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Abstract

The ability of biological and artificial collectives to outperform solitary individuals in a wide

variety of tasks depends crucially on the efficient processing of social and environmental

information at the level of the collective. Here, we model collective behavior in complex envi-

ronments with many potentially distracting cues. Counter-intuitively, large-scale coordina-

tion in such environments can be maximized by strongly limiting the cognitive capacity of

individuals, where due to self-organized dynamics the collective self-isolates from disrupting

information. We observe a fundamental trade-off between coordination and collective

responsiveness to environmental cues. Our results offer important insights into possible

evolutionary trade-offs in collective behavior in biology and suggests novel principles for

design of artificial swarms exploiting attentional bottlenecks.

Author summary

Understanding how consensus is reached and information is processed within a collective is

fundamental to many aspects of social dynamics in animals and humans. It is widely

accepted that high connectivity among individuals facilitates group consensus, and being in

a group provides benefits to individuals through social information about the environment

provided by other group members. We show that this does not hold for collectives in com-

plex environments: Limited attention capacity, that severely reduces connectivity among

individuals, is highly beneficial for global coordination. However, this comes at a price: Col-

lectives outperform isolated individuals in responding to the environment only at suffi-

ciently high attention capacities, where global coordination breaks down. Thus, we

demonstrate a fundamental trade-off in collective behavior between social coordination and

responsiveness to environmental cues. Our work demonstrates the importance of sensory

and cognitive limitations for the emergence and function of animal collectives, and poses

fundamental questions about co-evolution of social behavior and individual attention capac-

ity. The observed trade-off in collective information processing has implications for human

social systems and for the design of robotic swarms operating in complex environments.
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Introduction

Consensus formation, coordination and collective response to environmental cues are impor-

tant aspects in collective behavior of many interacting agents in biology, physics, robotics and

computational social science. The understanding of these processes is fundamental for a better

comprehension of collective intelligence that confers groups the ability to solve problems col-

lectively using strategies which are beyond the reach of single individuals [1]. Crucial for

understanding benefits of collective behavior, is the understanding of the mechanisms under-

lying collective information processing: How new information is acquired, how information is

shared and combined within the collective, and how the collective deals with conflicting infor-

mation are among the most compelling and elusive questions on the self-organization of col-

lectives. Generic flocking models (see e.g. [2–5]) allow to study the interplay between

emergent collective behaviors and collective information processing in a dynamical system set-

ting. For example, using flocking models it has been demonstrated that only a small fraction of

informed individuals is sufficient to accurately guide large collectives [6–8]. It was also shown

that groups are able to collectively track dynamic environmental gradients not detectable by

individuals [4, 9], or that groups can make efficient consensus decisions in conflict situations

without any implicit knowledge about the majority-minority relationships [6, 10]. Only

recently, predictions of such models on fundamental decision bifurcations in spatial move-

ment decisions have been confirmed in the collective migration of baboon groups [11].

A fundamental aspect of the self-organization of collectives—from collective decision-mak-

ing to consensus formation, including coordinated movements—is that individuals are limited

in terms of perception and cognition. Without direct access to the state of the whole group

they must rely on local information [12–15]. The emergent collective patterns in agent-based

models have been shown to depend strongly on the field of view of individuals [16, 17], and

more generally on what local information individuals pay attention to [18, 19]. Furthermore,

even for a strongly limited field of view, the sensory input of individual agents may contain a

large number of social and non-social cues. However, social interactions in animal groups

appear to be restricted to a rather low number of neighbors [20, 21]. On the one hand, this sug-

gests additional cognitive constraints on the processing of available sensory information,

which is also in-line with a wide range of experimental results on limited capacity for visual

tracking of multiple objects in animals and humans [22–26]. On the other hand, it has been

shown in generic flocking models that the emergent, large scale collective behavior depends

strongly on how many neighbors a given individual can pay attention to [27–29]. However, to

our knowledge the explicit role of cognitive constraints on collective information processing

has not been systematically explored.

Up-to-date most theoretical and empirical research focused on information sharing and

collective decision making, in idealized, laboratory-like environments, including the works

mentioned above, discussing cognitive and sensorial limitations (see e.g. [6, 10, 30, 31]). How-

ever, collectives in realistic scenarios need to cope with complex environments with a large

number of potentially informative or distracting environmental cues (see Fig 1a and [32]).

Whereas recently it was shown using minimal flocking models that self-organized, collective

behaviors are strongly affected by complex environments [33, 34], it remains open how com-

plex environments impact collective information processing, which is the main question we

focus on here. More specifically, we investigate the emergence of collective behaviors in a

generic model of socially interacting agents in a complex environment containing many

potentially dangerous sites. Individuals try to avoid these sites, while at the same time trying to

coordinate with their neighbors. In addition, some informed individuals have also private

information on a global preferred direction of migration, which may be in conflict with the

PLOS COMPUTATIONAL BIOLOGY Flocking in complex environments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007697 April 6, 2020 2 / 18

Funding: P. Romanczuk acknowledges funding by

the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) through RO 4766/

2-1. P. Romanczuk acknowledges funding by the

Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) under Germany’s Excellence

Strategy – EXC 2002/1 “Science of Intelligence” –

project number 390523135 P. Rahmani was

supported by German Academic Exchange Service

(DAAD) and by the Ministry of Science, Research

and Technology of Iran. F. Peruani was supported

by the Agence Nationale de la Recherche via

project BactPhys, Grant No. ANR-15-CE30-0002-

01. The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007697


local environmental cues. Our main aim is to explore how the cognitive, and/or sensory con-

straints of the individuals affect group-level coordination, information exchange, and collec-

tive response to environmental cues. We note that in the following we will refer to complex
environments, containing high density of distraction sites, also as heterogenous environments,

in order to distinguish them from homogeneous environments without any distraction sites.

Our results show that in heterogeneous environments, strongly limited attention capability

of individual agents results in higher accuracy with respect to large-scale coordination, which

is in stark contrast to previous results obtained in simple environments [28, 29]. This is caused

by a dynamical, spatial “echo chamber”-like effect, where individual attention becomes satu-

rated by social information and non-social cues are largely ignored. However, if these non-

social cues provide important information about potential environmental dangers, the emer-

gent dynamical “echo chambers” become strongly detrimental to the ability of the collective to

safely navigate the environment. Note that information exchange through social interactions is

typically believed to be beneficial for the collective [9, 35]. Here, our analysis shows that below

a critical threshold in attention capacity, groups perform worse at acquiring new information

about the environment than non-interacting agents. This is due to the emergent self-isolation

from environmental cues, which is exactly what facilitates group coordination in complex

environments. Our findings not only suggest a fundamental trade-off in collective behavior in

natural systems, but also provide important insights for the design of communication in artifi-

cial, distributed systems, such as robotic swarms.

Results

Model

We consider a flocking model consisting of N agents moving in a two-dimensional environ-

ment of size L × L with periodic boundary conditions. In addition, we assume the presence of

Ninf informed individuals with private information about a preferred direction of motion ûp.

The informed fraction of the collective is Rinf = Ninf/N.

The environment contains non-social cues, which represent features of the environment

that solitary agents in general try to avoid, as they, for example, signal potential dangers. We

Fig 1. Attention trade-off in collective behavior. a: Schematic visualization of attention trade-off in collective behavior in complex

environments. The focal individual can only pay attention to k = 3 nearest objects—other agents or non-social environmental features—

simultaneously. b: Visualization of different situations that may occur in the model. The arrows indicate the velocity vectors~v of the different

agents. The small black circles indicate the location of danger sites l and l0 with their repulsion zones shown in blue. Agent i (red) reacts to the

danger site (DS) l as two conditions are met simultaneously: DS l is in i’s kNO, and agent i is also within the corresponding repulsion zone.

Agent j (magenta) does not react to DS l0 since it’s attention slot is already filled with three other agents (one blue and two gray). Agent k (blue)

perceives DS l0 but does not react to it, because it is outside of the repulsion zone. It only reacts to two other neighbors (gray and magenta) and

aligns with them.

https://doi.org/10.1371/journal.pcbi.1007697.g001
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will refer to these disrupting cues as “danger sites” (or distraction sites) in short as DS. Each

DS is surrounded by an effective repulsion zone of radius r = 1. The environment contains

NDS randomly distributed DSs at fixed positions. In particular at high DS densities ρDS = NDS/

L2, the corresponding repulsion zones may overlap (see Fig 2a and 2b). We note that the agents

and the danger sites (DSs) are assumed to be point-like, as in many agent-based models for

collective movement, e.g. Vicsek-type models [3]. This corresponds to the scenario where the

sensory ranges are large compared to the physical size of moving agents and DSs.

Based on experimental observations, it was suggested that animals interact with a limited

number of conspecifics [14, 20, 21]. Motivated by these findings, and with intention of explic-

itly studying the impact of limited attention in a generic flocking model, we assume that each

agent can pay attention only to k nearest objects (kNO) in its vicinity, irrespective whether it is

another agent (social cue) or a DS (non-social cue). Thus, k can be interpreted as the number

of available attention slots for each agent. The parameter k quantifies the individual attention

capacity.

Fig 2. Emergent interaction networks. a,b: Examples of social interaction networks for k = 3 (a) and k = 12 (b) at ρDS = 0.25. The black

symbols indicate socially interacting agents, whereas the red symbols indicate agents responding to a DS. The lines indicate the (non-

directed) interaction network. Filled circles represent uninformed agents, empty circles indicate agents informed about the preferred

direction of migration. The DS positions shown by blue dots, are surrounded by a disc-like repulsion zones (light blue). For clarity, only a

portion of the respective simulation box is represented here, see S1 Fig. for the full snapshots. c,d: In-out degree distributions for the

emergent social interaction networks for low attention limit k = 3 (c) and high attention limit k = 12 (d) at low and high DS densities (ρDS
= 0.05, and ρDS = 0.25). The vertical dashed lines are for visual guidance to distinguish the subpopulations with Dout = 0 corresponding to

agents responding to DSs (left of the vertical line). At high density of DSs this distribution is clearly bimodal with two peaks at Dout = 0

and Dout = k. By increasing DS density number of agents with Dout = 0 increases. These agents have a lower in-degree compared to non-

responders, which contributes to the self-isolation of the collective from environmental cues at low k values. For all panels: Rinf = 0.1.

https://doi.org/10.1371/journal.pcbi.1007697.g002
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Each agent moves with a constant speed v0 and reacts to neighbors and DSs through

corresponding changes in its direction of motion ûi ¼ ðcos φi; sin φiÞ
T

defined by a polar

orientation angle φi. All agents—informed and uninformed—turn away from DSs when

two conditions are met simultaneously: 1) the agent perceives the DS—that means that the

DS in question, say l, is within its k nearest objects—and 2) the distance between the agent

and DSs (dil ¼ j~xi � ~xlj) is smaller than the radius of its repulsion zone. In all other cases,

individuals ignore the DSs and coordinate their motion with other individuals within

their kNO by aligning their direction of motion with the average direction of their neigh-

bors. Informed individuals exhibit an additional bias to orient towards the preferred direc-

tion of motion that we denote ûp. Throughout this work, the preferred direction of motion

of informed individuals will be along the x-axis: ûp ¼ ð1; 0Þ
T
. We emphasize that the

response to DSs, once detected, dominates all other behavioral responses of individuals,

whether informed or uninformed. The specific formulation of the mathematical model in

terms of stochastic differential equations, together with the parameters used, is given in

Methods.

The finite attention capacity to k nearest objects leads to a natural competition between

social and non-social cues: If the k nearest objects of the focal agent are other agents, it will not

be capable to detect a DS l even if dil< 1 (see Fig 1b). Note that in the case of vanishing density

of DSs, ρDS! 0 (homogeneous environment), the model reduces to a simple flocking model

with so-called metric-free alignment interaction with k-nearest neighbors (see e.g. [20, 28, 36])

with the additional feature of informed individuals. If instead of topological, metric interac-

tions are used, then the model reduces in the limit of ρDS! 0 and Rinf = 0 to a Vicsek-type

alignment model [3], which has been extensively discussed in [37, 38]. For Rinf> 0 it is closely

related to the model explored in [6], while for Rinf = 0 and ρDS> 0 it reduces to the model stud-

ied in [33, 34].

Interaction networks and collective accuracy

In order to quantify the emergent collective dynamics and study the effect of varying atten-

tion capability, we have performed systematically numerical simulations of the above model

for varying attention limit k, DS density ρDS, and the ratio of informed individuals Rinf (see

Methods for details). By neglecting the directed nature of inter-individual links, the entire

agent system can be viewed as a time-dependent, undirected interaction network. For all DS

densities, we obtain the same qualitative picture in the stationary state: For low k, we observe

strongly fragmented dynamical networks, which at given time t are characterized by a large

number of small, disconnected sub-groups (see Fig 2a and S1 Fig). Each such cluster corre-

sponds to an isolated connected component. These components are not static: We observe

continuous fission-fusion of clusters over time due to randomness in individual motion and

interactions with DSs (see S1 Video). By increasing the attention limit k, we observe a fast

decrease in the number of disconnected clusters that results in an increase in average cluster

size (see Fig 2b and S2a Fig). Eventually, by increasing k above a critical value, we can obtain

fully connected networks with a single connected component (see S1 Text, Sec. I and S2b

Fig). Correspondingly, the average life time of a connection between specific agents grows

strongly with increasing attention limit k, whereas an increase in DS density ρDS reduces the

life time of individual edges in the network (see S2c Fig). In general, as one would intuitively

expect, the network of social interactions becomes more tightly connected with increasing

attention capacity k.
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We measure the accuracy of the collective migration through the average agreement

between the heading ûj of individuals and the preferred direction of motion ûp:

C ¼
1

N

X

j

ûj � ûp

* +

ð1Þ

with h�i indicating the temporal average in the stationary state. If all agents move perfectly

along the preferred direction, which is available only to informed individuals, then we obtain

C = 1, whereas for disordered movement we observe C� 0.

For collective behavior in homogeneous environments it has been shown that increasing

the connectivity of the interaction networks is beneficial for coordination [29, 30], which is

also in line with general results on synchronization in (dynamic) networks of oscillators [39,

40]. In particular, for few informed individuals, one intuitively expects that a strongly con-

nected information network ensures that information about the preferred direction of motion

diffuses more efficiently across large parts of the collective. Therefore, the natural prediction

would be that collective accuracy increases with increasing attention capacity k. This is indeed

the case in the limit of vanishing density of DSs, ρDS = 0 (homogeneous environment, see Fig

3a), where we observe a monotonous increase in accuracy C with the attention capacity k, for a

fixed ratio of informed individuals: Whereas for k = 1, in order to achieve an accuracy of

C> 0.9, we require the majority of the collective to be informed (Rinf� 0.6), for k = 6 it is

already sufficient to have a small fraction Rinf� 0.2 of informed individuals to achieve the

same level of collective accuracy.

The situation completely reverses for high DS densities (see Fig 3b). For ρDS = 0.2 we

observe a monotonous decrease in the collective accuracy with increasing k for all values Rinf

> 0. In order to achieve a certain level of collective accuracy (e.g. C = 0.5) for larger k we need

a larger fraction of the system to be informed. In other words, stronger connected flocks

become more difficult to guide. Even more dramatically, for the largest attention capacity

investigated (k = 24), the maximal attainable average accuracy for a fully informed system

(Rinf = 1) is C� 0.62. This is lower than the average collective accuracy of C� 0.66 for collect-

ives at minimal attention capacity (k = 1) with only a tiny fraction of informed individuals

Rinf� 0.013 (1.3% of the entire collective). In fact, it appears that for k = 1, the collective accu-

racy C versus Rinf depends only very weakly on the DS density, whereas the accuracy for high k
is massively decreased for all Rinf > 0.

Fig 3. Collective accuracy. Collective accuracy C of migration along the preferred direction versus the ratio of informed individuals for different

attention limits k, for environments with no danger sites ρDS = 0 (a), and environments with high DS density ρDS = 0.2 (b). The red arrows show the

direction of increasing k. c: Collective accuracy C versus attention limit k for different DS densities ρDS at Rinf = 0.1.

https://doi.org/10.1371/journal.pcbi.1007697.g003
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Thus, in complex environments, strongly limited attention resulting in very sparse, frag-

mented—yet dynamic—interaction networks, turns out to be highly beneficial for global accu-

racy (see Fig 3c). The counter-intuitive effect of high accuracy for sparsely connected networks

can be understood through an analysis of information flows and how environmental informa-

tion is processed by the collective, for example through analysis of the (stationary) probability

distribution of agents having a particular combination of in and out-degree. The out-degree

Dout quantifies how many individuals a focal individual pays attention to, whereas the in-

degree Din is the number of others paying attention to the focal individual. Agents directly

responding to a DS have a social out-degree Dout = 0—they ignore their neighbors. However,

their neighbors can still pay attention to them so their social in-degree Din can be larger than

zero (see S1 Text, Sec I and Fig 2c and 2d), in this case they “broadcast” information on the DS

through their evasion behavior to others. Therefore, environmental cues affect collective

behavior directly through the individuals directly responding to a DS, as well as, indirectly

through information transmitted to other agents via social interactions. High accuracy in com-

plex environments requires effective self-isolation of the collective from distracting environ-

mental cues. It can emerge due to two mechanisms: 1) The number of direct responders

remains small; 2) Their influence on others is weak due to a low Din, in particular compared to

the in-degree of non-responders. In our case both effects play a role: For low k, the fraction of

agents directly responding to DSs remains low even at very high ρDS. At low k, aligned individ-

uals move together in dense sub-groups, and even if one or more agents enter a repulsion

zone, there is a high probability that there are k neighbors closer than the DS, which prevents

the detection of the latter. In addition, the in-degree of agents responding to DSs is on average

significantly lower than that of agents not responding to the DSs (Fig 2c and 2d). Agents evad-

ing a DS, have a high probability to move away from their neighbors, which in turn decreases

the probability that they will be within the kNO of others. Thus, in particular for low k, the

indirect response to DSs, mediated through social interactions, is strongly inhibited. The

emergent small, dense agent clusters at low k permanently merge and split up over time, which

leads to exchange of directional information across the collective on long time scales, eventu-

ally leading to high migration accuracy and high coordination levels (see S1 Video).

This situation changes with increasing attention capacity k. The chance of an agent to detect

a DS increases strongly, as the distance to the k nearest objects is an increasing function of k.

As soon as this distance becomes larger than the distance to the next DS (dil≲ 1), agents are

capable to detect the environmental cues reliably, and react to them if they are within their

repulsion zone. In addition, larger k also increases the number of other agents paying attention

to a direct-responder. The motion of the emergent sub-groups is still well coordinated at a

local scale (see S2 Video). However, these sub-groups interact now predominantly with the

environment by changing their direction of motion and by complex fission-fusion dynamics

directly triggered by the DSs. This results in quick loss of directional information across time

and space, and in a vanishing impact of the directional information provided by the informed

individuals, which yields a strong decrease in collective accuracy C.

The contribution of both effects to the emergent self-isolation for low k is shown in Fig 4a:

The fraction of direct responders rd is much lower for low k and shows only a slow increase

with increasing DS density ρDS. The same holds for the fraction of first-order indirect respond-

ers ri, defined by agents paying attention to at least one direct responder. For k = 2, ri< 0.1 for

all DS densities studied, whereas for k = 24 at high DS densities, it saturates at more than half

of the entire collective (ri� 0.55).

We note that in random environments the consensus direction always coincides with the

preferred direction of informed individuals, i.e. high accuracy implies strong (directional) con-

sensus and vice versa.
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In order to confirm that the observed dependence of accuracy on k is a truly collective

effect, which cannot be trivially traced back to the behavior of informed agents alone, we com-

pared our results for accuracy of socially interacting agents with the case where the social inter-

action strength is set to zero: γs = 0 (see S1 Text, Sec II). For all k we observe a massive increase

in accuracy (see S3a Fig), showing that social interactions are crucial. We also analyzed the

accuracy of uninformed and informed agents separately (see S3b and S3c Fig). Interestingly,

the accuracy of informed individuals is increased for all k values in a socially interacting sys-

tem, whereby most interactions are with uninformed individuals (Rinf = 0.1). Uninformed

individuals act as a directional “information reservoir”: Once an informed individual becomes

distracted due to direct interaction with the local environment, social interactions with other

agents help it to quickly align back with the consensus direction, which coincides with the pre-

ferred direction of motion.

Collective avoidance of repulsion zones

While limited attention is beneficial for consensus formation in complex environments, it may

be very detrimental to the collective if the environmental cues (DSs) provide reliable informa-

tion about environmental dangers (e.g. predators).

In order to quantify the performance of the collective in responding to environmental cues,

we introduce in the following a DS avoidance measure. First, we compute the average fraction

Fig 4. Collective response to environmental cues. a: The fraction of agents responding to DS directly rd (direct responders, solid lines), or indirectly

via social interactions with direct responders ri (indirect responders, dashed lines), for k = 2 (blue) and k = 24 (red) versus DS density ρDS. b: DS

avoidance A versus attention limit k for different DS densities ρDS. A = 1 corresponds to the DS avoidance of solitary (non-interacting) agents. c: Global

fitness versus attention limit k and relative benefits of DS avoidance β at ρDS = 0.25. Red (blue) regions correspond to better (worse) performance of a

collective than isolated individuals according to the fitness function used. d and e: Example snapshots of emergent collective behavior in structured

environments with a circular, DS-free path. For low attention capacity (k = 1, e), individuals ignore the structure of the environment and align with the

preferred direction of migration. At high attention capacity (k = 16, f), the collective behavior is dominated by the environmental structure and

collective migration breaks down. f: DS avoidance A for the structured environment depicted in d, e versus attention limit k. A = 1 is the DS avoidance

of solitary agents in the same environment. For all panels: Rinf = 0.1.

https://doi.org/10.1371/journal.pcbi.1007697.g004
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of agents in “safe” areas, i.e. outside the DS repulsion zone. As a reference, let us estimate the

same quantity in a control numerical experiment with the same number of agents but who are

only interacting exclusively with the environment and not with other agents. Our DS avoid-

ance measure A is then defined as the ratio between these two quantities (see Methods for

details). This measure A allows us not only to compare the relative collective performance of

the flock at different attention capacities k, but also to compare it with the performance of soli-

tary agents without any social interactions. For A> 1, social interactions provide a benefit

with respect to solitary individuals. For A< 1, a collective performs on average worse than

solitary agents in avoiding the potentially dangerous areas. Fig 4b shows clearly that for small

values of k, the collective performs much worse than solitary individuals in avoiding the repul-

sion zones. Here, increasing k results in a monotonous increase in A. However, we observe

A> 1 only for sufficiently large k≳ 12. For lower k it turns out that social interactions are det-

rimental with respect to DS avoidance. The observed behavior is directly linked to the emer-

gent local echo-chamber effect at small k. Socially interacting individuals can only outperform

solitary agents in responding to environmental cues, if sufficient amount of information is

able to enter the interaction network and spread effectively through it.

We can quantify the emergent trade-off between migration accuracy (quantified by C) and

DS avoidance (measured by A) through a global fitness function F(C, A) (see Methods and S1

Text, Sec III for details). While F depends implicitly on the attention limit k through A and C,

we introduce the parameter β to quantify the relative benefits of avoidance versus accuracy.

Whereas in safe environments, benefit of avoidance may be negligible (β� 0), in environ-

ments where local cues provide important information about potential dangers one can

assume β� 1. Fig 4c shows F as a function of k and β for collectives in random DS fields. We

note that F = 0 corresponds to the average fitness expected for solitary individuals. For low β,

we observe a single maximum of F at low attention capacities k� 2. For increasing benefits of

DS avoidance β, a second maximum emerges at large k, while at low k, the socially interacting

collectives are on average outperformed by solitary individuals.

This trade-off between accuracy and avoidance, or “responsiveness”, becomes particularly

prominent if we consider structured, inhomogeneous environments containing free paths and

voids in a landscape otherwise filled with high density of DSs, instead of random environ-

ments. At low k the agents completely ignore the environmental structure and their dynamics

are dominated by social interactions with high directional accuracy. At high k, the situation

reverses and the collective dynamics is dominated by the environment, where agents track the

environmental structure, staying preferentially in areas with low DS density, while ignoring

the preferred direction of migration (see Fig 4d–4f, see also S4 Fig, S3 and S4 Videos).

Model variations and generality of results

So far, we have considered social interactions in which agents do not pay special attention to

neighbors responding to DSs. This is motivated by the idea of social interactions being based

on observations of behavior of others but absence of direct communication about the cause of

their particular behavior. In order to test the robustness of our results, we explored an exten-

sion of the basic model, by introducing active signaling about potential danger by agents inter-

acting with a DS. In this case, all neighboring agents connected to the signaler put their full

attention on the signaling agent and respond only to it, while ignoring other non-signaling

agents. As expected, the additional signaling improves the collective DS avoidance due to

increased saliency of the corresponding cues within the network. However, the general

results—in particular the coordination and responsiveness trade-off—remain unchanged (see

S5 Fig).
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An important assumption of our model is that individuals treat social and environmental

cues exactly in the same way: Other agents and DSs must be within the kNO in order to be

detected. However, if DSs signal potential danger it can be argued that individuals should be

more sensitive to corresponding environmental cues. Thus their attention should be biased

towards DS detection, i.e. they should have a higher probability to detect and respond to a DS,

once they are within the corresponding avoidance zone. We confirmed that our general results

hold for such a bias in individual attention through a minimal model extension: We assume

that at any given time, an individual within an avoidance zone can directly detect the corre-

sponding DS with probability Pdirect, independent of its social neighborhood, i.e. irrespective

whether the DS is among its k-nearest objects. For Pdirect = 0 we recover our original model,

whereas Pdirect = 1 corresponds to perfect detection of DS, effectively switching off any atten-

tional restrictions on interactions with the local environmental cues. Our results show that as

long as there is some attentional “interference” between social and environmental cues Pdirect
< 1, our qualitative results on the coordination-responsiveness trade-off remain unchanged

(see S1 Text, Sec IV and S6 Fig for more details).

Furthermore, the general trade-off between consensus and responsiveness to DSs does not

depend on the presence of informed individuals. For Rinf = 0 and ρDS = 0, our system reduces

to a Vicsek-type model with topological interactions in homogeneous environments [27, 28,

36]. With Rinf = 0 and ρDS> 0, i.e. without the bias provided by informed individuals, the

model becomes a topological Vicsek-like model in heterogeneous environments. All the phe-

nomena discussed above hold also in this case, if we replace the collective accuracy C by the

(normalized) average velocity ~C ¼ ð
P

iûiÞ=N, which quantifies the overall degree of consen-

sus, i.e. (orientational) order, in the system (see S1 Text, Sec V and S7 Fig). It is worth stressing

that there exist fundamental differences with metric Vicsek-like models in heterogeneous envi-

ronments (cf. [33, 34]), where agents are not subject to any cognitive limitation and display

exclusively a limited perception capacity. In addition, variations of the topological interaction

mechanism do not affect the reported results. Specifically, we confirmed that we obtain the

same collective effects in a model where the k-nearest objects are selected from the Voronoi

neighborhoods (S8 Fig). This version of the model resembles the spatially balanced topological

flocking algorithm proposed in [41] and represents a better approximation of visual networks

[14]. The robustness of our results with respect to the exact topological model shows that our

results are not affected by rare configurations of the kNN-model, which may be incompatible

with visual interactions. A more detailed discussion is given in S1 Text, Sec VI.

All this suggests that the fundamental coordination-responsiveness trade-off discussed here

is independent of the specific choice of the social interaction model.

Discussion

Using a generic flocking model we have demonstrated the importance of finite attention

capacity of individuals for collective information processing in complex environments. In our

model, agents dynamically allocate their limited attention to process social and environmental

stimuli, whereby the saliency of different stimuli is governed by their spatial vicinity. We dem-

onstrated that contrary to the general intuition, large-scale coordination and, as a result, the

accuracy of collective migration in complex environments is maximized for strongly limited

individual attention capacity. High levels of accuracy for agents which can pay attention only

to few stimuli at a time, are a direct consequence of a self-isolation from distracting environ-

mental cues through social interactions. This comes at a price of a strongly inhibited response

of the collective to distraction sites, as quantified by the avoidance parameter. On the other

hand, the increased ability of agents to respond collectively to environmental cues for high
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attentional capacity leads to a breakdown of collective accuracy. In this case the strong infor-

mation inflow through local distractions overrides the information on the global preferred

direction of motion available only to a minority of informed individuals. This higher sensitiv-

ity to the environment results in a better performance of collectives versus solitary agents in

terms of the avoidance parameter. This demonstrates a fundamental trade-off between large-

scale coordination and collective accuracy on the one hand, and the dynamical response to

local environmental cues in complex environments, on the other hand. We would like to

emphasize that our general finding of weaker connected networks achieving higher global

accuracy in complex environments is diametrically opposed to widely accepted and intuitive

knowledge in network science that more connections lead more effective information

exchange and thus higher levels of synchronization (see e.g. [29, 30, 39, 40]). We recover this

intuitive result for flocking in empty environments, which demonstrates how taking into

account environmental disturbances may dramatically change the collective behavior of self-

organizing systems.

Our results suggest a specific link between cognitive and sensory capabilities of flocking

animals and the ecological context. For example, for migrating animals, with high fitness bene-

fits associated with coordination and information sharing on a preferred migration direction,

with no (or very low) fitness costs of ignoring local environmental cues, strongly limited atten-

tion appears to be beneficial. However, if collective response to environmental cues is highly

relevant for individual fitness but global coordination is not, as for example in foraging reef

fish [42], then being able to pay attention to many stimuli simultaneously becomes important.

This yields testable hypotheses, on how the attention capability of different species exhibiting

grouping behavior should co-vary with ecological niche, or how individuals within the same

species should modulate their attention capabilities across contexts. Here, we note that a recent

analysis of collective behavior in Hemigrammus rhodostomus, a strongly schooling fish species,

suggests that an individual fish appears to pay attention only to one or two neighbors at a time

[21].

Interestingly, being social offers an advantage over solitary behavior with respect to

response to DSs only above a critical attention capacity. This poses some fundamental ques-

tions regarding the co-evolution of social behavior and individual attention capacity, especially

taking into account potential developmental costs of higher attention capacity. Overall, our

results point towards a complex interrelation between pre-existing attention capability, evolu-

tion of grouping behavior, and the ecological niche.

We note that in our minimal model we varied only a single dimension of cognitive capabili-

ties, namely the total number of objects an individual can pay attention to. There are other

more complex cognitive processes, which affect the individual processing of a large number of

social and non-social stimuli. For example, object recognition and classification, may enable

individuals to dynamically vary the relative saliency of social and non-social stimuli, which is

not considered in this work but could allow individuals to adapt to different behavioral con-

texts. In general, the strength of the observed trade-off will depend on model choice and

model details. For example, making the agents more likely to detect danger sites, will make the

collectives more responsive to the environmental cues. However, if the overall attention capac-

ity has an upper bound—as assumed here—it must come at the cost of decreasing social inter-

actions. Hence, the existence of the general effects discussed here, in particular the surprising

increase in collective accuracy with decreasing attention capabilities, is not restricted to the

particular model choice. The qualitative results should hold as long as the following three con-

ditions are met: 1) the attention capacity is limited, 2) the salience of social cues has some dis-

tance-based component, and 3) the structure of the interaction network emerges naturally

from spatial self-organization. Overall, this work demonstrates the fundamental importance of
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potential constraints in sensory and cognitive abilities of individuals on emergence and func-

tion of collective behavior.

We considered explicitly the case of spatial flocking behavior, however one can speculate

that the coordination-responsiveness trade-off represents a more general principle, and should

be observable in different collective behaviors. Only recently it was shown that Guinea baboon

exhibit stronger response to known social cues than to novel ones. It was hypothesized that

this unexpected behavior can be linked to the complex social environments in which Guinea

baboon groups live, and the corresponding necessity to filter out irrelevant or distracting

information (“social noise”) [43]. Our findings have also potential implications for the design

of interaction networks in artificial distributed systems, such as robotic swarms that operate in

complex environments. Instead of continuously increasing the sensory and computational

abilities of individual agents in order to cope with the consensus problems in complex envi-

ronments, it may be promising to think about constraining the “cognition” of swarming

robots. By generating specifically tailored attentional bottlenecks, resulting in emergent self-

isolation as observed here, one can facilitate coordination and exchange of relevant informa-

tion in complex environments. Attentional bottlenecks based on static features, e.g. colors,

which can be easily distinguished from the background, are widely used in swarm robotics

[44]. Here, we demonstrated that dynamical features (as opposed to static ones), like relative

distance, or relative speed [18], could provide effective means of coordination in complex envi-

ronments, where “filtering” based on static features is difficult or not feasible.

Last but not least, our work yields potentially interesting implication for social sciences,

where “echo-chambers” have received considerable attention recently. In human social net-

works, this effect is typically linked to homophily and confirmation bias [45, 46]. Our results

show collective self-isolation from conflicting external information as agents moving in the

same direction self-organize into tightly interacting social groups. This can be viewed as an

“echo-chamber”-like effect, which emerges naturally even in the absence of such explicit biases

and self-sorting mechanisms as homophily. On the one hand, this suggests that these self-isola-

tion tendencies may be much more prevalent and easier to obtain for agents with limited

attention capacity. On the other hand, our results provide support for the evolution of proxi-

mate, socio-psychological mechanism facilitating the formation of echo chambers, such as

homophily, by demonstrating how an emergent “echo chamber”-like effect strongly increases

intra-group synchronization for a collective in a complex environment.

Methods

Agent-based model

We consider a system of N self-propelled agents and NDS danger sites DSs in a two dimensional

domain of size L × L with periodic boundary conditions (torus). The agent and DS densities

are thus ρ = N/L2 and ρDS = NDS/L2. The agents move with a fixed speed v0 = 0.5 and respond

to other agents and DSs by changing their direction of motion ûi ¼ ðcos φiðtÞ; sin φiðtÞÞ
T
.

The behavior of each agent is mathematically described by the following stochastic equations

of motion (see Section VII in S1 Text), whereby dφi/dt corresponds to the turning rate of

agent i:

d~xi

dt
¼ ~viðtÞ ¼ v0ûiðtÞ ¼ v0

cos φiðtÞ

sin φiðtÞ

 !

ð2Þ
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dφi

dt
¼ ð1 � giðtÞÞ

gs
ns

X

j2kNO

sin ðφj � φiÞ � gpsinðφiÞ

" #

þgiðtÞ
gl
nl

X

l2kNO

sin ðai;l � φiÞ þ ZxiðtÞ
ð3Þ

The first term in the turning response Eq 3, is the alignment interaction. A focal individual

aligns with the strength γs = 1 with neighbors j, which are part of its kNO set. In addition,

informed individuals have a (weak) tendency γp = 0.1 to move in a preferred direction, here

þx̂ ¼ ð1; 0ÞT (γp = 0 for non-informed individuals). The turning away (repulsion) from the

DSs l, which are in the kNO set is given by the third term (γl = 1). Here, αi, l is the spatial posi-

tion angle of the focal agent relative to the DS l. Both interactions are normalized by the num-

ber of agents and DSs, respectively (ny = ∑y2kNO1). The function gi(t) determines whether the

agent responds to DSs, or whether it aligns with its neighbors, and, in the case of informed

individuals, biases its motion towards the preferred direction of motion. It is defined as

giðtÞ ¼

(
1 for l 2 kNO and dil < r

0 else:
ð4Þ

Note that an agent responding to a non-social cue (g(t) = 1), will not interact socially with

other agents until its interaction with the DS is terminated, either because it leaves the repul-

sion zone or the site falls out of its k-nearest object set. The last term in Eq 3 accounts for the

stochasticity in the motion of individuals, with η being the angular noise strength and ξi(t) a

normally distributed Gaussian white noise with standard deviation 1. In all the simulations dis-

cussed, η = 0.25 and the average density of agents is fixed at 1 in a box of linear size L = 25

(N = 625). If not stated otherwise, the fraction of informed individuals is Rinf = 0.1. We confirm

that changing the model parameters, v0, η, L, γ(p,l,s), and ρ does not change our general qualita-

tive results, i.e. the presence of a maximum accuracy for low k values and increase in DS avoid-

ance with k. The results for some of these variations are represented in S9 Fig. See S1 Text, Sec

VII for additional details on numerical implementation.

Avoidance parameter

We quantify avoidance of repulsion zones through ~A ¼ 1 � hNrzðtÞ=Ni. Here Nrz(t) is the

number of agents, which are within at least one repulsion zone at time t, and h�i represents

temporal average in the stationary state. ~A will always decrease with DS density, as more and

more space is occupied by repulsion zones. In order to control for this trivial effect, we rescale

~A by the corresponding value for non-interacting agents A ¼ ~A=~Ani. Thus, A = 1 indicates

same average performance of the flock as solitary agents without any social interactions. Here,

solitary individuals are always responding to a DS, once they are within the corresponding

repulsion zone.

Fitness function

We can quantify the emergent trade-off between collective accuracy and responsiveness,

through the following global fitness function depending on the collective accuracy C and DS

avoidance:

FðC;AÞ ¼ C þ bðA � 1Þ ; ð5Þ
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with β being the relative benefits of DS avoidance with respect to migration accuracy. The

above function was defined in a way so that a value F = 0 corresponds to the behavior of soli-

tary individuals, where the average accuracy vanishes (C = 0) and the DS avoidance is A = 1,

according to the definition above. Thus, only for F> 0 the collectives perform better than sin-

gle individuals (see S1 Text, Sec III for more details).

Supporting information

S1 Text. Sections: I. Dynamical, directed interaction networks. II. Coordination-responsive-

ness trade-off as an emergent collective effect. III. Quantifying the coordination-responsive-

ness trade-off—global fitness function. IV. Modified model with higher priority of DS

avoidance. V. Emergence of global order in the absence of informed individuals. VI. Discus-

sion of idealizing model assumptions in relation to visual interactions. VII. Numerical imple-

mentation and experiments.

(PDF)

S1 Video. Flocks with low attention capacity in a random environment. Collective behavior

at high density of DSs for low attention capacity k = 1 characterized by high accuracy of collec-

tive migration.

(MP4)

S2 Video. Flocks with high attention capacity in a random environment. Collective behav-

ior at high DS densities for high attention capacity k = 24 characterized by efficient response to

environmental cues.

(MP4)

S3 Video. Flocks with low attention capacity in a structured environment. Collective behav-

ior in structured environment with a circular DS-free region for low attention capacity k = 1.

(MP4)

S4 Video. Flocks with high attention capacity in a structured environment. Collective

behavior in structured environment with a circular DS-free region for high attention capacity

k = 24.

(MP4)

S1 Fig. Full interaction networks. Snapshots of the (undirected) social interaction network in

random environments with ρDS = 0.25 for k = 3 upper panel, and k = 12 lower panel, at Rinf =

0.1. Black agents are socially interacting, and red agents react to DSs. Informed and unin-

formed individuals are represented by empty and filled circles, respectively. Light blue circles

are repulsion zones of DSs specified with blue dots. For the sake of clarity, the links between

agents interacting with their periodic neighbors are removed. The black squares depict the

close-ups shown in panels a, b of Fig 2 (main text). For low attention capacity (k = 3) the net-

work is sparse, composed of many small connected components, whereas for large attention

capacity (k = 12), the network is highly connected with less components.

(PDF)

S2 Fig. Temporal interaction networks. a: Average number of connected components (CC)

of the interaction network versus attention limit k. For all DS densities ρDS, we observe a fast

decay of the number of connected components, which due to constant number of agents N is

equivalent to the growth of the average connected component size, indicating a more tightly

connected temporal network. b: The probability of observing one connected component dur-

ing simulation. By increasing DS density, nonzero probability happens at larger k values. c:
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The average life time of an edge in the interaction network decreases with increasing density

of DSs. However with increasing k for a fixed DS density, we observe longer life times due to

increased connectivity in the interaction network.

(PDF)

S3 Fig. Emergent collective behavior. Accuracy C vs attention limit k calculated for the whole

system (a), uninformed individuals (b) and informed individuals (c). Solid lines are for the

interacting system and dashed dotted lines are for the non-interacting system with γs = 0.

(PDF)

S4 Fig. Collective accuracy and DS avoidance in a structured environment with circular

DS-free region. Accuracy C (triangles) and DS avoidance A (circles) versus attention limit k
(a). The horizontal line, A = 1, corresponds to DS avoidance of non-interacting agents. For

socially interacting agents with low k values (k = 1, 2), we observe high accuracy C together

with almost complete ignorance towards environmental cues (see S3 Video). By increasing k,

more agents start to sense the environment and react to DSs. At high k, the collective behavior

is fully determined by the local environmental features: We observe collective rotation along

the circular path and complete ignorance of the global migration direction accessible to

informed individuals (see S4 Video). This trade-off is shown quantitatively by the global fitness

function in panel b versus attention capacity k and relative DS avoidance benefit β. There are

two maxima in global fitness, one for low k, β� 1, showing migration accuracy to be benefi-

cial for the group, the other at high k, and β> 1, which indicates higher benefits associated

with DS avoidance in comparison to collective accuracy.

(PDF)

S5 Fig. Collective coordination-responsiveness trade-off with active signaling. Each agent

connected to another individual signaling direct interaction with a DS (direct responder), pays

only attention to the signaler(s) and ignores other social cues. Accuracy C (a) and DS avoid-

ance A (b) versus attention limit k for different DS densities at Rinf = 0.1.

(PDF)

S6 Fig. Model extension with the priority of DS avoidance. Accuracy C and DS avoidance A

vs attention limit k in a model where the agents first detect DSs with some probability and oth-

erwise interact with their kNO. a: Pdirect = 0.2, b: Pdirect = 0.5.

(PDF)

S7 Fig. Emergence of global order in the system with no informed individuals, Rinf = 0. a:

Coordination ~C (directional order) versus attention limit k for different DS densities. b: DS

avoidance versus attention limit k. A = 1 corresponds to non-interacting agents. The qualita-

tive behavior with a coordination-responsiveness trade-off is similar to the model with

informed individuals, but here instead of a specific direction, the emergent consensus direc-

tion is random (spontaneous symmetry breaking).

(PDF)

S8 Fig. Collective motion of agents with Voronoi-based kNN interaction network. For

each focal agent k nearest neighbors are selected from first shell of Voronoi neighbors. If the

number of neighbors in first layer is smaller than k, then depending on k, the second Voro-

noi shell is considered. It is defined by the Voronoi neighborhood of the (direct) Voronoi

neighbors of the focal agent. Accuracy C (a) and DS avoidance A (b) versus attention limit k
at Rinf = 0.1.

(PDF)
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S9 Fig. Robustness of the general results for C and A vs k with respect to variation of

model parameters. The panels show results for changing individual model parameters by a

factor of 2 (left columns) and 0.5 (right columns). Different rows represent variation of differ-

ent parameters, from top to bottom: v0, γs, γl, γp. The non-varied parameters are always set to

the default parameters: v0 = 0.5, γs = 1, γl = 1, γp = 0.1.

(PDF)
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