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ABSTRACT
The rapid, complete, targeted and safe treatment for tumors remains a key issue in cancer therapy. A novel
treatment of solid tumors by supramolecular photocatalyst Nano-SA-TCPP with the irradiation of
600–700 nm wavelength is established. Solid tumors (100 mm3) can be eliminated within 10 min.The
50-day mouse survival rate was increased from 0% to 100% after the photocatalytic therapy.The
breakthrough was owing to the cell membrane rupture and the cytoplasmic loss caused by photogenerated
holes inside cancer cells.The porphyrin-based photocatalysts can be internalized in a targeted manner by
cancer cells due to the size selection effect, without entering the normal cells.The therapy has no toxicity or
side effects for normal cells and organisms. Moreover, the photocatalytic therapy is effective for a variety of
cancer cell lines. Because of its high efficiency, safety and universality, the photocatalytic therapy provides
us with a new lancet to conquer the tumor.
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INTRODUCTION
According to the latest statistics, cancer is still a
heavy threat to public health worldwide [1]. There
is still an urgent need for new approaches to cancer
treatment [2]. Currently, it is still difficult to cure
cancers with most clinical cancer therapies, which
also have serious side effects [3–5] and result in
opportunities for metastasis and drug resistance
mutations. Nanomedicine for cancer therapy has
been extensively developed for preclinical and
clinical applications, especially with photother-
apeutic approaches which could be precisely
targeted at tumors and minimize damage to normal
cells [6–9].

Photothermal therapy (PTT) utilizes the
photothermal effect of nanoparticles to pro-
duce local heat above 42◦C to kill cancer cells
[10]. PTT has some intriguing and unique ad-
vantages such as its minor invasiveness and
high effectiveness [11]. However, the metallic
and carbon-based nanomaterials of photother-
mal agents (PTAs) are difficult to metabolize,

causing cumulative toxicity and permanent dam-
age to the brain, kidney, liver and other organs
[12,13]. The organic small molecules of PTAs,
as well as the relatively low photothermal sta-
bility and photothermal conversion efficiency
(PCE) restrict its clinical application [14]. As
for other PTAs like inorganic 2D materials and
polymer nanoparticles, their synthetic strategy
is too complicated and usually has wide size
distribution [15].

Another clinically approvedphototherapy is pho-
todynamic therapy (PDT), employing exogenous
reactive oxygen species (ROSs) generated from light
activating photosensitizers (PSs) and oxygen to kill
cancer cells [16,17]. Because ROSs are chemically
reactive radicals or non-radical molecules derived
from oxygen molecules [18], PDT is an oxygen-
dependent process and can damage a wide range
of cancer cells. As a result, there is no drug resis-
tance for repeated PDT treatments [19]. In spite
of these advantages, it is often inefficient and re-
quires repeated treatments, due to the need of
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Figure 1. The characterization of the Nano-SA-TCPP. (a) The morphology of the Nano-
SA-TCPP observed by TEM; (b) The HRTEM image of Nano-SA-TCPP; (c) The particle
size distribution of the Nano-SA-TCPP; (d) The UV-Vis-NIR absorption spectrum of the
Nano-SA-TCPP and the molecular structure of TCPP.

oxidative intermediate species in the hypoxic tumor
microenvironment [20,21].

Photocatalysis, driven by the energy of photons,
oxidizes or reduces substrate molecules. Recently,
photocatalysts have been applied in antibacterial
[22,23] and antiviral [24] fields, which inspired us to
suppose that photocatalysts might have functions in
tumor therapy. Not long ago, we reported a method
for preparing supramolecular photocatalysts of
self-assembled tetra-carboxyphenyl porphyrin
(SA-TCPP) and demonstrated the amazing oxidiz-
ing ability of its photogenerated holes excited by
light of 420–750 nm wavelength [25]. Porphyrin-
based molecular drugs have been widely used in
PDT [26] owing to porphyrin’s excellent bioca-
pacity and singlet oxygen evolution; some of these
drugs have already achieved clinical application. It is
well known that one of the barriers of the photother-
apeutic approach is its penetration depth, which is
also significant for detection. And the red/near in-
frared (NIR) light region between 600 and 1200 nm
is called the optical windowof tissue [27–29], which
is beneficial for deep penetration. Considering the
above, we tried to utilize the photogenerated holes
of the SA-TCPP to achieve a strong oxidative killing
effect of solid tumors and to form a theragnostic
system for cancer cells. If the idea is feasible, it could
bemore efficient than PDT and PTTbecause it does
not need heat and oxygen, which is more suitable
for the tumor microenvironment.

RESULTS AND DISCUSSION
The characterization of the
Nano-SA-TCPP
The supramolecular Nano-SA-TCPP was prepared
as previously reported [25], and carefully charac-
terized. The specific methods are emphasized in
the Supplementary Data. Generally, the SA-TCPP
photocatalyst is a crystalline nanoplate as shown
in Fig. 1a, thus it is named Nano-SA-TCPP in this
article. The excellent crystallization properties of
the supramolecular material can be observed with
high-resolution transmitting electron microscopy
(HRTEM) as shown in Fig. 1b, where the clear
d-spacing of 0.36 nm proved theπ -π stacking inter-
action between TCPP molecules. The particle size
distribution was further counted as shown in Fig. 1c,
which calculated that the mean particle size of the
material is about 50 nm. Furthermore, the widened
peaks in the X-ray diffraction spectrum (Fig. S1)
also indicated the nano size of the material particles
and the π -π interaction. The material was also ana-
lyzed with the IR spectrum (Fig. S2) to confirm the
correct preparation. Owing to the fantastic molec-
ular structures of carboxyl groups and conjugated
central ring in TCPP, the Nano-SA-TCPP presents
negative Zeta potential of −90.3 mV (Fig. S3)
and amphiphilic properties (Fig. S4), which can be
dispersed homogeneously in water for cell culture.
Thus, the properties above mentioned, the nano
size, negative surface potential [30] and amphiphilic
ability [31] contributed to the phagocytosis of
the supramolecular Nano-SA-TCPP photocatalyst
by cancer cells. Moreover, benefiting from the
large internal delocalization system of the TCPP
molecule, the supramolecular Nano-SA-TCPP
presents a wide absorption spectrum, as shown in
Fig. 1d. It can be observed that the absorption range
reached NIR. The longer wavelength is beneficial
for penetrating biological tissue into the targeted
region. And the region of 600–1200 nm is consid-
ered as a therapeutic window because of the lesser
absorption by biological tissues [32]. Thus, the
Nano-SA-TCPP in vivo can be induced by red light
to conduct a powerful anti-cancer performance.

The rapid and complete solid tumor
elimination with Nano-SA-TCPP under
red light
On this basis, we tested the solid tumor eliminating
performance in vivo with the supramolecular photo-
catalyst, as shown in Fig. 2a and b, and Movie S1.
The specificmethods are introduced inMethods and
the Supplementary Data. The light over 600 nm is
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Figure 2. The photocatalytic cancer therapy with Nano-SA-TCPP. (a) The photographs of photocatalytic therapy for tumor-bearing mice (irradiation
wavelength and power: 600 nm, 0.1 W cm−2). (b) The ultrasound image of tumors before and post photocatalytic cancer therapy (irradiation wave-
length and power: 600 nm, 0.1 W cm−2). (c) Hela cells viability with different concentrations of Nano-SA-TCPP under irradiation of 0.1 W cm−2 for
10 min. (d) The green fluorescence image of living Hela cells (blank and dark) and killed cells (post therapy, irradiation wavelength and power: 600 nm,
0.1 W cm−2). (e) Photocatalytic cancer therapy with Nano-SA-TCPP dispersions to three types of different cancer cell lines (irradiation wavelength and
power: 600 nm, 0.1 W cm−2). (f) Relative tumor sizes of the experimental mice. (g) The statistical analysis of the experimental mouse survival rate.

known to be able to penetrate the skin over a range
of 10 mm [27,33]. As characterized, the Nano-SA-
TCPP can absorb the light up to 1200 nm. There-
fore, we used a subcutaneous tumor model about
100mm3 to test the treatment effect.The tumor site
was irradiated with a 600 nm light of 0.1 W cm−2

for 10 minutes after injection of Nano-SA-TCPP.
The treatment process is shown in Figs S5 and S6.

The solid tumor site was atrophied and flattened
obviously, where the original convex site had dis-
appeared. On the second day, the irradiated part
was scarred, and fell off one week later, revealing
the newly reconvened tissue. We also irradiated the
healthy mouse with the same condition as shown in
Fig. S7, which did not present obvious change. The
results also confirm the safety of the light source and
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indicated the cancer therapy effect of the Nano-SA-
TCPP.

To verify the anticancer performance under
the red light, control experiments in vitro have also
been investigated. Hela cells were incubated with
dispersions of Nano-SA-TCPP and irradiated under
600–700 nm. It can be seen that the Nano-SA-
TCPP can significantly inhibit the proliferation of
Hela cells under the red light irradiation (0.1 W
cm−2), as shown in Fig. 2c. Nano-SA-TCPP dis-
persion of 25μg mL−1 can completely kill the Hela
cells within 10 minutes under 600 nm. It should
be pointed out that the killing performance was
not solely caused by the light irradiation, where
the irradiated cells without the Nano-SA-TCPP
(marked by ‘Blank’ in the following) did not present
decreased viability. To visualize the therapy, Hela
cells were stained by calcein-AM and propidium
iodide (Calcein-AM/PI), as shown in Fig. 2d. The
strong green fluorescence of living Blank Hela cells
can be observed. Similarly, the Hela cells incubated
by Nano-SA-TCPP without irradiation (marked
by ‘Dark’ in the following) can stay alive and look
similar to the Blank group. After irradiation with
600 nm light for 10 min, the Hela cells were killed
and presented a strong red fluorescence and the
spherical morphology. Moreover, the number of in-
tact cells in the visual field was significantly reduced,
whichmeans that the cellsmay have ruptured during
the photocatalytic therapy. The results confirm that
the light acts like a switch with regard to anticancer
performance; only under irradiation can the pho-
tocatalyst conduct the strong oxidative anticancer
effect. Moreover, the therapy is not only for Hela
cells but also had significant effects on other cancer
cell lines such as MCF-7 and HepG-2, as shown in
Fig. 2e. Because of the different cellular properties,
these cell lines presented obvious differences in
tolerance.

Long-term therapy has been investigated as well.
Relative tumor volumes were calculated from the
tracked volumes (Fig. S8) to further validate the
therapeutic effects and tumorproliferation, as shown
in Fig. 2f. For the photocatalytic cured group, there
was no solid tumor observed. While, in the Dark
group, the solid tumor grew rapidly, same as the
Blank group. And the anatomy and sectioning re-
sults (Figs S9 and S10) can more accurately con-
firm the complete therapeutic effect on solid tu-
mors. Obvious subcutaneous tumors were found in
the control groups, while only scars and muscles
were observed in the cured group with Nano-SA-
TCPP. Thus, the 50-day survival rate of the photo-
catalytic cured mice was increased compared to the
control groups, as shown in Fig. 2g. On the 50th
day of the experiment, the treated mice remained

healthy, while the untreated control group had all
died.

The targeted property of the
Nano-SA-TCPP
The targeted property of the supramolecular pho-
tocatalyst has been further explored as well. The
Nano-SA-TCPP can get into the cancer cells and
be distributed in the cytoplasm evenly as shown in
Figs 3a, S11 and S12. Meanwhile, the concentra-
tions of Nano-SA-TCPP in Hela cells and normal
L02 cells presented an obvious difference, as shown
in Fig. 3b. The Hela cells presented strong fluores-
cence indicating the large-amount internalization of
Nano-SA-TCPP. While in the L02 cells, the Nano-
SA-TCPP was blocked outside the cell. The same
result has also been observed and proved by Peng
et al. [34]. It is reported that the targeted prop-
erty is caused by the size selection effect of cellular
phagocytosis between cancer cells and normal cells
[35,36].

Indeed, the cellular uptake amount significantly
depended on the nanoparticle size, as shown in
Fig. 3c. Different centrifugal speeds were applied
to classify the particle size of the Nano-SA-TCPP,
where the smaller particles enter the cells more ef-
ficiently. Besides, the internalization process can be
observed as shown in Figs 3d and S13–S16. The
Nano-SA-TCPPcanbe internalized and transported
by vesicles. This also makes the nanomaterials used
in photocatalytic therapy show the cumulative tar-
geting of cancer cells [37]. The targeting property
in vivo was further tested by injection of Nano-SA-
TCPP dispersion (Fig. S17) through the tail vein.
As shown in Fig. 3e, the Nano-SA-TCPP can be ob-
served enriched in the solid tumor site due to its tar-
geting and enhanced permeability and retention ef-
fect [38]. The fluorescence intensity of the tumor
site was significantly higher than that of other or-
gans, indicating that thematerial targeted the tumor.
The targeting property provides a safety guarantee to
healthy cells and organs.

The biocompatibility and biosafety of
Nano-SA-TCPP
The biocompatibility of the photocatalytic therapy
was also revealed. The Nano-SA-TCPP dispersions
of different concentrations were incubated with
Hela cells. The concentration of Nano-SA-TCPP
below 50 μg mL−1 has no significant side effect
on the proliferation, as shown in Fig. 4a, which is
the basis for clinical application. And in the exper-
imental term, the live quality of mice was not af-
fected as shown in Fig. 4b. The body weight of the
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photocatalytic cured group was significantly in-
creased, whereas in the other untreated control
groups it dropped obviously. And the untreated
groups noticeably lost weight.

Due to supramolecular Nano-SA-TCPP having
no metallic elements, the Nano-SA-TCPP can be
completely metabolized, as shown in Figs 4c and
S18–S20.The amount of Nano-SA-TCPP in the tu-
mor site was first increased and then decreased, in-
dicating that the organic materials did not cause
cumulative toxicity. The maximum concentration
in the tumor site appeared at 6 hours after injec-
tion. And the maximum concentration in the whole
body appeared at 24 hours after the injection of
the drug, which was caused by the lag of systemic
metabolism. Then, as the observation time was pro-
longed, 240 hours later the Nano-SA-TCPP was
completely metabolized and the fluorescence recov-
ered to the background level in the whole body.

As shown in Fig. 4d, the injection of Nano-SA-
TCPP did no harm to the main organs. The pho-
tocatalytic cured mice stayed healthy and the solid
tumor was eliminated. In the controlled group, the
solid tumor grew rapidly. The results of such experi-
ments demonstrate the striking therapeutic effect on
solid tumors by photocatalytic therapy, eliminating
the solid tumor tissue within 10 minutes. Such ex-
cellent therapeutic effects andbiosafety are not avail-
able in any conventional phototherapy method.

The mechanism of photogenerated-hole-
induced cancer therapy
With this breakthrough, the mechanism was deeply
revealed. The outstanding performance is from the
innovation in the therapy mechanism of photogen-
erated hole oxidation. Photogenerated holes are
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photocatalytic

Figure 4. The biosafety of the Nano-SA-TCPP. (a) Cell viability of Hela cells with dif-
ferent concentrations of Nano-SA-TCPP. (b) The statistical body weight analysis of the
experimental mice. (c) The Nano-SA-TCPP distribution and metabolization in the whole
body observed by the fluorescence image of Nano-SA-TCPP. (d) Histology analysis of
the major organs and tumors after treatment.

high-energyoxidation states formedon the semicon-
ductor photocatalyst surface after excitation by light
[39]. The oxidizing ability of photogenerated holes
is so strong that it can destroy small molecules [40].
The photocatalytic therapy utilizes highly oxidative
photogenerated holes, which is different from the
traditional PDT based on the singlet oxygen. It can
bemore efficient as it gets rid of oxygen dependence.
With the surface photovoltage (SPV) technique in-
troduced in the SupplementaryData, the generation
of photogenerated holes on Nano-SA-TCPP under
red light (500–800 nm) can be ascertained [41],
as shown in Fig. 5a. It has been reported that the
oxidation potential of the photogenerated holes in
Nano-SA-TCPP is+ 1.53 V [25], which is so strong
that it can oxidize organic pollutant molecules and
water molecules. And the existence of photogen-
erated holes usually needs to depend on the semi-
conductor, and no single molecule can form photo-
generated holes. Therefore, we also compared the
performance of theNano-SA-TCPPwith themolec-
ular PDT drug (Ce-6) and the molecular TCPP,
as shown in Figs 5a and S21. Since these molecular
drugs did not have a semiconductor band structure,
no photogenerated hole signal could be detected
under the same irradiation. Therefore, compared

with Nano-SA-TCPP, molecular drugs have much
weaker killing effect on cancer cells. It is also the
biggest difference between photocatalytic cancer
therapy byNano-SA-TCPP and by the typical PDT.

The photogenerated-hole-induced cancer ther-
apy by supramolecular Nano-SA-TCPP was further
confirmed. The active species were captured by the
method presented in the Supplementary Data, as
shown in Fig. 5b. By comparing the killing effects
after capturing different reaction intermediates’ in
cells, themain active species of the therapy canbede-
termined. When the singlet oxygen was inhibited by
NaN3, the killing effect did not change significantly,
which indicated that singlet oxygen does not play a
major role in the photocatalytic anticancer process.
In other words, the photocatalytic therapy is not a
traditional Type II PDT.However, when the photo-
generated holes were inhibited by KI, the killing ef-
fect decreased significantly from 0.79 to 0.35 on av-
erage, which means that the photogenerated holes
are the major intermediate in the novel therapy.
And in the photocatalytic process, photogenerated
holes interact with water or hydroxide to generate
hydroxyl radicals (·OH), and photogenerated elec-
trons interact with oxygen to generate superoxide
radicals (·O2

−) [42]. These free radicals also have
oxidative killing effects on cells, which is similar to
the Type I PDT. As shown in Figs 5c and S22, the
ROS concentration increased in cells after irradia-
tion. The increase of intracellular ROS could lead
to apoptosis and destruction of genetic information
[43]. When the (·OH) and (·O2

−) were inhibited
by 2-propanol and p-benzoquinone respectively, the
killing effect was also decreased lightly. In short, the
photogenerated holes conducted a powerful intra-
cellular oxidation to kill cancer cells based on the
nano photocatalysts inside.

Moreover, the photothermal effect was also ex-
cluded as the temperature of Nano-SA-TCPP dis-
persion after irradiationwas far lower than the killing
temperature of 42◦C (Fig. S23), which proved the
highly efficient therapy was not caused by the pho-
tothermal effect.

The reason for solid tumor elimination was fur-
ther investigated. As shown in Fig. 5d the morphol-
ogy of cancer cells after therapy changed signifi-
cantly. The cell membrane was ruptured, leading to
the outflowof cytoplasm.As a result, the cells shrunk
significantly and even broke into pieces. This result
also matches the change in cell morphology and the
decrease in the number of cells in the visual field
shown in Fig. 2d. This conclusion has also been sta-
tistically verified with flow cytometry analysis. As
shown in Fig. 5e and f, the cells before irradiation
accumulated in the Q3 quadrant, which means that
the cells were dispersed as single cells in the buffer.
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Figure 5. The mechanism of photocatalytic cancer therapy by Nano-SA-TCPP. (a) The detection of photogenerated holes on the surface of the Nano-
SA-TCPP outside of the cancer cells. (b) The reactive species capture in cancer cells. (c) The concentration changes of ROS inner cells with the probe
of DCFH-DA. All the experiments were repeated three times with calculated the mean values and error bar. (d) The photographs of cancer cells before
and after photocatalytic therapy. (e) Flow cytometry analysis of Hela cells incubated by Nano-SA-TCPP without irradiation. (f) Flow cytometry analysis
of Hela cells incubated by Nano-SA-TCPP with irradiation for 10 min. (g) The mechanism simulation diagram of photocatalytic therapy.

However, the cell distribution, after photocatalytic
therapy under 600 nm for 10 min, moved to Q4
quadrant,where the forward scatter (FSC) signal de-
creased obviously, indicating the decreased cell size.
Besides, the side forward scatter (SSC) increased a
little bit, indicating the cells might be broken into
pieces [44].

From all the above, the photocatalytic therapy
mechanism can be schemed as shown in Fig. 5g.
The Nano-SA-TCPP can destroy the cell structure
from the inside of cancer cells with the photogen-
erated holes under red light, causing the outflow
of intracellular material, which is the reason for
the flattened solid tumors after treatment as well.
Due to this advancement in the mechanism, Nano-

SA-TCPP exhibits significant advantages in terms
of therapeutic efficacy over conventional cancer
phototherapy.

CONCLUSION
In conclusion, a novel cancer therapy has been
developed based on the supramolecular porphyrin
photocatalyst. The solid tumors can be rapidly
eliminated under red light. The therapy utilized the
supramolecular photocatalysts to oxidize the cancer
cells by photogenerated holes. The supramolecular
photocatalyst can be enriched in cancer cells and
tumors without causing damage to normal tissues
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and organs. Meanwhile, the supramolecular por-
phyrin photocatalyst can be completelymetabolized
by the organism without causing bioaccumulation.
It can be expected that with the further enrichment
of photocatalytic materials and advancements in
mechanism understanding, photocatalytic cancer
treatment will play an important role in conquering
tumors.

METHODS
In vitro photocatalytic cancer therapy
with Nano-SA-TCPP
Hela cells were used as probe cells to evaluate
the cancer therapy performance of Nano-SA-TCPP.
Specifically, Hela cells were incubated in the 25 cm2

cell-culture flask and then the cells (1× 104 cells per
well) were seeded into two 96-well plates by detach-
ing from the flask. After seeding, the Hela cells were
exposed to Nano-SA-TCPP of different concentra-
tions for 24 h.

After that, each well was irradiated under differ-
ent wavelengths for 10 min, and during the irradi-
ating other wells were kept in the dark with tinfoil.
The light source was a xenon lamp source, PLS-SXE
300D, Beijing Perfectlight Technology Co., Ltd.
with band-pass filters (600 ± 15, 650 ± 15, 700 ±
15 nm), and the irradiance was 0.1W cm−2. For the
cell viability after irradiation, a mixture of CCK-8
and DMEM (1 : 10) was added to the 96-plate. The
cell viability was calculated as the ratio of the ab-
sorbance of the wells.The absorbance at 450 nmwas
measuredbyThermoMultiskanFC.Thecell flowcy-
tometry analysiswas conductedon aBDBiosciences
FACSCalibur flow cytometer with the ROS probe
of DCFH-DA purchased from Beyotime Biotech-
nology.The data were analyzed by FlowJo Software.

In vivo photocatalytic cancer therapy
with Nano-SA-TCPP
All animal procedure compliedwith the institutional
animal regulations.TheMale nudeBalb/cmicewere
purchased from Beijing HFK Bioscience Co., Ltd.
The2× 106 Hela cells suspended in 200μLDMEM
were injected subcutaneously in the right lateral
back of each mouse. The mice bearing Hela tumors
were treated when the tumor volume was exceeded
∼100 mm3. All mice were randomized into three
groups. The three groups of mice (n = 5) were
dosedwith 100μL of phosphate buffer saline (PBS)
and Nano-SA-TCPP (500 μg mL−1). The given
amountofNano-SA-TCPPwas at a concentrationof
2.50 mg kg−1 (3.16μmol kg−1). Ten minutes later,
the tumor site was irradiated under the light source

with the 600 nm band-pass filter (0.1 W cm−2) for
10 minutes. After that, the tumor size and the body
weight of the animals were monitored every day.
No further light treatment was performed. The vol-
ume of the tumor was calculated by the equation of
V= (L×W2)/2, where L is regarded as length and
W is thewidth of the tumormeasuredusing a caliper.
After 16days of therapy, themain organs and tumors
were dissected and fixed in a 4% formaldehyde solu-
tion for 24 h at room temperature. The slices of the
organs were stained with hematoxylin and eosin and
investigated for histological variations.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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