeneity while 

mutants reveal a more homogenous behavior. One common feature among these mutations 

is a substantial loss of C-type inactivation and given that modes arise predominantly as 

channels recover from this inactivated state, it is likely that modes switches are associated 

with channels transitioning between the deep inactivated and a series of open conductive 

conformations. These transitions might have slightly different energy paths, therefore 

ensuing a heterogeneous behavior in wt KcsA.

The structural snapshots that underlie the molecular events leading to C-type inactivation 

(Is) have recently been defined crystallographically9. These include a sequential loss of ion 

binding sites S2 and S3, a pinching of the permeation pathway at Gly77 and a compression 

of the filter along the fourfold symmetry axis. The crystal structures and MD simulations of 

the E71I and E71Q mutations offer insights into the short-lived Ii and F states, respectively.

Ion occupancy in the E71I mutant filter is almost fully lost at S2 and partially decreased at 

S1, an ion profile that is distinctly different to that seen in either the fully conductive or the 

C-type inactivated filter9. We propose that this conformation of the filter is related to the 

intermediate Ii state for two reasons: First, even with the loss of external ion binding sites 

the backbone conformation is essentially that of the fully conductive filter. In comparison, 

loss of S2 and a partial loss of S3 in a incompletely C-type inactivated filter leads to obvious 

changes in the filter backbone9. Second, recovery from C-type inactivation has been shown 

to be sensitive to external permeant ion concentration and to the ability of the ion to move 

from one site to another57. Given its easy access to the external bulk K+, ion rebinding at S1 

is expected to be more favorable than at S2 and S3. We therefore suggest that during 

permeation in wt KcsA, loss of ions at the external binding sites lead to the intermediate Ii 

states while sequential vacancies at the deeper S2 and S3 sites lead to the more stable, fully 

developed C-type inactivated (Is) state.

Another interesting feature of this structure relates to the variation in the number and 

location of water molecules coordinated in the cavity behind the selectivity filter. In Wt 

KcsA, a water molecule links the carboxyl groups on Glu71 and Asp80 with the backbone 
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amides of Tyr78 and Gly79 in the conductive conformation, but two water molecules in the 

collapsed, low K+ structure5 that coordinate these residues. Substitution of Glu71 to Ile 

results in three water molecules that generate extensive H-bonding interactions with the 

backbones of residues Gly79, Leu81 and Tyr78, and the Asp80 side-chain. Although the 

precise effect of substituting the functionally important E71-D80 interaction for the three 

waters of coordination is as yet unknown, it is tempting to speculate that the resulting H-

bond network promotes the stabilization of Ii with a relative destabilization of the 

conductive conformation of the filter (O).

Our molecular dynamics simulations suggest that the frequency of spontaneous reorientation 

transitions of the Val76 carbonyl group is greatly enhanced in the E71Q mutation while it is 

mostly unaffected in the rest of the mutants. However, given the wide differences in time-

scale between our experimental and computational data, it is difficult to establish a direct 

correlation between the dwell-time of the outward-facing carbonyl conformation (ns 

timescale) and the kinetics of single-channel flicker events (μs timescale). Clearly, it is 

unlikely that one carbonyl Val76 reorientation corresponds to one flicker event observed in 

electrophysiology. However, we suggest that an increase in the frequency of flickers with 

parallel increases in the incidence of Val76 reorientation could accompany ion translocation 

from one binding site to the next during permeation, also triggering transitions that lead to 

short-lived flicker states. Thus, reorientation of Val76 might be an “initiating” event that 

leads to subsequent non-conductive conformations of the selectivity filter. These 

conformations would be metastable in the μs timescales, as has been suggested on the basis 

of equivalent MD runs44.

MD runs further revealed a bimodal distribution of Asp80 side-chain positions for all of the 

Glu71 mutations (except E71H). The existence of these two conformations is not surprising 

if we consider that the loss of the interaction with Glu71 should enhance the mobility of 

Asp80. It is interesting to note that the enhanced flexibility of Asp80 is also reflected as an 

increase in the crystallographic B-factor of this region in the E71I crystal structure 

(Supplementary Fig. 6). We believe that the additional conformational freedom of Asp80, 

leads to a decrease in the backbone constrains at Tyr78 and Gly79, with obvious 

consequences to the overall conformational dynamics of the filter. However, it still remains 

unclear as to how this motional freedom relates to the different gating forms seen in wt 

KcsA. Since most voltage-dependent K+ channels have a valine at the position 

corresponding to Glu71 in KcsA, some of these conformational fluctuations of the filter 

might play a role in other members of the K+ channel family.

In conclusion, the pore helix, selectivity filter, and external vestibule are dynamic structures 

where small local conformational changes (that include motions of the carbonyl oxygens, 

small fluctuations of the filter backbone, or changes in the configuration and occupancy of 

water molecules behind the filter) can lead to drastic effects on gating. These transitions 

define the interplay between ions and the filter and thus underlie the diverse gating patterns 

observed in single channel recordings of most K+ channels. In KcsA, selectivity filter 

fluctuations are defined by a complex energy landscape that defines three kinetically distinct 

gating fluctuations. Transitions into each of the different gating modes depend on the 
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relative depth of the energy wells associated with the three of pre-existing selectivity filter 

conformations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Materials and Methods

Channel Expression and Purification

Wt and mutant KcsA, cloned in pQE32 vector, were expressed in E.coli XL1-blue cells. 

Membrane preparations were made by homogenizing the cells and spinning them down at 

100,000g for 1 h. Membrane pellets were then solubilized by incubating them with PBS 

containing dodecyl maltoside at room temperature and then purified with a Co2+-based 

metal-chelate chromatography resin (Talon resin, Clontech). The quality of the purified 

protein was checked by gel-exclusion chromatography using a Superdex-200 column.

Electrophysiology and kinetic analysis

Electrophysiological measurements were made by patch clamp recordings in channel-

reconstituted liposomes. Purified protein was reconstituted in asolectin vesicles by dilution 

with 200 mM KCl and 10 mM 4-morpholine propanesolfonic acid (MOPS) buffer at pH 7.0. 

Residual detergent was further removed by incubation with biobeads (Bio-Rad). Channel 

incorporated-liposome suspension was then centrifuged for 2 h at 100,000g and the pellet 

was resuspended in 60 μl of KCl/MOPS buffer. A drop of the proteoliposome was placed on 

a glass slide and dried over-night in a desiccator at 4°C. The sample was then re-hydrated 

with 20 μl of buffer, which yielded giant liposomes. This preparation was suitable for patch 

clamp recordings after ~ 2 hrs. For macroscopic currents, KcsA was reconstituted in 1:100 

(mass:mass) of protein to lipid ratio, while for single channel studies we used a ratio of 

1:10,000 (mass:mass). Currents were recorded under symmetrical conditions of 200 mM 

KCl and 10 mM MOPS buffer unless otherwise specified. Some of the critical experiments 

were also performed in succinate buffer to ensure that the fundamental gating properties are 

not affected by MOPS (data not shown). Recording pipettes were pulled from thin-walled 

borosilicate glass and heat polished such that they had a bath resistance of 1–2 MΩ when 

filled with 200mM KCl, 10 mM MOPS solution. All measurements in this study were 

conducted in the inside-out configuration of the patch clamp technique. Experiments were 
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carried out at room temperature (20-22°C). Currents were elicited in response to pH jumps 

from 8.0 to 4.0 using an RCS-160 fast solution exchanger (Biologic) fed by gravity. During 

pH pulses, the membrane was held at +150 mV. Macroscopic currents were sampled at 5 

kHz using an Axon 200-B patch-clamp amplifier. Single-channel currents were digitized at a 

sampling rate of 40 kHz and low-pass filtered to 5 kHz through an 8-pole Bessel filter.

Kinetic analysis

All kinetic analyses were done using the QuB suite of programs (www.qub.buffalo.edu). 

Drifts in baseline were adjusted using the baseline correction algorithms within the QuB 

preprocessing module. Current traces were idealized into noise-free open and close 

transitions using SKM, a segmental k-means algorithm (the Viterbi algorithm) based on a 

hidden Markov modeling procedure at full bandwidth 58. The number of closed and open 

states that best describe the data were identified by using a maximum likelihood criteria 

after imposing a dead time of 25 μs.

Crystallization of Glu71 mutants

Glu71 mutants were expressed and purified as described above. E71I and Q were 

crystallized in the presence of an antibody Fab fragment by the sitting drop method as 

described previously38. Crystals diffracted to Bragg spacing of 2.3 Å for E71I and of 2.7 Å 

for E71Q. Data was collected on beamlines 22ID-D (SERCAT) and 23ID (GMCA) at the 

Advanced Photon Source and processed with HKL200067.

Crystallographic analysis

Structures were solved by molecular replacement using only the Fab fragment and 

extracellular part of wt KcsA (PDB 1K4C) without the selectivity filter as a search model to 

reduce the biasing of model prediction, as the expected conformation is supposed to be 

different from the closed state. The selectivity filter was built with side-chain density 

corresponding to Val76, Tyr78 and Asp80 as markers. Multiple cycles of refinement using 

CNS and manual rebuilding using the program O, was carried out until the complete model 

was built into the electron density and the Rfactors were lowered. Data collection and 

refinement statistics are provided in Table 2.

Molecular dynamics simulations

The simulation system was represented by an atomic model of the various mutants of the 

closed KcsA channel embedded in a membrane bilayer solvated by an aqueous solution of 

KCl. The model contained the KcsA tetramer, dipalmitoylphosphatidylcholine (DPPC) 

molecules, water molecules and K+ ions in the cavity and at sites S1 and S3. More 

potassium and chloride ions were added to ensure electrical neutrality and mimic a 150 mM 

KCl concentration. The system was set up using the CHARMM program59 following a 

previously described methodology41. Constant-pressure molecular dynamics simulation 

were carried out using the NAMD program60. Each mutant was simulated for 20 ns.
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Figure 1. 
Modal gating behavior of wt KcsA. (a) A continuous recording of KcsA single-channel 

currents measured under steady-state conditions at pH 3.0 and + 150 mV in 200 mM 

symmetric K+ solutions. (b) KcsA displays a highly variable kinetic behavior which arises 

from a combination of three distinct modes of channel activity, the high-Po, low-Po and the 

flickery mode (Left). Histograms show a distribution of open times within bursts for each of 

the three modes of channel activity with mean open times indicated in parenthesis (Right). 

(c) Channels occasionally switch between modes within a burst of activity, suggesting that 

modes arise from a homogenous population of channels.

Chakrapani et al. Page 14

Nat Struct Mol Biol. Author manuscript; available in PMC 2011 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Glu71 mutants stabilize individual gating modes in a side-chain specific way (a) 

Macroscopic responses of wt and various Glu71 mutants elicited by pH jumps from 8.0 to 

4.0 using a rapid solution exchanger in the presence of 200 mM KCl and the membrane 

potential held at +150 mV. The current trace for the E71G mutant is shown at a relative 

amplitude, compared with the other traces, the inset shows the same trace expanded in the 

current axis. (b) A plot of Isteady/ Ipeak for various Glu71 mutants (n>5) (c) Single-channel 

currents were recorded under steady-state conditions at pH 4.0 and +150 mV in 200 mM 

symmetric K+ solutions. Grey box highlights mutants that are focused in this study. (d) 

Selectivity versus Na+ estimated from single-channel I-V ramps under bi-ionic conditions. 

No detectable Na+ currents were seen in any of the mutants. Eapparent is the potential at 

which K+ currents can last be resolved. Error bars show s.d (n>5)
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Figure 3. 
Kinetic behavior of Glu71 mutants. Representative single-channel activity for Glu71 

mutants (Left). Histograms show a distribution of closed and open channel lifetimes for the 

entire recordings (Middle). Single-channel current recordings were best fit by three closed 

and one open state for Glu. The closed states were defined as F, Ii and Is based on their 

lifetimes (Right). Rate constants of recovery from Is for wt and E71H are over estimated due 

to low Po and uncertainty in the number of channels in the patch.
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Figure 4. 
Crystal structure of E71I. (a) Single-subunit line representation of the P-loop of E71I 

overlaid onto the wt structure5 (PDB entry 1K4C) highlights the conductive conformation of 

the selectivity filter backbone. (b) One-dimensional electron density profiles along the 

central symmetry (z) axis is shown. S1-S4 denotes the K+ binding sites. Gray peaks in the 

background correspond to one-dimensional electro density profile of the wt structure. (c) 

Electron density map of residues 60–84 from two diagonally symmetric subunits. Sticks, 

polypeptide chain; blue mesh, 2σ-contour of the 2Fo – Fc electron density map for the 

protein; magenta mesh, 6σ-contour of the Fo – Fc omit map for the ions ; red mesh, 4σ-

contour of the Fo – Fc omit map for the waters. (d) A single-subunit P-loop is shown with 

side chains at Glu71 and Asp80 in stick representation. The H-bond interaction between the 

three crystallographic water molecules within the cavity behind the filter and the rest of the 

protein are represented by black dotted lines.
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Figure 5. 
Crystal structure of E71Q. (a) Single-subunit line representation of the P-loop of E71Q 

overlaid onto the wt structure5 (PDB entry 1K4C) highlights the conductive conformation of 

the selectivity filter backbone. (b) One-dimensional electron density profiles along the 

central symmetry (z) axis is shown. S1-S4 denotes the K+ binding sites. Gray peaks in the 

background correspond to one-dimensional electro density profile of the wt structure. (c) 

Electron density map of residues 60–84 from two diagonally symmetric subunits. Sticks, 

polypeptide chain; blue mesh, 2.5σ-contour of the 2Fo – Fc electron density map for the 

protein; magenta mesh, (4-6)σ-contour of the Fo – Fc omit map for the ions ; red mesh, 5σ-

contour of the Fo – Fc omit map for the waters. (d) A single-subunit P-loop is shown with 

side chains at Glu71 and Asp80 in stick representation. At 2.7 Å resolution we observe no 

crystallographic waters within the cavity behind the filter.
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Figure 6. 
Underlying conformational dynamics of the selectivity filter and the fast gating kinetics. (a) 

Structural snapshots of outward-facing carbonyl conformations. (b) Dynamics of carbonyl 

reorientation in KcsA. Time traces of the Val76 carbonyl dihedral angle (N-CA-C-O) during 

20 ns molecular dynamics trajectories. Different color lines correspond to different subunits. 

Potassium ions were initially placed in the cavity and sites S1 and S3. (c) Distribution of 

Glu71-Asp80 Cα-Cα distances. The green and magenta fits correspond to populations with 

Asp80 facing-down (centered at ~10.3Å) and “flipped”-outward (centered at ~11.1Å) 

respectively.
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Table 2

Data collection and refinement statistics

E71Q E711

Data collection

Space group I4 I4

Cell dimensions

  a=b, c (Å) 155.7,76.1 156.4, 76.0

  α=β=γ(°) 90 90

Resolution (Å) 40-2.7 40-2.3

Rsym or Rmerge (%) 6.9(36.3) 8.0(32.4)

I/σI 17.5(3.7) 20.0(2.7)

Completeness (%) 94.0(93.2) 96.1(94.3)

Redundancy 6.1(3.1) 3.9(3.1)

Refinement

Resolution (Å) 40-2.7 40-2.3

No. reflections 23689 39318

Rwork/Rfree (%) 22.6/26.8 26.4/27.1

No. atoms

 Protein 4074 4073

 Ligand/ion 7 5

 Water 4 7

B-factors

 Protein 59.2 45.7

 Ligand/ion 41 51

 Water 52 82.4

R.m.s deviations

 Bond lengths (Å) 0.007 0.005

 Bond angles (°) 1.36 1.11
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