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Simple Summary: Salmonellosis is a human and animal disease caused by Salmonella, a bacterial
genus classified into different species, subspecies, and serological variants (serovars) according to
adaptation to one or more different hosts (animals and humans), pathogenicity profiles, and antigenic
properties. Some specific Salmonella serovars can spread more easily in the enteric microbiota of
avian species, often causing disease in birds and/or being transmitted to humans through food
(such as chicken and eggs). Antimicrobial resistance (AMR) has also been reported in poultry-
associated Salmonella isolates due to the widespread use of antimicrobials on farms. The availability
of comprehensive data on the emergence and spread of Salmonella serovars, as well as their AMR
profiles in farms and food products in Brazil (a major producer of poultry in the World), is necessary
to understand their relevance in all avian production chains and also occurrence in poultry-derived
foods. This article aims to provide an overview of the genus Salmonella and the main serovars that
emerged in Brazilian poultry over time (Gallinarum, Typhimurium, Enteritidis, Heidelberg, and
Minnesota), reviewing the scientific literature and suggesting more effective prevention and control
for the future.

Abstract: Salmonella infects poultry, and it is also a human foodborne pathogen. This bacterial genus
is classified into several serovars/lineages, some of them showing high antimicrobial resistance
(AMR). The ease of Salmonella transmission in farms, slaughterhouses, and eggs industries has made
controlling it a real challenge in the poultry-production chains. This review describes the emergence,
dissemination, and AMR of the main Salmonella serovars and lineages detected in Brazilian poultry.
It is reported that few serovars emerged and have been more widely disseminated in breeders,
broilers, and layers in the last 70 years. Salmonella Gallinarum was the first to spread on the farms,
remaining as a concerning poultry pathogen. Salmonella Typhimurium and Enteritidis were also
largely detected in poultry and foods (eggs, chicken, turkey), being associated with several human
foodborne outbreaks. Salmonella Heidelberg and Minnesota have been more widely spread in recent
years, resulting in frequent chicken/turkey meat contamination. A few more serovars (Infantis,
Newport, Hadar, Senftenberg, Schwarzengrund, and Mbandaka, among others) were also detected,
but less frequently and usually in specific poultry-production regions. AMR has been identified
in most isolates, highlighting multi-drug resistance in specific poultry lineages from the serovars
Typhimurium, Heidelberg, and Minnesota. Epidemiological studies are necessary to trace and control
this pathogen in Brazilian commercial poultry production chains.

Keywords: Salmonella; Brazil; Gallinarum; Enteritidis; Minnesota; Typhimurium; Heidelberg; antimi-
crobial resistance; poultry
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1. Introduction

Meat consumption has been shifting towards poultry. It has been mainly driven by
chicken (Gallus gallus) and turkey (Meleagris gallopavo), due to the relatively low cost of
production [1]. Moreover, eggs are considered foods of high nutritional value for humans
and they are widely consumed too [2].

Brazil is an important producer and exporter of poultry meat in the World, with
volumes of 13.8 million and 4.2 million tons, respectively, in 2020. In addition, Brazil
produced 172.3 thousand tons of turkey meat and 53.5 trillion eggs in this same year. Almost
all stages of the poultry production chain (meat and eggs) are carried out inside the country,
including farming the breeding birds (grandparent stock, hatchery, breeders), broilers, and
layers. Furthermore, poultry foods are also largely processed in slaughterhouses and eggs
industries in different Brazilian regions [3].

Foodborne bacteria have been detected in all poultry-producing regions in the World
in the last seventy years [4]. Different bacteria species are the main pathogens of meat and
eggs [5]. Poultry meat contamination occurs frequently by Salmonella spp., Campylobacter
jejuni, Campylobacter coli and Clostridium perfringens [4]. Other frequent poultry foodborne
bacteria include Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli [4,5]. The
bacterial genera Pseudomonas, Hafnia, Serratia, Rahnella, Yersinia, and Buttiauxella have also
been detected in poultry products [6,7]. Among all these pathogenic bacteria, Salmonella has
been the most concerning to public health. Poultry foods most commonly associated with
Salmonella outbreaks are eggs, chicken, and other meals mixed with poultry products [4]. In
addition, some Salmonella serovars are also associated with specific poultry diseases with
huge economic losses [8].

Prevention and control measures are adopted in producing farms and food processing
industries to prevent the occurrence of the main Salmonella serovars worldwide. In Brazil,
Salmonella is also routinely controlled on farms, with vaccination and constant laboratory
diagnosis to monitor the infection of the flocks and prevent transmission to poultry-derived
food [9]. Despite these measures, several poultry diseases and foodborne Salmonella out-
breaks were reported in Brazil in recent decades. This review describes the main features of
the Salmonella genus, including serovar classification and antimicrobial resistance (AMR),
as well as the emergence and spread of serovars most frequently associated with poultry
in Brazil.

2. Classification into Serovars

Salmonella belongs to the Enterobacteriaceae family. It is a Gram-negative bacillus, non-
spore-forming, facultative anaerobic, and generally mobile due to the peritrichous flagella.
Moreover, the genus is classified into the bacterial species S. enterica and S. bongori, with the
first being divided into six subspecies: enterica, salamae, arizonae, diarizonae, houtenae, and
indica. Salmonella isolates from all these species and subspecies are also classified accord-
ing to antigenic characteristics and more than 2.650 serovars were already reported [10].
Differentiation into serovars is performed by the laboratory analysis of the O (membrane
lipopolysaccharides), H (flagellar proteins), and Vi (capsular polysaccharide) bacterial
antigens within the White–Kauffman–Le Minor scheme. All these antigens are expressed
in a specific formula for each serovar, for example “1,4,[5],12:i:1,2” (Typhimurium) and
“1,9,12:g,m“ (Enteritidis) [11].

Salmonella has also been classified according to two specific human clinical manifes-
tations into typhoid and non-typhoid types. The first group is composed of the etiologic
agents of enteric fever, and currently includes serovars Typhi and Paratyphi, while the
second group is composed of all other serovars [12]. Similarly, salmonellosis in poultry
is also divided into two main groups according to the pathogenesis and avian clinical
manifestations: (i) typhoid, including generalized infection by Salmonella, resulting in fowl
typhoid (FT) and pullorum disease (PD), both caused by the serovar Gallinarum biovars,
Gallinarum and Pullorum, respectively, which are highly adapted and restrict transmission
among chickens (Gallus gallus) and a few other bird species; (ii) paratyphoid, including
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all Salmonella associated with enteric infection in birds presenting or not presenting clin-
ical disease under special circumstances (laying period, very young or old birds, viral
co-infections). This last type of salmonellosis is caused by any serovar other than Galli-
narum (such as Typhimurium, Enteritidis, Heidelberg, Minnesota, etc.), which also can be
transmitted to humans by direct contact (on farms, slaughterhouses, etc.) or consumption
of contaminated poultry foods [13] (Figure 1).
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detected in the Brazilian poultry production chain.

Salmonella intra-serovar lineages laboratory identification is necessary for outbreak
epidemiological investigations. The first method used to identify Salmonella isolates in
outbreaks was phage typing in the 1980s [14]. Each Salmonella isolate from a given serovar
was sorted into a unique phage type according to its reactivity against a set of specific
viruses [15,16]. This procedure was more frequently used in the epidemiological surveil-
lance of the concerning serovars Typhimurium and Enteritidis [15–17]. S. Typhimurium
more disseminated definitive (phage) types (DTs) included DT49, DT104, DT135, and
DT193 [18,19], while S. Enteritidis epidemiologically important phage types (PTs) were
PT4, PT8, PT13a, and PT13 [20,21].

More recently, different molecular DNA-based methods have also been included in
the arsenal of laboratory methods for epidemiological investigations, such as Pulsed-Field
Gel Electrophoresis (PFGE), Multi-locus Sequence Typing (MLST), core genome Multi-
locus Sequence Typing (cgMLST), Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR), Multiple-Locus Variable-Number Tandem-Repeats Analysis (MLVA)
and sequencing analysis of the Intergenic Spacer Regions (ISRs) of ribosomal RNA oper-
ons [22–26]. There are even some molecular techniques to identify the serovar from whole-
genome sequences (WGS) data, such as Salmonella In Silico Typing Resource (SISTR) [24]
and SeqSero [27]. Salmonella WGS data have also been increasingly used to evaluate single
nucleotide polymorphisms (SNPs) in the complete genomes and to track specific lineages
of many serovars in different stages of the poultry production chain [28,29].

PFGE is a genotyping method based on previous total DNA digestion of a specific
bacterial isolate with few restriction enzymes followed by pulsed-field electrophoresis. It
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was largely used from the 1980s to the 2000s to track specific Salmonella lineages [30]. MLST
allows the characterization of Salmonella isolates by sequencing seven housekeeping genes:
aroC, dnaN, hemD, hisD, purE, sucA, and thrA [31,32]. It was refined and many studies
are reporting the use of cgMLST, allowing the determination of the Salmonella sequence
type based on all core genome genes [25]. According to these last two methods, Salmonella
isolates have been currently classified into hundreds to thousands of different sequence
types (STs) as an additional identification to serovar assignment [25,32]. As the number
of Salmonella genomic sequences has increased, several STs were already reported and are
now available in current specific databases. In addition, there are proposals to change the
conventional nomenclature of Salmonella serovars, now using the genomic characteristics
of the bacterial isolates and the specific ST groups [32,33].

3. Antimicrobial Resistance

Salmonella is also a matter of concern due to the occurrence of AMR in some specific
serovars [34,35]. The excessive use of antimicrobials in animal/agricultural production and
treatment of human/animal diseases has allowed the selection of many Salmonella strains
resistant to one or more antimicrobials [36].

Antimicrobials have been administered in animal production with three main ob-
jectives: (1) to enhance animal performance, using low doses continuously throughout
the feed; (2) to prevent the occurrence of pathogenic bacteria, using intermediate doses
before or during critical transitions in the production process; and (3) to treat infectious
animal diseases in the producing flocks/herds, usually with higher doses [37,38]. Amino-
glycosides and other antimicrobial classes have been included in poultry production over
time [39,40]. Tetracyclines and sulfonamides were banned as additives in animal feed in
1988, but their use for therapeutic purposes is still allowed, and are currently used to treat
sick animals [41]. Data collected from 103 countries globally indicated that the Americas,
Asia, and Eastern Oceania used 86% of 93,092 tons of antimicrobial agents for animals in
2017, with tetracycline and penicillin ranking at the top of the most used ones [42].

The prolonged use of antimicrobials has possibly increased Salmonella resistance to
the most used classes in the poultry production chains [39,43,44]. Overall, 6 out of the
10 most frequently poultry-associated Salmonella serovars in the United States (Enteritidis,
Montevideo, Schwarzengrund, Infantis, Thompson, and Mbandaka) have been demon-
strated to be generally pan-susceptible or with resistance to few antimicrobials, whereas
four (Heidelberg, Typhimurium, Kentucky, and Senftenberg) are more commonly reported
as resistant to many of them [45]. Some Salmonella isolates from these last four serovars
have also been reported as multidrug-resistant (MDR), which means, resistant to three or
more antimicrobials classes [34,44–47].

Due to the intensive farming and the long history of antibiotic use, Brazil has reported
the occurrence of AMR in different Salmonella serovars [48]. A study evaluating 930 WGS
of different Salmonella serovars retrieved from the public database of the National Center
for Biotechnology Information (NCBI) and published in the last four decades, demon-
strated the prediction of the MDR phenotype in 58% (540/930) of the isolates, highlighting
ciprofloxacin and nalidixic acid with the highest frequency rates [39]. Other recent re-
ports have also demonstrated that MDR is frequent in Salmonella serovars Heidelberg and
Minnesota isolated from broilers, layers, and poultry-derived food in Brazil [44,49–52].

4. Emergence and Dissemination

The intestines of birds are colonized by several microorganisms that make up the host’s
microbiota in a state of equilibrium. Lactobacillus, Bifidobacterium, Streptococcus, Bacteroides,
Fusobacterium, and Eubacterium are frequent bacterial genera of beneficial microbiota. Im-
balance of the intestinal microbiota can occur and favor the colonization by pathogenic
micro-organisms, including the genera Salmonella, Clostridium, Escherichia, Campylobacter,
Staphylococcus, and Listeria [53,54].



Vet. Sci. 2022, 9, 405 5 of 24

Several factors affect colonization by Salmonella in poultry flocks on commercial farms,
including host age, genetic susceptibility, stress due to overcrowding or secondary disease,
level of exposure to pathogens, intestinal microbiota competitors, and bacterial genetic
factors [55,56]. Furthermore, Salmonella needs first to multiply in the enteric tract of some
poultry in the flock, after contaminating the environment with the excretion of high bacterial
loads in the litter [57]. In the host infection, Salmonella has to compete with other micro-
organisms for a niche that provides nutrients for replication and fights against the host’s
immune defenses [58]. To successfully reach the host’s gut and start the infection, the
bacteria need first survive in hostile environments. Salmonella has developed “biological
tools” to be a good competitor, comprising a set of virulence factors, plasmids, prophages,
and even mobile genetic elements acquired in its evolutionary history [59,60].

One specific and very important adaptation step in the evolutionary process was
the acquisition of the genetic cluster known as Salmonella pathogenic island 1 (SPI-1). It
produces a type III secretion system necessary for the enterocyte invasion. In addition,
several other gains and losses of genes occurred over time and a total of 24 different
SPIs were already reported scattered into different serovars [61]. In addition to SPI-1,
four other SPIs have been more well-studied: SPIs-2 to 4, which are necessary for the
bacteria to multiply and survive within the host, and SPI-5, which regulates inflammation
and the secretion of metabolites for the enteric phase of the disease [62]. The remaining
pathogenicity islands are also necessary according to other specific environments and
hosts [61,62].

The emergence of a new Salmonella serovar in a specific ecological niche in poultry
chains is frequently associated with the effective reduction in other bacteria populations
(including other Salmonella serovars) and/or the lack of adequate immunization of the host.
In the recent poultry intensive production history (over the last 100 years), “conquests and
downfalls” seem to have occurred with the different serovars in the main places of poultry
production in the world. In the mid-20th century, poultry diseases caused by Salmonella
Gallinarum (including biovars Gallinarum and Pullorum) were the most concerning infec-
tions on commercial farms worldwide [63]. Some decades after, Salmonella Typhimurium
and Enteritidis were massively detected in poultry flocks and foods (chicken, turkey, eggs),
and were considered the most concerning serovars for public health [56,64,65]. Until the
mid-1980s, S. Typhimurium was also one of the main serovars detected in animal pro-
duction farms, and consequently in foods [64]. In the 1990s, S. Enteritidis predominated
among the serovars frequently detected in avian farms and outbreaks due to the consump-
tion of poultry foods in several countries [65,66]. More recently, other Salmonella serovars
(such as Heidelberg, Kentucky, Montevideo, and Minnesota) were increasingly detected
in specific poultry production chains and foods worldwide [67–69]. In Brazil, the most
concerning serovars in poultry production along the time in the 20th century were the same
of other poultry-producing western countries: Gallinarum, Typhimurium, and Enteritidis.
Although two other serovars have been a matter of special concern in Brazilian broilers
farms in this century: Heidelberg and Minnesota (Figure 2).

4.1. Salmonella Gallinarum

Salmonella enterica serovar Gallinarum (S. Gallinarum) is highly adapted to avian
species, causing systemic diseases in birds from poultry farms worldwide [63]. It is con-
sidered a non-motile serovar due to the absence of peritrichous flagella in all bacterial
isolates. Therefore, S. Gallinarum presents only O-surface antigens (antigenic formula
1,9,12:-:-). This serovar is further divided into Pullorum and Gallinarum biovars, which
have specific genetic, metabolic, and physiological characteristics, in addition to being
responsible for two well-characterized clinical diseases in chickens (Gallus gallus). Recent
studies have also demonstrated that S. Galllinarum strains probably evolved from the same
ancestor of serovar Enteritidis (antigenic formula 1,9,12:g:m). The main genomic alterations
include deletions and mutations, including ones related to the absence of flagellin gene
expression [70,71].
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S. Gallinarum bv. Pullorum causes PD, a systemic infection in young birds, frequently
related to transovarial/vertical transmission. Birds with PD present bacillary white diarrhea
that can progress to septicemia and death. The macroscopic lesions can include hepatitis
and splenitis with white necrotic foci and purulent airsacculitis. This disease presents a
more clinically concerning outcome in two- to three-week-old chickens due to the high
mortality rate. The surviving birds can become asymptomatic carriers and transmit the
bacteria to other chickens [72]. S. Gallinarum bv. Gallinarum causes FT, an acute septicemic
or chronic disease that occurs most often in adult birds through horizontal transmission.
Acute septicemic and/or chronic FT is responsible for 40% of death in Brazilian poultry
flocks [73,74]. FT also induces significant economic losses by reducing fertility and egg
production [8].

The first S. Gallinarum isolate was probably from the biovar Pullorum and its emer-
gence is estimated to have occurred around 914 DC, after dispersing worldwide [75]. The
initial PD outbreaks were reported in the 19th century, while the bacterium was firstly
characterized in the 1900s (Figure 2). It is noteworthy that the specific evolution of this
biovar resulted in the emergence of novel virulent strains with a unique ability to induce
arthritis in chickens, expanding its pathogenic profile [76]. Aiming to establish sanitary
measures and to achieve the control/elimination of S. Gallinarum bv. Pullorum, official
programs in the Western countries, highlighting the United States (with the NPIP, National
Poultry Improvement Plan), were implemented at the beginning of the 20th century [77].
However, this biovar became endemic in the most important poultry-producing countries
worldwide and it was associated with significant economic losses in poultry farms in the
20th century [78]. PD outbreaks were reported in North America, as well as in other conti-
nents [72,79,80]. In Brazil, PD was first diagnosed in 1928 with several official notifications
over time, highlighting 15 outbreaks from 2009 to 2014 [81].

S. Gallinarum bv. Gallinarum appears to have a more recent origin, but definitive
evolutionary analyses have not yet been performed. FT was rarely diagnosed in the 20th
century in the United States due to the NPIP implemented to control S. Gallinarum bv.
Pullorum. The last reported FT outbreak was in 1981, so this biovar is considered eradicated
in the US [82]. It has also been rare to detect FT in Europe, with only two reports in Denmark
and Germany due to breeder importation [83]. However, outbreaks have been frequently
reported in Asia and South America, mainly in backyard birds [84]. In Brazil, reports have
described the occurrence of FT in commercial poultry farms for a long time [22,84]. The first
introduction is estimated to have occurred in the mid-19th century, followed by another
in the mid-20th century [85]. This biovar also seems to be highly dispersed in Brazilian



Vet. Sci. 2022, 9, 405 7 of 24

poultry farms and a total of 94 outbreaks were officially reported from 2005 to 2012 (51 in
2005, 5 in 2006, 24 in 2007, 2 in 2008, 1 in 2009, and 14 in 2012) [81]. Data about outbreaks
occurring after 2012 are scarcer, but FT has been frequently reported by poultry farmers [86].
In addition to the horizontal transmission of field strains that are already hosted in poultry
farms, industrial incubation of contaminated eggs has also been hypothesized as a key
factor for the spreading of this biovar in the whole country [87].

Biosecurity programs, including the elimination of S. Gallinarum positive poultry
flocks and massive vaccination, have been the main effective tools used to eradicate FT and
PD. The official Brazilian poultry health control plan (PNSA, Programa Nacional de Sanidade
Avícola) includes rules to safeguard flocks for this serovar. Poultry flocks with suspicion
of FT or PD must be screened for S. Gallinarum by traditional methods (bacteriology
culture, biochemical tests, serology), as well as molecular biology technologies, such as
polymerase chain reaction (PCR). Positive flocks have to be immediately slaughtered, and
the environment must be disinfected [9].

S. Gallinarum strains also present several different genomic profiles, including lin-
eages with several prophages, plasmids, and gene clusters coding for different AMR
mechanisms [75,88]. It has also been reported that S. Gallinarum has accumulated many
pseudogenes and virulence genes associated with specificity to chicken hosts [89]. MLST
analysis has demonstrated the occurrence of at least four STs of S. Gallinarum bv. Gal-
linarum (ST78, ST331, ST470, ST762) and two of S. Gallinarum bv. Pullorum (ST92 and
ST747) [32] (Table 1).

AMR has not been frequently reported in S. Gallinarum. However, the resistance
to nalidixic acid, gentamicin, ciprofloxacin, kanamycin, streptomycin, enrofloxacin, and
ampicillin has already been reported in different countries [90–92]. In addition, genes
coding for AMR, as well as specific mutations in the gyrA gene (associated with fluoro-
quinolone resistance) have been observed in the bacterial genomes of S. Gallinarum iso-
lates [90,91]. In Brazil, S. Gallinarum appears to present AMR to nalidixic acid, ciprofloxacin,
enrofloxacin, and tetracycline, but not for beta-lactams [93] (Table 1). S. Gallinarum
bv. Gallinarum isolates have additionally demonstrated resistance to azithromycin and
quinolone/fluoroquinolone [93,94]. Higher resistance in the more recent Salmonella isolates
than in samples obtained in the past was also observed and associated with the increased
use of antimicrobials in the poultry farms [93]. Noteworthy, the association of some resis-
tant S. Gallinarum isolates with the historical indiscriminate use of antibiotics has already
been demonstrated [75,92]. Antimicrobial therapy is also described to treat PD and FT,
especially in small-scale commercial layer flocks [95].

4.2. Salmonella Typhimurium

Salmonella enterica serovar Typhimurium (S. Typhimurium) infects a wide range of
hosts and it is the most frequent serovar isolated from intensive-producing animals and
foods worldwide. In addition to having several lineages, this serovar (antigenic formulae
1,4,[5],12:i:1,2) has also monophasic and aphasic flagellar variants with slightly different
antigenic properties (1,4,[5],12:i:-/1,4,[5],12:-:1,2/1,4,[5],12:-:-), but very similar genetic and
metabolically activities. These few antigenic differences have resulted in several problems
in epidemiological investigations, making tracking these variants a real nightmare [96].
Importantly, S. Typhimurium is frequently motile due to its peritrichous flagella, which
include the flagellin proteins FliC (phase 1 antigen) and FljB (phase 2 antigen) [97]. Most
isolates are biphasic, expressing both flagellins in different physiological conditions. How-
ever, monophasic variants of phase 1 or phase 2 are frequently detected, since lacking the
capacity of flagellar antigen production is a bacterial strategy to evade the immune system
of the host animals [96]. Furthermore, this serovar also has a very long evolutionary history
associated with human and animal infections, resulting in a high diversity of pathogenicity,
virulence, AMR profiles, and host adaptation [98].

S. Typhimurium was the first non-typhoid concerning serovar isolated in humans
infected by contaminated foods. In the mid-1950s, it was isolated from duck eggs con-
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sumed by patients presenting severe enteric infection in Europe [99]. It was also the most
frequent serovar associated with animal and human outbreaks in the United Kingdom
from 1941 to 1970, with a steady increase to a maximum of 85% of salmonellosis cases
in 1954 [100]. Additionally, it was detected in cattle, poultry, swine, and sheep samples
(Figure 1). In livestock, this serovar was the most frequent in turkeys and also presented in
cattle [101,102]. It spread to other livestock before its global dissemination in the 1990s [102].
S. Typhimurium and its variants have continued to disseminate in animals and in humans
being the top concerning serovar in most regions of the World [98,103–105].

Previous epidemiological investigations traced this serovar with phage typing and
S. Typhimurium DT104 was one of the most disseminated worldwide. This type was
associated with cattle hosts, but also detected in swine, birds, and wild animals [106].
In the 1990s, there was a global epidemic of DT104 in humans, being the most common
DT in Europe, Asia, and America [102,106]. Human outbreaks by this phage type were
caused by direct animal transmission, imported food, travel abroad, and environmental
reservoirs [107]. Recent WGS analyses have provided more evidence that it probably
emerged from an antimicrobial susceptible ancestor in ∼1948 and became MDR in ∼1972
through horizontal transfer of the 13 kb Salmonella genomic island 1 (SGI-1) [108]. Despite
the epidemiological importance of S. Typhimurium DT104 for public health, other DTs (for
example, DT193 and U288) have also been largely disseminated in livestock, foods, and,
consequently, they infected humans too [109,110]. In addition, monophasic S. Typhimurium
1,4,[5],12:i:- has also been a matter of concern worldwide, including in Brazil [111,112]. In
addition to being responsible for human salmonellosis outbreaks in America and Europe,
it was also isolated from different animals and foods [113–116].

In poultry production, S. Typhimurium and its variants have already been detected
in layers and broilers [117]. The contamination by this serovar can occur at multiple steps
along the food chain, including production, processing, distribution, retail marketing,
handling, and final preparation [118]. In Brazil, it is largely reported that S. Typhimurium
was a very common isolate in non-human sources (including broilers, layers, and poultry-
derived foods) before the 1990s [119]. With the wide spread of S. Enteritidis at the end of
the 1980s and the beginning of the 1990s, S. Typhimurium isolations declined in non-human
sources in Brazil for some years [64,120] (Figure 2). However, it was still classified as the
most common serovar isolated from humans [121]. S. Typhimurium monophasic variants
(mainly 1,4,5,12:i:-) were also frequently detected in human, animal, and food samples in
this same period [111,112,116]. More recent studies have demonstrated the detection of this
serovar in livestock and animal-derived foods, including poultry meat and eggs [122,123].

The implementation of biosecurity procedures in farms and industries to prevent food
contamination has contributed to the reduction in the incidence of salmonellosis [56,124,125].
Additionally, the use of vaccines for S. Typhimurium in poultry flocks and swine herds has
helped to prevent the dissemination of this pathogen [126–128].

S. Typhimurium genetic, antigenic, and metabolic diversity has been evidenced by the
large amount of WGS data generated in recent years. Several lineages were characterized,
some of them highly adapted to specific hosts. Now it is well-known that S. Typhimurium
is a complex group of slightly different sequence types, such as ST19, ST313, ST213, ST128,
and many others [32,49,129]. Some of the main lineages seem to be more adapted to specific
hosts [98] (Table 1).

AMR has been reported in several S. Typhimurium isolates. Since the 1990s, MDR
S. Typhimurium isolates have been frequently observed [102]. AMR seems to have bene-
fitted S. Typhimurium DT104 to spread more quickly [108]. MDR isolates have also been
associated with a higher risk of invasive infection, longer illness, increased frequency
and duration of hospitalization, and a higher risk of death than antimicrobial suscepti-
ble strains [130,131]. In Brazil, MDR S. Typhimurium frequency has also increased over
time [19]. Furthermore, MDR S. Typhimurium-specific lineages of swine-origin have been
reported in farms and foods [132,133]. Most S. Typhimurium isolates obtained from poultry
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and chickens show resistance to several antimicrobials, including colistin [49,134–136]. The
resistance genes detected in these isolates are presented in Table 1.

4.3. Salmonella Enteritidis

Salmonella enterica serovar Enteritidis (S. Enteritidis) is highly adapted to avian species
without causing severe clinical signs in most poultry-producing flocks. However, this
non-typhoid serovar can occur in high concentrations in chicken meat and eggs, and can
cause human foodborne outbreaks [137]. S. Enteritidis presents a specific surface structure
with the expression of the two flagellar phases (antigenic formulae 1,9,12:g:m), so isolates
are generally motile. Monophasic and even aphasic flagellar variants can be also rarely
detected (1,9,12:g:-/1,9,12:-:m/1,9,12:-:-). Salmonella surveillance data showed that the
occurrence of S. Enteritidis in foods increased worldwide from the 1970s to the 1980s [138].
Furthermore, epidemiological investigations have demonstrated that this global increase
was related to the consumption of eggs and poultry meat [139].

S. Enteritidis emerged as the primary cause of foodborne outbreaks in the World in
the mid-1980s [65]. The increased frequency of salmonellosis by this serovar was associated
with the consumption of avian-source foods, such as eggs and undercooked chicken
meat [56,138–140]. It was so hypothesized that S. Enteritidis filled the ecological niche
vacated by the eradication of S. Gallinarum (biovars Pullorum and Gallinarum) from
domestic fowl in many poultry-producing countries. Importantly, these two serovars
share a common immuno-dominant somatic antigen. Enteric colonization, as well as flock
immunity generated by the infection with the two biovars of S. Gallinarum, probably
prevented an earlier emergence of S. Enteritidis in poultry flocks worldwide [65,141].

S. Enteritidis was initially traced by phage-typing and the different outbreaks were
caused by PT4, PT8, and PT13a. In the United States, PT8 and PT13a were the most
common in the northeast, south, and mid-west, while PT4 was predominant in the western
states [142]. In Europe, PT4 was the most frequent one in S. Enteritidis isolated from chicken
carcasses [140,143]. Therefore, most studies concluded that PT4 was more frequent in
Europe, while PT8 and PT13 were prevalent in the United States [144]. In South America, the
predominance of PT4 was demonstrated, followed by the less known PT7 and PT9 [145,146].
Overall, 150 S. Enteritidis foodborne disease outbreaks were reported only in Argentina
between 1986 and 1993 [147]. In Brazil, human salmonellosis cases by this serovar were
detected in all geographic regions in the late 1980s [64]. A recent study with WGS data
reinforced the high increase in S. Enteritidis bacterial population in the second half of the
1980s and beginning of the 1990s, associated with the high frequency of this pathogen in
the poultry production chain in this country [148].

Diagnostic tools, as well as biosecurity and control measures, were implemented to
avoid the high spreading of S. Enteritidis. Monitoring and sanitization plans were intro-
duced in all stages of poultry production, including breeding flocks, hatcheries, broiler
flocks, and slaughter establishments [149]. In addition, layers and breeders’ flocks have
been vaccinated, contributing to a significant reduction in S. Enteritidis contamination
in the table egg industry and broiler processing plants [149–152]. In Brazil, preventive
measures established by the PNSA were adopted in poultry farms, slaughterhouses, and
eggs industries to reduce the prevalence of Salmonella spp. and to establish an adequate
level of consumer protection [9]. Additionally, egg quality assurance programs were
also implemented to avoid food contamination. All these procedures reduced the occur-
rence of S. Enteritidis in commercial farms and poultry-derived foods, improving public
health [150,152].

S. Enteritidis strains present several different genomic profiles, including many lin-
eages with some specific genetic and metabolic characteristics. MLST analysis has demon-
strated the occurrence of more than 15 STs, including ST11 (the most frequent and largely
disseminated), ST183, ST136, ST310, ST814, and others [32,148] (Table 1).

This serovar has also been characterized by low resistance to antimicrobials in Brazil.
However, some S. Enteritidis isolates from foodborne outbreaks and hospitalized patients
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showed an MDR profile [122,131]. S. Enteritidis isolates from poultry-derived products
and foods showed AMR mainly to sulfonamide, trimethoprim-sulfamethoxazole, nalidixic
acid, streptomycin, gentamicin, and tetracycline [153–156]. AMR genes are further detailed
in Table 1.

4.4. Salmonella Heidelberg

Salmonella enterica serovar Heidelberg (S. Heidelberg) was firstly isolated from humans
in the city of Heidelberg, Germany, in 1933 [157] (Figure 2). Later it was demonstrated
to infect livestock, mainly poultry. It is frequently characterized as a biphasic motile
serovar (antigenic formulae 1,4,[5],12:r:1,2), but monophasic and aphasic flagellar variants
(1,4,[5],12:r:-/1,4,[5],12:-:1,2/1,4,[5],12:-:-) have also been reported [11].

Epidemiologically, S. Heidelberg is a serovar often detected in human foodborne
salmonellosis [158–160]. Human infections are more frequently reported in hospitalized
patients from North America than in other regions of the World [159,160]. It is estimated that
more serious disease occurs in approximately 13% of human infections by this serovar [161].
However, the septicemic disease is rare, only occurring in some immunocompromised
patients, the elderly, and young children [162,163].

Foodborne outbreaks are usually linked to the consumption of poultry-derived food [164].
S. Heidelberg has been frequently detected in chicken, eggs, and ground turkey [165–169].
However, it was also identified in other livestock and foods [170–172] (Figure 1). The
outbreaks by this serovar have been reported worldwide [173–180].

In Brazil, this serovar was firstly detected in foods in 1962 [181]. It was also observed
in different sources and regions of Brazil in the following four decades [181]. More recently,
it has been increasingly detected in Brazilian broiler farms and, consequently, in chicken
carcasses, generating economic losses for the poultry producers [182]. S. Heidelberg has
also been very frequently isolated in poultry slaughterhouses. RASFF (Rapid Alert System
for Food and Feed) reported that 50% of the Salmonella positive cases in chicken meat were
from the serovar Heidelberg between 2013 and 2017 [183].

S. Heidelberg has a high ability to adapt to poultry farm environments [182,184].
Bacterial cells remain viable in the poultry litter for long periods, resisting a wide range of
temperatures and pHs, as well as producing biofilms [184–186]. It has been a real challenge
to remove this serovar from poultry farms and slaughterhouses in Brazil [182].

Recent epidemiological studies have used MLST to identify S. Heidelberg strains and
four main STs have been reported: ST15, ST2071, ST7556, and ST3377 [29,34,44,49,177,187–191].
ST15 is the most frequent and it could be further divided into different lineages according
to phylogenomic analyses [44]. This is also the most frequent ST detected in the Brazilian
poultry production chains [29,34,44,49] (Table 1).

This serovar has also shown AMR to several antibiotics, raising concern among
veterinary and public health authorities [69,191,192]. Most S. Heidelberg strains are re-
sistant to tetracycline, nalidixic acid, and ampicillin, as well as some other antimicro-
bials [49,69,135,193–198] (Table 1). Furthermore, an MDR profile has been common in most
isolates [49,135,194,195,197]. In a temporal comparative analysis, it was demonstrated that
46.1% of S. Heidelberg isolates were resistant to only one class of antimicrobials in 2005,
while 100% of them were MDR in 2009 [199]. Brazilian S. Heidelberg isolates have demon-
strated a high frequency of resistance (>50%) to streptomycin, nalidixic acid, tetracycline,
cefotaxime, ampicillin, amoxicillin, cefoxitin, amoxicillin-clavulanate, and ceftiofur [197].
This high AMR has further been detected in raw chicken meat exported to Portugal and the
Netherlands [29,34]. The most frequent AMR genes detected in S. Heidelberg are presented
in Table 1.

4.5. Salmonella Minnesota

Salmonella enterica serovar Minnesota (S. Minnesota) is a motile serovar with the expres-
sion of the two-phase flagellar antigens (antigenic formulae 21:b:e,n,x) frequently detected
in the natural environment. So, it has been detected in different sources, such as natural
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water samples, plants, livestock farms, and foods [200,201] (Figure 1). It can also infect
humans and animals, but reports of outbreaks of this serovar are not so common [202,203].

Historical data demonstrate an association of this serovar with a few small out-
breaks [202,203]. More recently, it was associated with other foodborne salmonellosis
cases [204,205]. In addition to the usual gastroenteritis, typhoid-like illnesses can rarely
occur [206].

S. Minnesota was first isolated in a turkey from a poultry farm located in the state
of Minnesota, United States, in 1936 [207] (Figure 2). In Europe, it was first isolated from
spray-dried eggs in England in 1947 [208]. It was also the most prevalent serovar in broilers
from Belgium poultry farms [209]. S. Minnesota has raised concerns after the increase in
the number of isolations in the poultry production chain in Brazil [50,69]. This serovar was
the tenth most identified in avian salmonellosis from 2004 to 2008, but it became the second
one in 2010 in Brazil. More recently, it was the most serovar isolated from drag swabs in
broiler farms [69]. There are also additional reports of S. Minnesota in samples of Brazilian
chicken meat [210].

The ability to produce biofilms has also been evaluated in isolates of S. Minnesota
from poultry sources. Most isolates showed invA, lpfA, and agfA genes. In addition, genes
linked to apoptosis induction (avrA), oxidative stress (sodC), and quorum sensing (luxS)
were also identified in samples of broiler slaughtering plants in Brazil, demonstrating
adapting to adverse conditions. Furthermore, it has been demonstrated that S. Minnesota
is a moderate-intensity biofilm producer [211].

Five main STs have been assigned to S. Minnesota: ST548, ST7557, ST7558, ST285, and
ST3088 [34,47,49,50]. ST548 is the most frequent one, but ST3088 has also been detected
in the poultry production chains [40,49,50] (Table 1). It has also been demonstrated that
S. Minnesota strains currently circulating in Brazilian poultry can be divided into two
lineages: SM-PLI and SM-PLII [50].

S. Minnesota strains more recently isolated have shown AMR to several antibiotics,
including amoxicillin, ampicillin, cefazoline, cefoxitin, ceftazidime, ceftiofur, ceftriax-
one, cephalothin, chloramphenicol, ciprofloxacin, clavulanic acid, gentamicin, nalidixic
acid, neomycin, penicillin, streptomycin, sulfamethoxazole, sulfonamide, tetracycline, and
trimethoprim [40,49,212–216] (Table 1). Furthermore, most isolates have shown an MDR
profile [40,49,213–215]. Bacterial resistance genes have also been reported (Table 1).

Table 1. Phenotypic resistance, genotypic resistance, and ST already reported of the main Salmonella
serovars from the Brazilian poultry-production chain.

Serovar and
Variants

Phenotypic
Resistance

Genotypic
Resistance STs References

Gallinarum
(1,9,12:-:-)

Ampicillin, azithromycin,
ciprofloxacin, enrofloxacin,
fluoroquinolone, gentamicin,
kanamycin, nalidixic acid,
streptomycin, and tetracycline.

gyrA, aadA and aadB 78, 92, 331, 470,
762, 747

[32,90–95]

Typhimurium
(1,4,[5],12:i:1,2/
1,4,[5],12:i:-/
1,4,[5],12:-:1,2/
1,4,[5],12:-:-)

Aminoglycoside, ampicillin,
aztreonam, cefepime, ceftriaxone,
chloramphenicol, ciprofloxacin,
colistin, doxycycline,
fluoroquinolone, gentamicin,
nalidixic acid, streptomycin,
sulfamethoxazole, sulfonamide,
tetracycline, and trimethoprim.

aac(3)-lla, aac(3)-lld,
aadA1, aadA2, aph(6)-ld,
blaCTX-M-2, blaTEM-1B,
dfrA1, floR, mrc-1, strA,
strB, sul1, sul2, tet(A),
and tet(B)

19, 128, 213, 313 [32,49,130,136,137]

Enteritidis
(1,9,12:g:-/
1,9,12:-:m/
1,9,12:-:-)

Gentamicin, nalidixic acid,
streptomycin, sulfonamide,
tetracycline, and
trimethoprim-sulfamethoxazole.

aac(3)-Iva, aac(6′)-Iaa,
aph(3”)-Ib, aph(4)-Ia,
aph(6)-Id, mdf(A),
tet(34), tet(A)

11, 183, 136, 310,
814

[32,149,154–157]
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Table 1. Cont.

Serovar and
Variants

Phenotypic
Resistance

Genotypic
Resistance STs References

Heidelberg
(1,4,[5],12:r:1,2/
1,4,[5],12:r:-/
1,4,[5],12:-:1,2/
1,4,[5],12:-:-)

Amoxicillin, ampicillin, aztreonam,
cefepime, cefotaxime, cefoxitin,
ceftazidime, ceftiofur, ceftriaxone,
cephalothin, chloramphenicol,
ciprofloxacin, clavulanic acid,
colistin, doxycycline, florfenicol,
gentamicin, meropenem, nalidixic
acid, pefloxacin, penicillin,
quinolone, streptomycin,
sulfamethoxazole, sulfonamide,
tetracycline, tobramycin, and
trimethoprim.

aac(3)-Via, aadA1, aadA8,
aph(3′)-Ia, blaCMY-2,
blaCTX-M, blaCTX-M-2,
blaCTX-M-8, blaTEM-1B,
cmlA1, dfrA15, fosA7,
mdf(A), mphB, qnrB1,
strA, strB, sul1, sul2,
sul3, tet(34), tet(A)

15, 2071, 3377,
7556

[29,34,44,49,69,136,
178,185,190,191,193,
195–199]

Minnesota
(21:b:e,n,x)

Amoxicillin, ampicillin, cefazoline,
cefoxitin, ceftazidime, ceftiofur,
ceftriaxone, cephalothin,
chloramphenicol, ciprofloxacin,
clavulanic acid, gentamicin,
nalidixic acid, neomycin, penicillin,
streptomycin, sulfamethoxazole,
sulfonamide, tetracycline, and
trimethoprim.

aadA1, ant(3”)-Ia,
aph(3′)-Ia, aphA1,
blaCMY-2, blaCTX-M,
blaCTX-M-8, blaTEM,
mdf(A), qnrB19, qnrB5,
sul2, tet(A)

285, 548, 3088,
7557, 7558

[34,47,49,50,213–
215,217]

4.6. Other Salmonella Serovars

Several more serovars were already detected in the poultry production chains in
Brazil in recent decades. Serovar Infantis appears to be the most frequent one, followed by
Schwarzengrund, Senftenberg, Mbandaka, Hadar, and Newport [49,69,121,124,213,216].

Salmonella enterica serovar Infantis (antigenic formulae 6,7,14:r:1,5) has been reported
in humans, poultry farm environments and foods [69,124,218,219]. It is one of the 15 most
isolated serovars from human sources [217–219]. In the Brazilian poultry chain, S. Infantis
has been isolated at a low frequency [27,49,69,216,220]. The bacterial isolates showed AMR
to different antibiotics, such as sulfonamide, tetracycline, and amoxicillin [219].

Salmonella enterica serovar Schwarzengrund (antigenic formulae 1,4,12,27:d:1,7) was
already isolated from chicken carcasses, broiler farms, frozen chicken cuts, chicken, poultry
slaughterhouses, and feed factories in different Brazilian states [69,213,216,221]. The isolates
presented AMR to sulfonamide, tetracycline, and amoxicillin [213], as well as a frequent
MDR profile [49,216].

Salmonella enterica serovar Senftenberg (antigenic formulae 1,3,19:g,[s],t:-) has also been
detected in chicken carcasses, broiler farms, poultry environments, slaughterhouses, and
food in Brazil [69,121,213,216,221,222]. Isolates were resistant to cefoxitin, ciprofloxacin,
enrofloxacin, nalidixic acid, and trimethoprim-sulfamethoxazole [216,222].

Salmonella enterica serovar Mbandaka (antigenic formulae 6,7,14:z10:e,n,z15) was de-
tected in Brazilian broiler farms, poultry slaughterhouses, feed factories, and chicken
carcasses [69,213,216,221]. The isolates showed resistance to sulfonamide, norfloxacin, and
amoxicillin [213].

Salmonella enterica serovar Hadar (antigenic formulae 6,8:z10:e,n,x) has been isolated
from foodstuff, broiler chicken, poultry slaughterhouses, and chicken carcasses [213,216,223].
AMR was observed in amoxicillin, chloramphenicol, nalidixic acid, nitrofurantoin, tetracy-
cline, streptomycin, sulfazotrim, and sulfonamide [213,223].

Salmonella enterica serovar Newport (antigenic formulae 6,8,20:e,h:1,2) was already
isolated from turkeys, broiler chicken, and poultry slaughterhouses [124,213,216]. The
isolates showed AMR to different antimicrobials and MDR profile [213,216].
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Salmonella from several more serovars (Abatetuba, Abony, Carrau, Grumpensis, Idikan,
Isangi, Orion, Ouakam Rochdale, Saphra, etc.) have also been rarely isolated from food
(chicken), food-producing animals (broiler), and environmental samples (slaughterhouse)
collected in a Brazil [224]. In general, these serovars also presented AMR genes encoding
resistance to quinolones, third-generation cephalosporin, tetracycline, aminoglycoside,
sulfonamide, and fosfomycin, respectively [224].

5. Prevention and Control

In Brazil, official standards to prevent and control Salmonella are ruled by the National
Poultry Health Program of the Ministry of Agriculture, Livestock, and Supply (MAPA,
Ministério da Agricultura, Pecuária e Abastecimento) [9]. Feces and drag or boot swabs from
the flocks are routinely collected in poultry farms and submitted to laboratory analysis
with different methods (bacteriology culture, biochemical tests, serology, molecular biology
assays, etc.) to detect and identify Salmonella serovars. In slaughterhouses and egg indus-
tries, self-control programs must be carried out to monitor the contamination by Salmonella
spp. from the acquisition of the feedstock to the final food products [9].

Some antimicrobials have also been banned as additives and antibiotic-free (ABF)
strategies have been implemented in the poultry production chains [225–228]. There are
several alternatives to be used as growth promoters, such as medicinal plants, probiotics,
prebiotics, and organic acids [225]. Formic acid, an extensively studied organic acid, has
been reported to limit infection with Salmonella and other foodborne pathogens when
used in the poultry diet [229]. In addition, it has also been recommended that rigorous
management on the farms to avoid Salmonella infection, including quality control of the
water consumed, biosecurity efforts, and the overall organization of the flocks [225].

ABF strategies can include feeding-based and non-feeding-based strategies to control
Salmonella infection in poultry flocks. The first includes prebiotics, probiotics, synbiotics,
postbiotics, and phytobiotics; while the second focuses on the use of bacteriophages, in ovo
applications, and vaccines [228]. Prebiotics are usually administered to induce a modulating
effect on the gut microbiota, increasing the growth of resident beneficial bacteria [230,231].
Probiotic bacteria (alone or in combination) have been used to control Salmonella infections
during poultry production [232,233], improving production performance [234]. Strategies
based on symbiotics may trigger some mechanisms involved in the inhibition or reduc-
tion in clinical signs caused by Salmonella [228]. Postbiotics involve the use of non-viable
bacteria to provide benefits to poultry health [235]. Phytobiotics have also been shown
to contribute to improving poultry performance, increasing nutrient uptake and carcass
quality [236]. Bacteriophages have already been used against S. Enteritidis, S. Hadar, and
S. Typhimurium, presenting interesting results [237]. Vaccination is part of the biosecu-
rity protocol on farms to prevent the spread of diseases, such as Salmonella Gallinarum,
Enteritidis, and Typhimurium serovars [238–240]. The administration of probiotics, pre-
biotics, and vaccines in ovo were shown to be effective to control Salmonella [228]. New
technologies, including all the methods to study the omics (genomics, metagenomics,
transcriptomics, proteomics, metabolomics) are useful tools for a better understanding of
Salmonella metabolic arsenal [228].

Other studies have also compared ABF with conventional production, including
animal welfare analysis [226,241–243]. As expected, the rate of Salmonella with MDR
isolated from flocks of laying hens fed excluding antibiotics was significantly lower than
that of chickens fed with them in conventional diets [242]. In addition, the prevalence of
Salmonella with MDR in retail chicken meat was lower in packages categorized as “low or
no antibiotic use” [243].

6. Conclusions

The dissemination of many Salmonella serovars has caused a huge impact on livestock
production chains worldwide for decades. The five main poultry-associated serovars
detected in Brazil over time (Gallinarum, Typhimurium, Enteritidis, Heidelberg, and
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Minnesota) demonstrated to be adapted to chicken hosts with different pathogenicity
and antigenic properties. They have also presented different AMR profiles. Salmonella
serovars presented specific dissemination waves in some restricted geographic regions
or worldwide in the past, requiring plans to control the epidemics as well as to avoid
economic losses on the farms and/or the occurrence of concerning foodborne outbreaks. In
Brazilian poultry production, programs were also paramount for controlling the different
Salmonella serovars epidemics.

Furthermore, current intensive poultry production in Brazil presents a perfect scenario
for the emergence of novel concerning Salmonella serovars. Continuous epidemiological
surveillance is necessary to track all serovars and lineages, mainly those presenting AMR.
It is also necessary to eliminate the use of antimicrobials in poultry production to reduce
the emergence and dissemination of Salmonella lineages with AMR.
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