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INTRODUCTION 
 

Infertility, a couple's inability to have children after 

one year of normal sexual intercourse without 

protection, affects 10-15% of couples [1–4]. From the 

latest WHO statistics, nearly 50–80 million persons 

suffer from infertility [5, 6]. A few studies 

demonstrate that nearly 50% of all cases of infertility 

occur because of female factors, 20%–30% male 

factors, and 20%–30% couples [6–8]. Male infertility 

is a multifaceted and multiphenotypic disease, which 

affects about 7% of men worldwide [9]. Male 

infertility is a complex and heterogeneous phenotypic 
disease, from complete absence of sperm in testis to 

changes in sperm quality [10, 11]. Genetic factors 

account for at least 15% of male infertility. The three 
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ABSTRACT 
 

Background: Genetic factors are important in spermatogenesis and fertility maintenance, and are potentially 
significant biomarkers for the early detection of infertility. However, further understanding of these biological 
processes is required. 
Methods: In the present study, we sought to identify associated genes by reanalyzing separate studies from 
Gene Expression Omnibus datasets (GSE45885, GSE45887 and GSE9210) and validation datasets (GSE4797, 
145467, 108886, 6872). The differential genes were used the limma package in R language. Gene ontology and 
Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed by the cluster-
profiler package. The protein-protein interaction network was constructed by the STRING database. The 
interaction between mRNA and TF was predicted by miRWalk web. At last, The Cancer Genome Atlas data were 
used to identify hub gene expression levels in GEPIA web. 
Results: The results showed that 27 shared genes associated with spermatogenesis. We effectively screen out 
two genes (KIF2C and TEKT2) and both validated by GSE4797, 145467, 108886 and 6872. Among 27 shared 
genes, KIF2C and TEKT2 both down-regulated in spermatogenesis. The network of TF-miRNA-target gene was 
established, we found KIF2C-miRNAs (has-miR-3154, 6075, 6760-5p, 1251-5p, 186-sp)-TFs (EP300, SP1) might 
work in spermatogenesis. 
Conclusions: Our study might help to improve our understanding of the mechanisms in spermatogenesis and 
provide diagnostic biomarkers and therapeutics targets. 
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main causes of male infertility: spermatogenic function 

defects; ductal obstruction or disorder; hypothalamic–

pituitary axis disorder. A patient with azoospermia is 

at the highest risk of carrying genetic abnormalities. 

With the biotechnology’s improving, we can immediately 

identify expression diversifications at the transcription 

level, which beneficially contribute to infertile men. A lot 

of studies concentrated on differently expressed gene 

(DEG) analysis have found a quantity of possible 

molecular goals and diagnostic biomarkers for infertility 

at the transcription level. Agnieszka et al. discovers that 

genes, for example, GGN, GSG1, ADCY10, and 

GTSF1L are down regulated in human beings with 

azoospermia. Ribosomal protein S3 (RPS3) is recognized 

by Zhang et al., RPS5, RPS16, RPS23 and RPS6 were 

downregulated in teratozoospermia [12, 13]. 

As the study of male infertility is still insufficient, our 

goal is to analyze whether there are rare potential 

disease-related genes associated with infertility, and 

provide clinical evidence [14]. In this study, a 

comprehensive bioinformatics method was used to 

study the related genes of spermatogenesis. 

MATERIALS AND METHODS 

Fetching testicular tissue microarray data sets from 

GEO 

The data sets were accessed from GEO 

(http://www.ncbi.nlm.nih.gov/geo/) in the National 

Center for Biotechnology Information Database (NCBI) 

utilizing the accession numbers GSE45885, GSE45887, 

and GSE9210. Data sets GSE45885 was associated by 

azoospermia and GSE45887 were presented by 

Agnieszka Malcher and based on the GPL6244 platform 

([HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array 

[transcript (gene) version, Affymetrix, Inc., USA]). The 

information of testicular samples in GSE45887 and 

GSE45885 was accessed from the issued literature 

(Table 1). The research procedure appeared in Figure 1. 

We fetched gene expression profile (level 3 information) 

for Level 3 for Testis carcinoma patients from the TCGA 

data portal (https://tcga-data.nci.nih.gov/tcga/). 

Microarray data preprocessing 

In this study, the original CEL profiles were imported 

into R (version 3.5, https://www.r-project.org/), and the 

profiles background was corrected and normalized 

using the Affy R-package (Bioconductor version 3.6). 

Affybatch's mas5calls method returns expression sets 

corresponding to specific genes through multiple 

probes. 

Differentially expressed gene selection 

DEGs were used the limma package (version 3.6). |log2 

fold change|>1 and P < 0.05 were set at the cutoff values.  

Functional annotation and pathway analysis of 

DEGs 

Go analysis is composed of molecular function (MF) and 

cellular compartment (CC) and biological process (BP) 

are usual processes for large-scale genomic data's 

functional annotation. To learn more the mechanism of 

DEGs that be involved in infertility, we used 

clusterprofiler R-package to analyze the enrichment of 

KEGG pathways and GO (version 3.16). In these 

analyses, P < 0.05 was considered statistically significant. 

Protein interaction network and module analyses 

The STRING database (http://string-db.org), A protein-

protein interaction network that was composed of up-

regulated and down-regulated DEGs was built, with a 

cutoff score more than 0.4. Using the clusterone add-in of 

Cytoscape v3.6.1 to pick the significant modules from 

the PPI network (https://cytoscape.org/) with P < 0.01 

showed statistical importance. The K-core analysis and 

degree/betweenness/closeness centrality were executed 

by two add-ins CentiScaPe and Molecular Complex 

Detection (MCODE) in Cytoscape to illuminate the 

modules and most significant nodes in the network. 

TF-miRNA-target gene network construction 

Interactions between differentially expressed miRNAs 

and differentially expressed mRNAs and expressed 

miRNAs were forecast utilizing miRWalk 3.0 

(http://mirwalk.umm.uni-heidelberg.de/), and a mark 

0.95 was regarded to be the cutoff principle for the 

estimate analysis in miRWalk. The target mRNAs that 

was involved in all of these databases were only picked 

for the further analysis. The interaction between mRNA 

and TF was predicted by using miRWalk 3.0 and the 

mark 0.4 was considered as cutoff standard for the 

estimate analysis in the experimental module of 

LncBase. After the predicted marks were intersected 

with DEGs, miRNAs, TFs and mRNAs were picked for 

further analysis. Cytoscape software (version 3.6.1) was 

used to visualize the regulatory network. 

Validation and expression of hub-gene in male 

infertility and testicular carcinoma 

At last, the expression levels of hub genes showed in 

GEPIA (based on TCGA data) (http://gepia.cancer-

pku.cn). Next, validation of hub-gene in male infertility 

by GEO database (GSE4797, 145467, 108886, 6872) 

http://www.ncbi.nlm.nih.gov/geo/
https://tcga-data.nci.nih.gov/tcga/
https://www.r-project.org/
http://string-db.org/
https://cytoscape.org/
http://mirwalk.umm.uni-heidelberg.de/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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Table 1. Characteristics of GEO sample. 

GSE NO. Patients GPL NO. Experiment type Organism Title Description 

GSE45885 31 GPL6244 Expression 
profiling by array 

homo sapiens Potential biomarkers of 
non-obstructive 
azoospermia identified in 
microarray gene 
expression analysis 

Control group:4; 
NOA group:27; 
Age:28–54 (yrs). 

GSE45887 20 GPL6244 Expression 
profiling by array 

homo sapiens The gene expression 
analysis of 
paracrine/autocrine 
factors in patients with 
spermatogenetic failure 
compared to normal 
spermatogenesis 

Control group:4; 
NOA group:16; 
Age:28–54 (yrs). 

GSE9210 58 GPL887 Expression 
profiling by array 

homo sapiens A testicular gene 
expression profile for 
NOA patients, and ART3 
as a genetic susceptibility 
gene for NOA 

47 non-obstructive 
azoospermia (NOA) and 
11 obstructive 
azoospermia (OA) 
patients 

GSE6872 21 GPL570 Expression 
profiling by array 

homo sapiens 
(semen) 

Spermatozoal RNA 
Profiles  

Control group:13; 
teratozoospermia 
group:8. 

GSE108886 12 GPL10558 Expression 
profiling by array 

homo sapiens 
(testis) 

Spermatogenomics: 
correlating testicular gene 
expression to human male 
infertility 

Control group:1; 
NOA group:8; 
OA group:3. 

GSE145467 20 GPL4133 Expression 
profiling by array 

homo sapiens 
(testis) 

Transcriptome changes in 
patients with severely 
impaired spermatogenesis 

10 non-obstructive 
azoospermia (NOA) and 
10 obstructive 
azoospermia (OA) 
patients 

GSE4797 28 GPL2891 Expression 
profiling by array 

homo sapiens Microarray analysis of 
human spermatogenic 
dysfunction 

full spermatogenesis 
(Johnsen Score 10, 12 
samples), arrest at the 
spermatid stage (Johnsen 
Score 8, 6 samples), 
arrest at spermatocyte 
stage (Johnsen Score 5, 5 
samples) and Sertoli-
cell-only syndrome 
(Johnsen Score 2, 5 
samples). 

Abbreviations: NOA: non-obstructive azoospermia; OA: obstructive azoospermia. 

 

(Table 1). P < 0.05 was viewed to show a statistically 

important difference in these analyses. 
 

Available of data and materials 

 

The datasets analyzed for this study can be found in the 

GEO datasets (https://www.ncbi.nlm.nih.gov/gds) and 

TCGA. 
 

RESULTS 
 

Analysis of DEGs 

 

The expression description information was pre-

processed and then analyzed with the Affy package in R 

language. The entire gene expression was examined. 

The RNA expression levels are revealed in Figure 2. 

Differences were revealed by the hierarchical cluster 

analysis in distribution between normal samples and 

azoospermic. The consequences showed that grouping 

was reasonable, and further analysis was undergone by 

the data with success. Microarray data from the normal 

samples were compared with those from the 

azoospermic samples and a sum of 1396 DEGs were 

discovered. 

 

Functional annotation and pathway analysis of DEGs 

 

A total of 1396 genes were identified by enrichment 

analysis, with P (by less than 0.05) statistical 

significance used to be determined. Figure 3A–3C 

displayed that GO-MF, CC, BP. The top 10 GO terms 

https://www.ncbi.nlm.nih.gov/gds


 

www.aging-us.com 22901 AGING 

 
 

Figure 1. The study procedure. 

 

 

 
 

Figure 2. Differential expression analysis. (A, B, C) Volcano plot of DEGs. The y-axis is logFC and the x-axis represents -log10 
(adjusted P-value). The red dots represent the DEGs upregulated and the green dots represent the DEGs downregulated while the black 
dots represent genes that were not differentially expressed. DEGs, differentially expressed genes; FC, fold change.  (D, E, F) Heat map 
presenting the expression pattern across different samples. The horizontal axis represents sample names. The left vertical axis 
presented clusters of DEGs, and the top horizontal axis presents clusters of samples. Red represents upregulated genes and gr een 
represents downregulated genes. 
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that are enriched through up and downregulated genes 

were primarily enriched in “tubulin binding”, “cyclin-

dependent protein serine/threonine kinase regulator 

activity”, “steroid dehydrogenase activity, acting on the 

CH-OH group of donors, NAD or NADP as acceptor”, 

“motor activity”, “protein binding involved in protein 

folding”, “microtubule binding”, “glutathione 

transferase activity”, “dynein heavy chain binding”, 

“steroid dehydrogenase activity”, “extracellular matrix 

structural constituent” (Figure 3D). The KEGG 

pathways of DEGs (Figure 3E) were primarily enriched 

in “Oocyte meiosis”, “Human T-cell leukemia virus 1 

infection”, “cell cycle”, “progesterone-mediated oocyte 

maturation”, “glucagon signaling pathway”, “foxo 

signaling pathway”, “staphylococcus aureus infection”, 

“aldosterone synthesis and secretion”, “toxoplasmosis”, 

“carbon metabolism”. Figure 3F demonstrated 27 DEGs 

co-expression in three GEO data sets. 

 

Protein interaction network and module analysis 

 

To investigate shared genes' relationship between 

modules, PPI networks were built by using Cytoscape 

software that was based on the STRING database. 

Moreover, the k-core analysis was executed to discover 

the hub genes and cardinal clusters of PPI networks. By 

Cytoscape-MCODE analysis, parameters are set as 

follows: Degree Cutoff: 5, Node Score Cutoff: 0.2, K-

Core: 5. 10 clusters of 338 spermatogenesis-associated 

genes (Figure 4) were identified by us. The hub genes in 

cluster 1 (Figure 4) that exhibited the highest scores 

(52.59) were TOP2A, CDT1, KPNA2, TACC3, 

TEKT2,NUF2, ATAD2, PBK, DLGAP5, TYMS, 

KIF18A, PTTG1, SPAG5, CDCA8, AURKA, EZH2, 

CCNB2, EXO1, NCAPG, SMC2, BUB1, KIF15, 

CDK1, CDC45, ZWILCH, KNTC1, NEK2, KIF20A, 

MCM4, MAD2L1, CDCA5, CDC20, CCNB1, CENPK, 

CKS2, OIP5, HMMR, PLK4, ASPM, CDKN3, CEP55, 

RAD54L, TTK, KIF2C, CENPF, CDCA2, SKA3, 

SGOL2, RAD51, SPC25, RFC4, MND1, CENPM, 

CENPU, CASC5, BIRC5, CDC25C, GMNN, 

RACGAP1, ANLN, UHRF1. 

 

TF-miRNA-target gene network construction 

 

A total of 42 miRNAs could bind to shared genes 

predicted by miRWalk. Four genes did not have  

any binding miRNA. The regulatory network of  

 

 
 

Figure 3. (A–E) GO and KEGG results of DEGs. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; (F) Venn plot of 

candidate hub genes commonly owned in GSE45885, GSE45887 and GSE9210. 
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TF-miRNA-target gene was established, involving 18 

TFs and 23 hub genes in Figure 5, such as KIF2C-

miRNAs (has-miR-3154, 6075, 6760-5p, 1251-5p, 186-

sp)-TFs (EP300, SP1). 

Expression of hub-gene in testicular carcinoma 

A total of 12 genes (ANLN, CCNB1, CENPF, COIL, 

CYCS, KIF2C, KNSTRN, LELP1, OAZ3, SRPK2, 

TEKT2, WDTC1) were identified as hub genes. We 

used TCGA data of testis cancer to validate the hub 

gene expression with the online tool of GEPIA. All of 

the hub genes are expressed differently in normal and 

cancer tissues of testis cancer by the criterion of 

|logFC|>1 and p < .01 (Figure 6). 

Validation of hub-gene in male infertility 

Through validation of hub-gene (A total of 12 genes 

were identified as hub genes in testicular carcinoma) in 

male infertility by GSE4797 set, we found expression of 

KIF2C between more than or equal to John score 5 and 

less than 5 existed significant difference. The 

expression of TEKT2 decreased with reduction of John 

score in the Figure 7. The Figure 8 showed the 

expression of KIF2C and TEKT2 both decreased in 

three datasets from GEO database. 

Furthermore, we found KIF2C might act in infertility and 

testis cancer through DEG, functional annotation and 

pathway, protein interaction network and module analysis. 

DISCUSSION 

With the development of science and technology, the 

molecular mechanism of azoospermia has aroused great 

interest. The study of azoospermia depends on human 

studies, animal models, organ culture models and cell 

lines [9, 15]. It has been confirmed that the number of 

genes and proteins related to male infertility has 

increased [9, 16]. However, how these biological 

processes are regulated at the molecular level remains to 

be elucidated. Therefore, it is necessary to further study 

the pathogenesis of azoospermia at the molecular level.

Figure 4. Network and module analysis of DEGs. (left) PPI network of DEGs obtained from the STRING database. (right) 10 clusters 

identified through Cytoscape-MCODE analysis. Abbreviations: DEGs: differentially expressed genes; PPI: protein-protein interaction. 
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In this study, we identified the genes associated with 

spermatogenesis and systematically constructed a 

comprehensive framework of genes and miRNAs. 

In the present study, we sought to identify associated 

genes by reanalyzing separate studies from GEO 

datasets (GSE45885, GSE45887, and GSE9210) and 

validation dataset (GSE4797, 145467, 108886 and 

6872) [13, 17, 18]. The results showed that several 

shared genes associated with spermatogenesis. Finally, 

we effectively screen out two genes (KIF2C and 

TEKT2) for validation by GSE4797, 145467, 108886 

and 6872. Among these two genes, KIF2C and TEKT2 

down-regulated in sperm abnormality. The network of 

TF-miRNA-target gene was established, we found 

KIF2C-miRNAs (has-miR-3154, 6075, 6760-5p, 

Figure 5. The transcriptional regulatory network of hub genes, miRNAs, and TFs. Abbreviations: miRNAs, microRNAs; TFs, 

transcription factors. 



www.aging-us.com 22905 AGING 

1251-5p, 186-sp)-TFs (EP300, SP1) might work in 

spermatogenesis. Interestingly, the relative expression 

levels of KIF2C and TEKT2 had a negative correlation 

with Johnsen score, which showed potential role of 

spermatogenesis. 

KIF2C (also known as the mitotic centromere-

associated kinesin, MACK) is a member of the kinesin-

13 family of microtubule (MT)-depolymerizing 

kinesins, which is critical in the regulation of 

microtubule dynamics. During cell division, KIF2C 

inhibits the wrong connection between MT and 

chromosome [19, 20]. The function of KIF2C in 

interphase cells is not obvious, although its main 

localization in nucleus suggests that KIF2C may work 

in nuclear processes. KIF2C promotes the formation of 

Figure 6. The transcriptional differences of hub gene levels between colon carcinoma tissues and the para‐cancer tissues in 
TCGA. TCGA, The Cancer Genome Atlas (*p < .001). 
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DNA damage foci, which may involve the migration 

and aggregation of DSBs (DNA Double Strand Break) 

[21–25]. We found KIF2C might work in the testis 

cancer and spermatogenesis. 

Tektins (TEKTs), the proteins of the microtubules in 

Cilia, Flagella, Basal bodies and centrioles [26–28], 

have been found in various animals, including Filariae, 

including silk-worms [29], mice [26, 30] and humans 

[31, 32]. They were originally isolated from sea urchins 

and are a group of proteins: TEKT-A, -B and -C [33, 

34]. On the other hand, five types of TEKTs have been 

identified in mammals. TEKT2, which is similar to 

Tektin-t, locates in the main part of human spermatozoa 

but no immune signal was detected in the middle or at 

the end of the human sperm. Tektin2, a membrane 

protein, is responsible for sperm flagellum movement. 

Previous studies show that CatSper and tektin are 

associated with male infertility because they play an 

important role in sperm motility [35]. Tektin2 is 

essential for the integrity of motilin arm in sperm 

flagellum. Lack of tektin2 can lead to impaired sperm 

motility and male infertility [36]. The low expression of 

tektin2 mRNA was observed in frozen spermatozoa, 

suggesting that the decrease of sperm motility after 

cryopreservation may be due to the transcriptional 

damage of some sperm motility related genes [37].  

The miRNAs work in infertility. In 2009, for the first 

time, expression of miRNAs in a testicular sample of 

NOA patients compared to fertile control samples 

evaluated by microarray technology, identified 19 

upregulated and 154 downregulated miRNAs [38]. Hsa-

miR-141, hsa-miR-429, hsa-miR-7-1- 3p, hsa-miR-34b, 

hsa-miR-34c-5p, hsa-miR-122 expression levels were 

different in azoospermia [39, 40]. Through luciferase 

experiments, miR-525-3p which targets SEMG1 gene 

and hsa-miR-210 which targets insulin-like growth 

factor II (IGF2) [41, 42]. The lower expression of hsa-

miR-188-3p results in higher expression of MLH1 gene 

in azoospermia patients and leads to apoptosis in 

spermatozoa [43]. 

Functional classification of the miRNA/mRNA pairs 

using bioinformatics tools indicated that they play a role 

in spermatogenesis, cell meiosis, cell cycle. We found 

Figure 7. The validation of KIF2C and TEKT2 in GSE4797 associated with male infertility. 
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KIF2C-miRNAs (has-miR-3154, 6075, 6760-5p, 1251-

5p, 186-sp)-TFs (EP300, SP1) might work in 

spermatozoa of infertile men. 

Our study also has some limitations. First, more 

samples could be included in this study and we assessed 

our results based on published observations. Further in 

vitro and/or in vivo experiments would need to be  

carried out to test reliability of our results. This might 

reduce the error caused by individual differences of 

patients. 

CONCLUSIONS 

We applied DEG analysis to identify genes associated 

with azoospermia in this study. Then, through a system 

Figure 8. The validation of KIF2C and TEKT2 in GEO database associated with spermatogenesis. (A) GSE145467; (B) GSE108886; 

(C) GSE6872.
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biology framework for a comprehensive and systematic 

biological function- and network-based analysis of 

azoospermia, we found 27 hub genes and test on the 

expression of Hub-gene in testicular carcinoma (found 

12 hub genes were different in testicular carcinoma). 

Furthermore, we made the validation of hub-gene (A 

total of 12 genes were identified as hub genes in 

testicular carcinoma) in male infertility by GSE4797, 

145467, 108886 and 6872 and found TEKT2 and 

KIF2C might work in infertility. The network of TF-

miRNA-target gene was established and we found 

KIF2C-miRNAs (has-miR-3154, 6075, 6760-5p, 1251-

5p,186-sp)-TFs (EP300, SP1) might work in 

spermatozoa of infertile men. Our study might help to 

improve our understanding of the mechanisms in 

azoospermia and provide diagnostic biomarkers and 

therapeutics targets. 
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