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Abstract Brain imaging can be used to study how individuals’ brains are aging, compared

against population norms. This can inform on aspects of brain health; for example, smoking and

blood pressure can be seen to accelerate brain aging. Typically, a single ‘brain age’ is estimated

per subject, whereas here we identified 62 modes of subject variability, from 21,407 subjects’

multimodal brain imaging data in UK Biobank. The modes represent different aspects of brain

aging, showing distinct patterns of functional and structural brain change, and distinct patterns of

association with genetics, lifestyle, cognition, physical measures and disease. While conventional

brain-age modelling found no genetic associations, 34 modes had genetic associations. We suggest

that it is important not to treat brain aging as a single homogeneous process, and that modelling

of distinct patterns of structural and functional change will reveal more biologically meaningful

markers of brain aging in health and disease.

Introduction
Brain imaging can be used to predict ‘brain age’ - the apparent age of individuals’ brains - by com-

paring their imaging data against a normative population dataset. The difference between brain age

and actual chronological age (the ‘delta’, or ‘brain age gap’) is often then computed, providing a

measure of whether a subject’s brain appears to have aged more (or less) than the average age-

matched population data. For example, looking at structural magnetic resonance imaging (MRI)

data, a high degree of atrophy would cause a subject’s brain to appear older than a normal age-

matched brain. Estimation of brain age and the delta is of value in studying both normal aging and

disease, with some diseases, such as Alzheimer’s disease, showing similar patterns of change to that

of accelerated healthy aging (Franke et al., 2010; Cole and Franke, 2017a; Cole et al., 2017b).

The typical approach uses one or more imaging modalities, most commonly using just a single

structural image from each subject. The data is then preprocessed, and features identified, for use in

the brain age prediction. For example, the structural images may be warped into a standard space,

and grey matter segmentation carried out; the voxelwise segmentation values themselves can then

be the features. Alternatively, a smaller number of more highly condensed features may be derived,

such as volumes of grey and white matter within multiple brain regions. The resulting dataset, of

multiple subjects’ feature sets, along with their true ages, is then passed into a supervised-learning

algorithm (e.g. regression, support vector machine or deep learning). The algorithm then learns to

predict the subjects’ ages from their brain imaging features. Finally, the true age is typically
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subtracted from the estimated brain age, to create a delta, potentially with corrections for biases

such as systematic mis-estimation of brain age (Le et al., 2018; Smith et al., 2019).

The imaging feature set can be derived from more than one imaging modality, in which case it

can contain information not just about the structural geometric layout of the brain, but also, for

example, structural connectivity, white matter microstructure, functional connectivity, iron deposi-

tion, and cognitive task activation (Brown et al., 2012; Liem et al., 2017; Richard et al., 2018;

Vinke et al., 2018; Groves et al., 2012). Such ‘multimodal’ data allows for brain age modelling to

take advantage of a richer range of structural and functional measures of change in the brain, but it

is still the case that most brain-age modelling only estimates a single overall brain age per

individual.

Hence, while the explicit goal of much brain-age research is to obtain a single estimate of brain

age (and brain-age delta) per subject, one could nevertheless expect that multiple distinct biological

processes contribute to the changes seen in the brain with aging. For example, amounts of physical

exercise, intake of alcohol and smoking, dietary patterns, and health factors such as hypertension

and obesity, will all likely contribute to the ‘aging’ of the brain, and in potentially different ways.

These different factors will likely affect different aspects of the brain’s structure and function, as

viewed through multiple imaging modalities. Further, different factors affecting brain aging could

well have different age dependence - population-averaged aging curves for the different factors

could be quite distinct (e.g. with respect to strength and linearity of the age dependence)

(Kessler et al., 2016; Brown et al., 2012; Richard et al., 2018; Vinke et al., 2018; Douaud et al.,

2014; Groves et al., 2012). Different biological factors of brain aging might well also be expected

to show distinct genetic influence. The combination of all factors into a single estimate of brain age

can be a useful, compact, single summary metric, and is by definition the route by which the most

accurate single estimate of a subject’s age can be predicted from the imaging data available. How-

ever, this may come at the cost of losing important information regarding the distinctions between

multiple biological factors occurring, making it harder to understand the (potentially multiple) causes

of brain aging.

Here, we used six brain imaging modalities from UK Biobank (Miller et al., 2016) to identify 62

distinct modes of population variation, almost all of which showed significant age effects. In this

work, we focus on investigating the distinct modes as potentially representing distinct biological fac-

tors relating to aging. We aimed to learn about a larger number of distinct modes, and in greater

biological depth, than had been previously possible, in part because of the richness of the imaging

and non-imaging data available in UK Biobank, and of course due in part to the very large subject

numbers. There is nevertheless a link between this approach and the previous literature; one can

combine the population modes to produce a single brain-age estimation, which gives similar age

prediction accuracy to that derived using standard approaches.

We used the multimodal brain imaging data from 21,407 participants, over the age of 45y, in UK

Biobank. Imaging is taking place at four sites, with identical imaging hardware, scanner software and

protocols (although the subjects used here were from the first two sites). The dataset also includes

genetics, lifestyle, cognitive and physical measures, and health outcome information from the health-

care system in the UK. For this work we used 3913 IDPs (imaging-derived phenotypes, generated by

our team on behalf of UK Biobank, and made available to all researchers by UK Biobank). The IDPs

are summary measures, each describing a different aspect of brain structure or function. IDPs include

functional and structural connectivity between specific pairs of regions, localised tissue microstruc-

ture and biological makeup, and the geometry of cortical and subcortical structures.

For our work here, rather than simply feeding all IDPs into one brain age model (e.g. regularised

multiple regression), we first identify multiple modes that represent different combinations of IDPs

that co-vary across subjects. We then use each of these modes separately in simple but standard

brain-age modelling. The result is a large number of distinct brain age predictions for each subject,

with the goal of each representing a different biological process. We now summarise our approach

briefly.

After removal of imaging confound effects (see Materials and methods for details), we used inde-

pendent component analysis (ICA Hyvärinen, 1999) to decompose the entire IDP data matrix of

Nsubjects � NIDPs into 62 distinct modes of population variation (Kessler et al., 2016;

Elliott, 2018). Each mode is described by two vectors. The first is a set of IDP weights, describing

which specific aspects of brain structure and function (i.e. which IDPs) are involved in that mode (e.g.
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a given mode might reflect volume of grey matter across various regions involved in language proc-

essing). The second is a set of subject weights (one value per subject), describing where in the popu-

lation distribution a subject lies, in terms of strongly expressing a given mode of variation (e.g. a

given subject might have considerably less grey matter in language regions than the population

average). These subject-weight vectors (one vector per mode) can be used to help understand the

biological meaning of, and causal factors behind, the modes of population variation, by computing

associations with non-imaging factors and genetics (a genetic or early-life factor that correlates,

across subjects, with our hypothetical mode might suggest biological causes of changes in grey mat-

ter volume in the language network). Here we use the subject-weight vectors to study brain aging;

virtually all modes show a significant aging effect (Figure 1), and in this work, we study the different

aspects of brain aging represented by the 62 modes (as well as 6 clusters of these modes).

Having identified these modes, our modelling of brain age for individual modes follows the same

form as commonly used for brain age modelling. We predict subjects’ actual age using a given

mode’s subject-weights-vector, and then subtract the age from the predicted age to obtain the

mode-specific brain-age delta. We then use this in our association tests against non-imaging varia-

bles and genetics. Hence, instead of using all available data from the brain imaging to obtain a sin-

gle (‘all-in-one’) estimate of brain age (and associated delta), we investigate brain aging for each

mode separately, to capitalise on the distinct richness of information obtained within separate

modes. An indication of the usefulness of doing this can be seen from the fact that many of the

modes’ delta estimates have significant genetic association (i.e. genetic factors that are significantly

driving that aspect of brain aging). By comparison, the all-in-one estimate of brain-age based on a

linear combination of modes combines across so many different biological factors that there is no

significant, replicated genetic association for the all-in-one delta, despite the overall prediction pro-

viding a more accurate estimate of subjects’ ages than any one individual mode.

All data are available upon application to UK Biobank. In addition to the main and supplementary

figures in this paper, further material is available from the https://www.fmrib.ox.ac.uk/ukbiobank/

BrainAgingModes website (see Data availability). This includes: all code written for the work

described here; detailed figures, with individual modes’ separate genome-wide association study

(GWAS) Manhattan plots and resting-state functional MRI (rfMRI) summary brain images; all GWAS

summary statistic files; spreadsheets listing all modes’ IDP weights, associations with non-imaging-

non-genetic variables and peak GWAS associations; and additional genetic analyses including func-

tional annotation, gene expression, associated traits from previous GWAS studies, and genetic heri-

tability/co-heritability results.

Results

Multiple modes and mode-clusters of brain aging
After discarding outlier data and subjects with high levels of missing/outlier imaging data, we

retained data from 18,707 subjects (see Materials and methods). Split-half reproducibility testing

(P<10�6) resulted in estimation of 62 robustly-present ICA modes of population variation. For conve-

nience (and without loss of generality), the modes were inverted where necessary in order for their

correlation with age to be positive, and were re-ordered according to decreasing variance explained

by a cubic model of age, as reflected in the inset plot of age-mode correlations in Figure 1. The fig-

ure shows the cubic fit of each mode as a function of age (later plots show these fits in more detail

and quantitation). The majority of the modes show similar behaviour for females and males, but a

few notable exceptions can be seen in supplementary figures (Figure 1—figure supplements 3–

9), as discussed in more detail below.

Using all 62 modes together in an ‘all-in-one’ prediction of overall brain aging, mean absolute

delta (the ‘error’ between age and predicted age) was 2.9y. As described in Materials and methods,

the all-in-one model is a weighted sum of the 62 modes, where the weight for a given mode is a sca-

lar value that is entirely driven by the unique variance of that mode (bi for mode i). This unique vari-

ance is also referred to as the ‘partialled’ mode, which is calculated by taking a mode’s subject

weight vector and regressing out the subject vectors of all other modes. Because these partialled

modes isolate the unique subject variance described by a given mode, it is of interest to examine

their associations with non-imaging variables, and similarly the associations of partialled deltas.
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Figure 1. Mean aging curves for the 62 brain-aging modes. The main plot shows the mean aging curves based on a cubic age model - that is, fitting

the subject-weight-vectors from each mode as a function of age, age-squared and age-cubed. Therefore, the x axis is age in years, and the y axis is the

unitless values in the original modes’ subject-weight-vectors Xi. The scatter plots show two example modes, with their respective mean aging curves

shown along with the full data (the modes’ subject weights, with a single point for each subject). The inset blue plot shows the strength of age

prediction for all modes, quantified simply as correlation of actual age with mode subject-weights.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Hierarchical clustering of the 62 brain-aging modes, and their mapping onto six lower-dimensional mode-clusters.

Figure supplement 2. Model standard deviations, age correlations and age regressions for all modes and mode-clusters.

Figure supplement 3. Sex-separated mean age curves for modes 1–12.

Figure supplement 4. Sex-separated mean age curves for modes 13–24.

Figure supplement 5. Sex-separated mean age curves for modes 25–36.

Figure supplement 6. Sex-separated mean age curves for modes 37–48.

Figure supplement 7. Sex-separated mean age curves for modes 49–60.

Figure supplement 8. Sex-separated mean age curves for modes 61–62.

Figure supplement 9. Sex-separated mean age curves for mode-clusters 1–6.

Figure supplement 10. Non-additive modelling of brain-aging.
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Hence, as seen in Figure 1—figure supplement 2D, the contribution to age modelling varies highly

from mode to mode, driven by the unique variance in each. Several modes have negative b weights,

meaning that their unique variance is negatively associated with age, even though their original cor-

relation with age was assigned to be positive. Of the 62 modes, 59 correlate significantly with age

(at the P<0:05=62 two-tailed Bonferroni-corrected level), and 29 have a b that is significant (i.e. their

unique variance has significant age dependence).

In order to help generate more parsimonious descriptions of the 62 modes of brain aging, we

investigated whether clustering modes together into a smaller number of mode-clusters could pro-

vide a meaningful simplification. Quantitative optimisation of the clustering dimensionality resulted

in a meaningful reduction to six mode-clusters (see Materials and methods and Figure 1—figure

supplement 1). As with the modes, mode-clusters were defined to correlate positively with age, and

sorted in order of decreasing age dependence. As one might expect, there is less redundancy across

these 6 mode-clusters (than across the 62 modes), for example, as shown by the fact that the genetic

profiles for the partialled 6 mode-cluster deltas are similar to the non-partialled equivalents (Fig-

ure 3—figure supplement 1). For clarity, we refer to mode numbers using subscript ‘62’, and to

mode-clusters with subscript ‘6’.

Mapping of brain-aging modes onto brain structure and function
Figure 2 summarises the mapping of modes onto IDPs (different aspects of the brain’s structure and

function). Each row represents a mode/mode-cluster, and the 3,913 IDPs are arranged into distinct

groupings as denoted within the figure. Within each grouping, each individual column represents a

soft-clustering of highly correlated IDPs that have similar behaviour to each other (a complete list of

the strongest associations between all modes and all IDPs is linked to in Data availability). In most

cases, individual modes are largely driven by IDPs from a single imaging modality, with a few excep-

tions such as mode 5262. Naturally, the mode-clusters mix more across modalities. More specific dis-

cussion of individual mode and mode-cluster results are given below, in the context of the full set of

imaging, non-imaging and genetic associations.

Genome-wide associations studies of all brain-aging modes
We carried out a separate GWAS for the brain-aging delta from each of the 62 modes, and from the

6 mode-clusters. GWAS used 9,812,242 SNPs (single-nucleotide polymorphisms) that passed all

quality control tests (see Materials and methods). We also carried out GWAS for two ‘all-in-one’ mul-

tiple-regression-based estimates of brain-aging delta, one using all 3913 IDPs in a single prediction

of brain aging (with 55-dimensional principal component analysis, PCA, pre-reduction Smith et al.,

2019), and the other using the 62 modes together (see Materials and methods). The GWAS para-

digm we used was similar to that in Elliott (2018), and associations were tested between these

modes and 9,812,242 genetic variants. Results are summarised in Table 1 and Figure 3. More

detailed plots, including separate plots for every mode’s GWAS, are provided in Figure 3—figure

supplement 1 and Data availability.

From the 62 GWAS of modes of brain aging, we found 156 peak associations passing the stan-

dard single-GWAS threshold of �Log10P=7.5, from the discovery sample of 10,612 subjects

(Figure 3A). Here, ‘peak associations’ means that, in a region of high linkage disequilibrium (LD), we

only report the SNP with the highest association with the phenotype, as the associations in the local

region are most likely all due to a single genetic effect (see Materials and methods). 68 of these

associations passed the more stringent threshold of 9.33, which increases the standard threshold by

a Bonferroni factor of 62+6 to account for the multiple phenotypes’ testing. From the smaller repli-

cation dataset of 5340 subjects, 64 of the 68 peak SNP associations replicated at the P<0:05 level.

Of the 62 modes, 34 have at least one significant association at the higher threshold, and all these

34 modes have at least one association in the replication sample.

From the 6 mode-clusters, 14 regions of the genome have significant associations at the higher

threshold, 12 of which replicate. Three of the these 6 mode-clusters have at least one significant

association, including in replication.

The numbers of associations are lower for the partialled deltas (that reflect unique brain-aging

profiles), with the numbers of significant associations approximately halving for the 62 modes, but

being reduced only a small amount for the 6 mode-clusters (Table 1).
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We also evaluated genetic associations for two ‘all-in-one’ estimations of a single best estimate of

brain-age (and associated delta); we used all IDPs in one case, and all modes in the other. This was

done with the methods described in Smith et al. (2019). These two all-in-one brain-age delta esti-

mations showed no genetic assocations that were significant and replicated, consistent with previous

GWAS of all-in-one brain-aging modelling (Ning et al., 2018). This suggests that biological specific-

ity driving the mode/mode-cluster results has been lost (diluted) when generating a single brain-age

delta.

Finally, estimates of genetic (SNP) heritability showed that 57 of the 62 modes were significantly

heritable, as were all 6 mode-clusters (see Materials and methods and online supplemental results).

Estimates of co-heritability with Alzheimer’s and Parkinson’s disease showed a small number of nom-

inally significant results, but none of these survive multiple comparison correction across modes; this

suggests that none of these modes of aging map strongly onto these diseases genetically.

Associations of modes with non-imaging variables
We also computed associations between all modes’ deltas and 8787 nIDPs (non-imaging-derived

phenotypes), spanning 16 groups of variable types. These groups include early life factors (e.g.

maternal smoking, birth weight), lifestyle factors (e.g. exercise, food, alcohol and tobacco variables),

Figure 2. Mapping of 62 brain-aging modes and 6 mode-clusters onto different classes of strucural and functional imaging-derived phenotypes (IDPs).

Above: Each row shows the mapping of one brain-aging mode onto the imaging data, with black lines delineating groups of 10 modes for ease of

reference. The full plots spanning all 3913 IDPs are shown in Figure 2—figure supplement 1; here, each class of IDPs is reduced using PCA and then

ICA to the most representative pseudo-IDPs (see Materials and methods), meaning that each column in the plot relates to a fixed

and distinct combination of original IDPs. IDP classes have fewer/greater distinct values here dependent on the number of IDPs in a class, and how

highly they correlate with each other. Colour-coded values shown are unitless and mapped into the range �1:1. Below: The equivalent (separately

computed) summary figure mapping the 6 mode-clusters onto IDPs.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Mapping of brain-aging modes and mode-clusters onto individual IDPs.

Figure supplement 2. Histogram of proportions of subjects of (non-missing) data for each nIDP (non-imaging-derived phenotypes).
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physical body measures (e.g. body size, fat, bone density variables and blood assays), cognitive test

scores, and health outcome (including mental health) variables.

Figure 3—figure supplements 2–3 show summarised results, and spreadsheets (Data availability)

list every significant association. Below we describe many of these associations in more detail. In

general, we focus on associations between partialled delta estimates and nIDPs, in order to identify

associations specific to the unique brain-age-delta variance in modes.

Individual modes: patterns of associations between the aging of the
brain’s structure and function and life factors, body measures, health
outcomes and genetics
In Figure 4 we list summary results of the strongest patterns of associations with brain-age delta

from each mode-cluster and mode. We now expand on some of the more striking patterns in more

detail.

Where a SNP discussed below is reported as an expression quantitative trait locus (eQTL) of a

gene in the GTEx database (Battle et al., 2017), this means that variation in this SNP has been

found to be highly correlated to variation in the gene expression. Many of the genetic associations

described below passed the higher discovery threshold (as well as replicating), but we also discuss

some associations that pass the lower (single-phenotype GWAS) threshold if they were also signifi-

cant in the replication sample.

Mode-cluster 16, which shows the strongest aging effect of the mode-clusters, is dominated by

the volumes of the lateral ventricles and choroid plexus (and its intensity), the microstructure of the

fornix and corpus callosum, and the volume of the thalamic nuclei. Notably, and of relevance to fur-

ther results discussed below, fornix, choroid plexus and corpus callosum are all drained by the supe-

rior choroid vein, which runs along the whole length of the choroid plexus, and unites with the

superior thalamostriate vein, which itself drains the thalamic nuclei (and striatum). Changes in diffu-

sivity measures in the fornix, a thin tract in the immediate vicinity of the ventricles, may, however, be

sensitive, indirect markers of the atrophy of the tract (resulting in a ‘partial volume’ reduction at

voxel-level resolution), rather than representing a change to its white matter microstructure.

The non-imaging associations of mode-cluster 16 included many modifiable risk factors such as

heart rate, smoking, alcohol consumption and diabetes, (as well as taking metformin, a treatment for

diabetes, although this is likely an indirect association that is essentially an indicator of the presence

of diabetes). It is also associated with various measures related to overall non-fat body size: height,

Table 1. Summary results of all GWAS of brain-age delta estimates: numbers of supra-threshold SNP

clusters from GWAS of all modes (discovery N = 10,612; validation N = 5,340).

Phenotypes fed into GWAS are grouped and reported on separate rows: the 62 modes’ brain-aging

deltas, the 6 mode-clusters, the partialled versions of each, and the two separate all-in-one models of

brain-age delta that use all 62 modes and all IDPs, respectively. The subscripts define whether the

counts reported are the number of significant distinct SNP clusters for each phenotype, summed

across modes/phenotypes (‘SNPs’), or the number of modes/phenotypes with at least one association

(‘modes’). The superscripts describe the thresholding: either the standard single-GWAS threshold

(7.5), the higher Bonferroni-adjusted threshold (9.33), or, in the case of the validation sample, the

nominal 0.05 threshold (where here we are just reporting counts of validated associations from the

higher discovery threshold).

Discovery Validation

Phenotypes N7:5
SNPs N9:33

SNPs N7:5
modes N9:33

modes N0:05
SNPs N0:05

modes

62 modes 156 68 50 34 64 34

6 mode-clusters 33 14 5 3 12 3

62 modes (partial) 71 29 32 17 27 15

6 mode-clusters (partial) 35 12 6 3 11 3

all-in-one (62 modes) 1 0 1 0 0 0

all-in-one (IDPs) 3 1 1 1 0 0
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strength, lung capacity, metabolic rate and weight, as well as multiple sclerosis. With regard to cog-

nition, mode-cluster 16 was associated with processing speed.

Consistent with the contribution of the identified modifiable risk factors, mode-cluster 16 is asso-

ciated with SNP rs4141741 (MED8), which was significantly correlated in the UK Biobank participants

with blood pressure and diagnosed vascular and heart problems. The same SNP is an eQTL in the

hippocampus of TIE1, which codes for a protein playing a critical role in angiogenesis and blood ves-

sel stability, and of MED8 in the striatum, both structures being innervated by the superior choroid

and thalamostriate veins. Abnormal angiogenesis is also known to contribute to both diabetes and

C 

All-in-one delta
3,913 IDPs

62 modes

B

6 mode-clusters

1 2 3 4 5 6

A 

62 modes

-l
o

g
1

0
P

GWAS

GWAS+Bonferroni

Figure 3. Summary plots for GWAS of brain aging. (A) Separate GWAS for each of the 62 modes of brain aging. The y axis is �Log10P (significance of

the genetic association) and the x axis is SNPs, arranged according to chromosomes 1:22 and X. For convenience of display some points of even higher

significance (with redundant content compared with the points seen here) are truncated; for complete plots see Figure 3—figure supplement 1, and

for individual plots (one per mode), see Data availability. The lower dotted line shows the standard GWAS threshold correcting for multiple

comparisons (�Log10P =7.5), and the upper line shows the result of an additional Bonferroni correction for the main 62+6 separate GWAS

(�Log10P =9.33). Circles denote the first 31 brain-aging modes (i.e., those with the strongest aging effect) and dots the next 31 (with weaker aging). (B)

Separate GWAS for each of the 6 mode-clusters of brain aging. Again, see Figure 3—figure supplement 1 and Data availability for complete and

individual plots. (C) GWAS plots for two all-in-one estimates of brain-aging delta (with no points removed). In orange is shown the GWAS for the single

delta estimated using all 3913 IDPs according to the approach in Smith et al. (2019). In blue is shown the GWAS for the single delta estimated using

the 62 modes. In both cases, the richness of genetic associations is clearly greatly reduced, compared with identifying distinct associations for each

mode in its own right.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Summary plots for GWAS of brain aging.

Figure supplement 2. Mapping of brain-aging modes onto classes of IDPs, nIDPs and chromosomes.

Figure supplement 3. Mapping of brain-aging mode-clusters onto classes of IDPs, nIDPs and chromosomes.
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Mode-

cluster
Mode-cluster IDPs Mode-cluster nIDPs Modes (IDPs and nIDPs) Genes

16

CSF/ventricle 

volume (both 
normalised for head 
size and not), fornix 
MD.

Non-fat body size (height, fat-free 
mass, lung capacity, grip strength, 
weight), metabolic rate, head bone 
density, cognitive speed, number of 
births. Diabetes, alcohol, smoking.

262 Fornix MD.

1162 CSF/ventricle volume. Head bone area, TV time, cognitive score.

1262 Thalamus volume. Body size.

1362 Fornix MO.

3862 Corona radiata FA.

TIE1 
MED8 
GNA12 
GMNC

26
Grey volume, white 
volume.

Bone density (primarily head), non-

fat body size (height, fat-free mass, 
lung capacity, weight), metabolic 
rate, ankle width. Number of older 
siblings, cognitive speed.

162 Total grey volume. Bone density (doubled effect in females), age at menopause. 
Alcohol, smoking.

1662 Amygdala/hippocampus volume.   1962 Amygdala/hippocampus volume.    
2462 Medial-frontal cortical volume.   2562 Superior-frontal cortical volume.

3262 Parietal/occipital cortical volume. Maternal smoking, bone density, BMI.

4062 Precuneus cortical volume.

HRK 
DAAM1 
FAM3C 
WNT16 
CPED1

36

T1w cortical grey-

white contrast.
BMI, weight, fat mass, haemoglobin.

562 Grey-white contrast, frontal.

1062 Grey-white contrast, non-frontal.

CREB3L4   CRTC2 
SLC27A3   S100A16 
STX6   WNT7A 
CD82   VCAN 

46

MD in all white 

matter (particularly 

L2, L3).

Blood pressure / hypertension, 
multiple sclerosis.

462 SLF MD, white matter lesions.

662 Superior corona radiata MD. Head bone area, smoking. 
762 External capsule MD. Blood pressure.

862 Uncinate MD.   962 Posterior thalamic radiation / ILF MD. 

1462 White matter lesions, posterior corona radiata MD. Multiple sclerosis.

2162 Cerebral peduncle L2/L3.   2262 SLF MD.   2762 Inferior cingulum MD. 

3062 Superior cingulate gyrus: L2/L3, MO/FA. 

3462 Inferior cerebellar peduncle: L2/L3, FA/MO.

5262 Putamen/caudate T2*, anterior internal capsule, anterior thalamic radiation ICVF. 
Haemoglobin, smoking, weight, meat intake.

5962 Most white matter ISOVF/ICFV. Blood pressure, weight, smoking.

VCAN 
ZSCAN26 

ZSCAN23 
HLA-K 
ZNF603P

56

rfMRI amplitudes 
(sensory, motor and 
cognitive).

BMI, fat, weight, haemoglobin  red 

cell count, bone density, mobile 

phone use, income. Blood pressure, 

cardiac output, nervous feelings, 

sleep duration.

1762 Cerebellar/subcortical rfMRI amplitude. BMI, haemoglobin, weight, fat.


3162 Cognitive cortex rfMRI amplitude. Physical activity, blood pressure treatment, fat. 

3362 Sensory/motor/cerebellar/subcortical rfMRI amplitude/connectivity. Heart rate, 
blood pressure, nervous feelings, night sleep duration, TV time, High SES / physical 
activity (mobile phone use, daytime sleeping, physical activity, drive fast, income, risk 
taking, number in house, number of sexual partners).

4162 Visual rfMRI amplitude/connectivity. Age started wearing glasses.

4562 Sensory/motor rfMRI amplitude/connectivity. Unenthusiastic, health-anxious, 
depressed, lack of physical activity.

PLCE1 
INPP5A 
APOE

66 Cortical thickness.  
BMI, weight, red cell count, head 
bone density.

1562 Superior/medial frontal cortical thickness. 

2362 Precuneus/parietal. Birth weight.


2662 Left lateral frontal.   2862 Right lateral frontal.

2962 Sensory/motor (central superior).

3962 Left post-central superior. Number of older siblings.

4362 Right post-central superior.

MACF1 
SLC39A8 / ZIP8 
PAFAH1B1

-

362 Fornix MD. Height, weight.   1862 Tapetum MD.   2062 Thalamus volume. Height, bone density.   3562 Superior parietal cortex volume.   3662 Putamen volume. TV time.

3762 Subcortical T1 intensity. Weight, fat, nasal polyps.   4262 Cerebral peduncle / posterior internal capsule OD/FA/MO/L1. Body size, BMI.   

4462 Hippocampal/medial volume/cortical-area.   4662 Left Brodmann 44 cortical area/volume.   4762 Lateral orbital frontal cortical area/volume. Bone density.   


4862 Right (mostly lateral) occipital area/volume. Maternal smoking.   4962 Corticospinal tract MD. BMI, snoring, Body size.   

5062 Superior cerebellar peduncle MD. Height, IQ, number of older siblings, TV time, driving time.   5162 Right Brodmann 44 cortical area/vol.

5362 Posterior thalamic radiation FA/MO L2/OD. Weight, fat, number of older siblings, Glaucoma.   5462 Right Brodmann 45 cortical area/volume.   

5562 Left Brodmann 45 cortical area/volume.   5662 Cuneus volume.   5762 Left (mostly lateral) occipital area/volume.   

5862 Calcarine/lingual area/volume. Maternal smoking.   6062 Inferior temporal area/volume.   6162 Parahippocampal/entorhinal volume.   6262 Cingulate volume/area.

Figure 4. Dominant imaging, non-imaging and genetic associations between brain-age delta from all mode-clusters and modes. The left side of the

table focuses on the main patterns of associations with the 6 mode-clusters, while the right side also lists dominant associations with individual modes,

grouped according to the mode-clusters. At the bottom are results from individual modes that do not have one clear associated mode-cluster. Red text

signifies positive correlation with brain-age delta (meaning in general a detrimental factor with respect to aging), and blue indicates negative

correlation (i.e. a positive causal factor and/or outcome with respect to aging). Where the all-in-one brain-age modelling has negative b, the signs of

associations between delta and IDPs becomes the inverse of the original ICA IDP weight; in such cases, the table makes this appropriate adjustment to

text colour (such that the colour reflects the sign of assocation between delta and IDP, and not ICA weight), but we denote where this occurs by use of

italics. Bold text indicates relatively stronger associations (in terms of strength of effects and/or number of related variables). Results included here are

generally stronger than �Log10P >7 for nIDPs (see Materials and methods), and SNPs are listed only where replication succeeded. To help focus the

descriptions of non-imaging variables, we largely list their associations with the partialled deltas; this therefore concentrates on unique variance in

deltas. When working with partialled variables (or equivalently multiple regression), and when adjusting for some of the imaging confounds (such as

head size, when considering volumetric measures), signs of associations can in some cases be non-trivial to interpret.

The online version of this article includes the following source data for figure 4:

Source data 1. Spreadsheet version of Figure 4.
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multiple sclerosis, perhaps explaining to some extent our non-imaging association results with both

these diseases.

Modes related to mode-cluster 16 include 262 and 1162. Mode 1162 (ventricle volume) is associ-

ated with SNP 7:2777917_TA_T (rs1392800372), which is likely in gene GNA12; this has been found

to relate to migration of neurons in the developing brain (Moers et al., 2008). This may therefore

be relevant in the context of the neural stem cell pool in the subventricular zone (Ruddy et al.,

2019), that is, relating these modes to ventricle size and neuronal development/angiogenesis. In line

with mode-cluster 16 being dominated by the volumetric measure of CSF (cerebro-spinal fluid, which

fills the ventricles), mode 262 (fornix MD) is associated with SNP rs150434736 (on chromosome 3,

only 17kbp from the 3:190657741_AGT_A/rs147817028 peak in mode-cluster 16), near gene GMNC;

this has been found to be linked to Alzheimer’s disease endophenotypes (in particular ptau 181 in

CSF) (Cruchaga et al., 2013; Deming et al., 2017).

Mode-cluster 26 relates to global measures of grey and white matter volume. It was associated

with body-size-related non-imaging measures in common with mode-cluster 16, including those of

height, weight, strength, metabolic rate and lung function, and also cognitive reaction time.

Several related modes (in particular, 1662, 1962, 2462, 2562, 3262 and 4062) relate to regional (i.e.

more focal) grey matter volume. These modes did not have many nIDP associations (i.e. the nIDP

associations for the mode-cluster were largely not regionally specific to individual modes), although

mode 3262 (parietal/occipital volume) was associated with maternal smoking. While mode-cluster 26
as a whole did not have strong genetic associations, some of these regional-grey-volume modes

did. Modes 1662 and 1962 (hippocampus volume) were found to be significantly associated with

HRK; this is involved in apoptosis/neurogenesis, particularly in adults in hippocampus (Coultas et al.,

2007), and expressed (eQTL) in hippocampus. Mode 4062 (volume of the precuneus cortical region)

was associated with DAAM1 (Elliott, 2018; Mollink et al., 2019), important for cell polarity and neu-

ral development.

While the above modes relate to regionally-specific grey matter volume, there is also involvement

(in this mode-cluster) of mode 162; this codes for total grey matter volume and is the most strongly

age-related mode. This mode is associated with smoking and alcohol, as well as bone density (as

measured separately from the MRI, using DEXA low-dose x-ray and also ultrasound). This bone den-

sity association is strong, reaching r ¼ 0.43 in females and 0.27 in males. The greater bone density

loss in females is likely to be associated with menopause. Firstly, this mode is significantly associated

with age-at-menopause (a non-imaging variable in UK Biobank, with average age-at-menopause

being 50y). More generally, there is a large amount of literature showing that bone density loss is

specifically accelerated in the 10 years after menopause (O’Flaherty, 2000); this exactly matches the

sex-specific pattern of change in females seen in this mode (Figure 5F,G).

Figure 5A, B shows the increase in T1-weighted intensity within the skull, associated with this

mode. This is reflecting an increase in bone marrow fat with increasing brain-age delta. This,

together with the above nIDP associations with bone density loss in this mode, is consistent with lit-

erature regarding decreasing bone density and increasing marrow in aging (Cordes et al., 2016).

Bone density reduction has not just been reported in normal aging, but has also been linked to early

Alzheimer’s disease, independent of age, sex, habitual physical activity, smoking, depression and

estrogen replacement status (Loskutova et al., 2009).

These results are consistent with the one strong genetic association with mode 162 (Figure 5E);

lead SNP rs3801383 (whose PHEWAS results are dominated by bone density associations - see

Materials and methods) lies within the span of FAM3C, but also is in LD with SNPs spanning across

to genes WNT16 and CPED1 (Chesi et al., 2015; Movérare-Skrtic et al., 2015). FAM3C is associ-

ated (in UK Biobank genetic data http://big.stats.ox.ac.uk) with bone density loss and bone frac-

tures, but has also been linked directly to Alzheimer’s disease through impact on brain amyloid

(Liu et al., 2016).

Mode-cluster 36 singles out IDPs representing T1-weighted intensity contrast between white and

grey matter (across the grey-white border). Although mode-clusters 16 and 26 related to weight,

they were essentially driven by non-fat mass; here, however, mode-cluster 36 mainly relates to meas-

ures of fat mass and fat percentages across the body, as well as blood haemoglobin measures.

In line with these non-imaging correlations, one strong genetic association was found for a SNP

(rs12133923), an eQTL of CREB3L4 in the basal ganglia and of CRTC2, SLC27A3 and S100A16 in the

cerebellum. CREB3L4, which regulates adipogenesis, has for instance been recently shown to have a
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critical role in metabolic phenotypes (weight gain, impaired glucose tolerance and decreased insulin

sensitivity) (Kim et al., 2015). CRTC2 plays a role in lipid metabolism, and SLC27A3, which encodes

fatty acid transport protein, is involved in the developmental stage of the central nervous system

(Maekawa et al., 2015). Taken altogether, it is therefore likely that the marked, widespread change
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Figure 5. Spatial mapping of mode 162 onto original T1-weighted MRI data, along with genetic and age-dependent plots. (A) A region-of-interest

from the average T1-weighted structural image from the 1000 subjects with the lowest delta values for this mode. The images have been linearly-

aligned into standard (MNI152) template space, and have not been brain-extracted, so that non-brain tissues can be seen. The blue lines delimit 3

‘layers’ seen in cross-section; from the outside in, these are skin/fat outside the skull, the skull, and cerbrospinal fluid outside of the brain. (B) The

equivalent average image from the 1000 subjects with the highest delta values. There is no obvious geometric shift (e.g. of tissue boundaries), but the

intensity values are clearly higher within the skull; this is reflecting increase in bone marrow fat with brain-age delta. (C) The difference between the two

average images (all images were first normalised to have a mean intensity of 1). (D) The same difference of averages, but after regressing all confounds

(including age) out of the voxelwise imaging data, and working with the partialled delta values for mode 162; with this more focussed analysis, changes

around the ventricle are no longer obvious, but the change in skull intensity remains. (E) The one significant genetic association (on chromosome 7) for

this mode. The lower grey line shows the standard single-phenotype threshold of 7.5; the upper line shows this after Bonferroni adjustment for multiple

tests (modes). This significant association was also found in the replication dataset. (F) The mean age curves for mode 162 (as described in more detail

in Materials and methods and Figure 1—figure supplements 3–9). Females are shown in blue, males in orange; the y axis is the unitless mode

subject-weights (averaged across subjects with an averaging sliding window). The greatest rate of age-related change is in females, in the 10y following

menopause. (G) This pattern is even more striking in the partialled subject-weight curves (where other modes have first been regressed out of mode

162.).
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of cortical contrast with aging witnessed here (and in several previous studies) is strongly related to

the fatty, lipid-rich myelin (Salat et al., 2009; Vidal-Piñeiro et al., 2016; Lewis et al., 2018).

Of note, mode-cluster 36 was also strongly associated with other SNPs, amongst them one

(rs1044595) in an exon of STX6, and in high LD with a SNP associated with tauopathy progressive

supranuclear palsy (Höglinger et al., 2011), and correlated in the UK Biobank participants with hor-

monal replacement treatment. Another hit (rs6442411), an eQTL of WNT7A, which regulates angio-

genesis, neurogenesis and axon morphogenesis, was associated in the UK Biobank population with

height and trunk mass. One SNP, rs541397865, was found in an intron of CD82; this regulates the

migration of oligodendrocytes, which are responsible for axonal myelination. We also found a

genetic association with rs10052710, a SNP in an intron of VCAN, and in high LD with a previous hit

we had found strongly associated with diffusion measures across the entire white matter

Elliott (2018). These additional associations further point to the driving contribution of myelin in the

aging-related modulation of grey/white-matter contrast.

Mode-cluster 46 is strongly linked to modifiable risk factors: high blood pressure, vascular and

heart problems, and associated with taking ramipril (a treatment against high blood pressure and

heart failure). It was also associated with a number of illnesses and treatments, including multiple

sclerosis. Mode-cluster 46 is characterised by diffusion measures of mostly frontal white matter (ante-

rior corona radiata and, overlapping in the frontal lobe, the inferior fronto-occipital fasciculus), and

was also associated with general reaction time. The subject-weights are strongly age-dependent (as

are all mode-clusters); however, they have very little age dependence after partialling out other

mode-clusters; this means that the above factors interact in a manner that is largely age-

independent.

Genetic associations included again a SNP in an intron of VCAN rs17205972, in high LD with the

VCAN SNP associated with mode-cluster 36, and reported in Elliott (2018). Additionally, there was

association with SNP rs3129787, an eQTL in the brain of ZSCAN26 and ZSCAN23 (in the cortex and

cerebellum), HLA-K (cortex), and ZNF603P (basal ganglia, cortex, hypothalamus, cerebellum), a

pseudogene whose expression in the brain has been recently observed to be associated with schizo-

phrenia and affective disorders (Bhalala et al., 2018). The latter SNP was also highly correlated in

the UK Biobank participants with health issues including coeliac/malabsorption disease, blood pres-

sure, taking insulin and hyperthyroidism, as well as with measures of lung function.

Mode-cluster 56 shows a modest deceleration of aging-rate with increasing age, particularly with

respect to its unique (partialled) variance (Figure 1—figure supplement 9). It involves just the ampli-

tudes of resting-state fluctuations, covering most of the brain; some of the associated modes also

show rfMRI connection-strength involvement, but that may be an indirect result of the amplitude

changes. Mode-cluster 56 demonstrated strong correlations with non-imaging variables similar to

mode-cluster 36: weight, fat mass and percentage, red blood cell count and haemoglobin. It also

was associated with blood pressure, cardiac output and bone density, along with sleep duration,

nervous feelings and several markers of socio-economic status (SES).

Mode-cluster five was strongly associated with several SNP clusters, having relevant correlations

in the UK Biobank population: rs7766042 with snoring; rs2273622 with high blood pressure,

migraine and headache, taking pain relief, vascular and heart problems; and rs2274224 with weight,

(fat-free, and fat) mass, fat percentage and blood pressure (including taking amlodipine). This latter

SNP is in an exon (missense) of PLCE1, as also seen in Elliott (2018) and (Hübel et al., 2019),

another recent UK Biobank study on body fat percentage. The strongest GWAS hit is rs4497325,

and for the associated mode 4562, the peak SNP is (the immediately-neighbouring) rs7096828; this is

an eQTL of INPP5A, which is involved in DNA methylation in neurons, associated with aging and

depression (Gasparoni et al., 2018).

Finally, a genetic association was found with rs429358, the SNP that determines whether the

APOE allele is e4 or not. This is a major locus associated with Alzheimer’s disease and mild cognitive

impairment, and also with dementia with Lewy bodies, age at onset of symptoms in Parkinson’s dis-

ease, insomnia, brain amyloid deposition and neurofibrillary tangles, inflammation, HDL/LDL choles-

terol and triglycerides levels, physical activity and blood protein levels, parental longevity, and

macular degeneration. In the UK Biobank participants http://big.stats.ox.ac.uk, this SNP also corre-

lated with Alzheimer’s disease in father/mother/siblings, LDL/cholesterol levels (and taking choles-

terol-lowering medication), omega6, triglycerides, diabetes in the mother, weight and fat mass, with

heart disease and with the mother’s and father’s age at death, amongst many other variables.
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Despite being associated with SES, mental health markers, functional MRI amplitude fluctuations,

and SNPs involved in cognitive decline, there were no direct associations between this mode-cluster

(or its associated modes) and cognitive test scores. In the case of the IDPs, this may well mean that

the changes seen are non-neural effects (e.g. cardiovascular causes of changes in the BOLD ampli-

tude), and that any associated cognitive effects are caused by ongoing damage and not seen until

later in life than the majority of the samples (imaged subjects) here. Even in the mode covering cog-

nitive brain regions (3162), the set of nIDPs is dominated by exercise/activity measures and not cog-

nitive test scores. The link between SES and fMRI activity levels seen in Figure 7C in Miller et al.

(2016) may now be explained; here, mode 4162 links amplitude of rfMRI fluctuations in visual cortex

to age when started using glasses (and indeed we looked at age subgroups to confirm that this

association is driven by those subjects who started wearing glasses while younger than 30y).

Mode-cluster66 was entirely composed of grey matter thickness IDPs, mainly in the prefrontal

areas, as well as higher order parietal and temporal regions. It correlated with non-imaging variables

of weight, red blood cells and head bone density. This mode-cluster was age-dependent, but its

unique (partialled) variance was only weakly so.

We found three genetic associations with Cluster 6. The first, rs682571, is in an intron of MACF1,

which has been shown recently to regulate the migration of pyramidal neurons and cortical GABAer-

gic interneurons (Ka et al., 2014; Ka et al., 2017). This SNP also correlated in the UK Biobank popu-

lation with several measures of body fat. Another hit, rs13107325, is in an exon (missense) of

SLC39A8 (ZIP8), the same SNP reported in our GWAS-IDP study (Elliott, 2018) to be associated

with subcortical and cerebellar volume and susceptibility. This has also been found in other GWAS

studies (many based primarily on UK Biobank data), including those looking at medication use,

tobacco and alcohol consumption, cholesterol, body fat, adiposity, osteoarthritis, red blood cell,

blood pressure, sleep duration, risk taking, intelligence/math ability/cognitive function and schizo-

phrenia. A final SNP, rs7219015, was found in an intron of PAFAH1B1 that, when mutated, leads to

lissencephaly. It is also found to correlate with tiredness in UK Biobank (Deary et al., 2018).

Discussion
Here, we aimed to study how multiple, biologically distinct, modes of population variation in brain

structure and function reflect different aspects of the aging brain. We investigated the modes’ dis-

tinct associations with genetics, life factors and biological body measures, in the context of the

modelling of brain age and brain-age delta - a measure of whether subjects’ brains appear to be

aging faster or slower than the population average.

To study these multiple modes, we used brain imaging data from six different imaging modalities

spanning many different aspects of brain structure and function, from 21,407 subjects, from a single,

highly homogeneous, study. All imaging data were first reduced to 3,913 IDPs (imaging-derived

phenotypes - summary measures of brain structure and function) from across the different modali-

ties. However, rather than studying aging in different individual IDPs, we identified latent factors of

population covariation using unsupervised learning, to provide a more compact, lower-noise repre-

sentation of the population data, and focussing only on population modes showing extremely high

split-half reproducibility.

All imaging data (and the same set of IDPs) used for our work here are available from UK Bio-

bank, as is all code used for the core UK Biobank processing, and new code generated for this work

is also freely available. Therefore, for data from other (non-UK Biobank) studies, the full code is avail-

able for deriving the exact same set of IDPs, as long as the same imaging modalities are acquired.

How well harmonised those IDPs would be with UK Biobank IDPs would of course be a ‘sliding-

scale’, dependant on how similar the MRI scanner hardware, scanner software and protocol were to

those in UK Biobank. Similarly, how similar any derived brain modes would be to those that we

report here would likewise be a sliding-scale, dependant on how similar the data characteristics (and

subject group demographics) were.

Previous work showing more than a single pattern of brain aging includes (Groves et al., 2012),

where we used voxel-level multimodal independent component analysis (ICA) applied to data from

484 subjects, to generate multiple population modes, several of which showed age dependence

(including early-life development). However, this data spanned almost the entire human age range

(8-85y), with data from just two imaging modalities, and hence did not identify a large number of
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distinct modes relating to older-age aging. In the same year, a study of early-life development and

maturation (885 subjects, 3-20y) used three imaging modalities to generate 231 distinct imaging fea-

tures (Brown et al., 2012). The features were then grouped into different subsets by hand, and the

age dependence of each subset (and also of many of the features on their own) was studied. Simi-

larly, (Vinke et al., 2018) included data from several modalities, and studied aging trajectories in dif-

ferent measures from different modalities, but did not go as far as brain age (or brain-age delta)

modelling, or attempt to identify latent modes of aging. Several modalities were also used in

Richard et al. (2018), with 11 groups of distinct measures used to form 11 estimates of brain age,

each of which was then separately investigated for cognitive associations; one central methodologi-

cal distinction to the work presented here is that the 11 models were hand curated according to dif-

ferent types of features from different modalities, as opposed to (in our case) pooling all modalities’

features together before using data-driven decomposition (ICA) to identify distinct aging modes

that could naturally span across feature types and modalities. In contrast, Kessler et al. (2016) used

single-modality features (resting fMRI edge strengths) fed into ICA to identify multiple modes of

early-life maturation. Finally, Kaufmann et al. (2019) used a single imaging modality (T1-weighted

structural images) from 45,000 subjects pooled from 40 studies, to investigate the relationship

between brain aging and several diseases. Brain-age prediction was trained from whole-brain analy-

sis of the structural data, and also seven atlas-defined regional subsets were used to retrain the pre-

dictions. The different regional brain-age delta estimates showed varying associations with disease.

However, as with our all-in-one predictions and also (Ning et al., 2018), direct GWAS of the delta

estimates showed virtually no significant assocation, even with these high subject numbers.

We suggest that there is value in considering multiple, multimodal, brain aging modes separately;

for example, while our single all-in-one modelling of brain-age delta had no significant genetic influ-

ence, many of the individual modes had significant, rich and biologically interpretable genetic influ-

ence. We also found rich patterns of significant associations with non-imaging non-genetic variables,

including: biological measures (bone density, body size and fat measures, metabolic and cardiovas-

cular function, blood pressure, haemoglobin, age at menopause); life factors (alcohol, smoking,

maternal smoking, physical activity, number of siblings, sleep duration, many markers of socio-eco-

nomic status); cognitive test scores (processing speed, IQ); mental health (anxiety, depression); and

disease (diabetes, multiple sclerosis). To help focus our reporting of these non-imaging variables, we

largely considered their associations with the partialled deltas, i.e., concentrating on unique variance

in each mode’s delta. However, doing this is not mandated where the non-imaging variables (e.g.

blood pressure) or genetics are more likely to be causal factors than caused, in which cases, the (in

general less conservative) correlations with non-partialled deltas can be more appropriate.

The multiple modes of brain aging involved all imaging modalities, in a range of different pat-

terns. Some modes spanned multiple modalities, while others were more focussed, primarily reflect-

ing within-modality patterns. Measures of brain structure and function included: volumes of grey and

white tissues and structures (e.g. ventricles, thalamus, hippocampus); intensity contrast between

grey and white matter; microstructural measures in white matter tracts (diffusivity, anisotropy); ampli-

tude of spontaneous fluctuations in grey matter fMRI amplitude, and functional connectivity between

regions; volume of lesions in white matter; and changes in susceptibility-weighted contrast (likely

reflecting iron deposition) in subcortical structures. Of course, while all imaging modalities did show

some involvement in the brain-aging modes, it is not the case that all are equally valuable, both in

terms of reflecting the true underlying biology of brain aging, or in terms of the reliability with which

they could be estimated from the UK Biobank imaging data. For example, the fMRI IDPs in general

seem noisier than structural IDPs, as seen in our previous GWAS results (Elliott, 2018); however, it

would be incorrect to conclude that the noisier IDPs contain no useful information, and indeed we

showed in the same study that a data-driven reduction of hundreds of individual fMRI IDPs to a small

number of latent factors did show significant genetic association. Similarly, here, the fMRI-based

modes were not strongly dominant, but were nevertheless reproducible (see

Materials and methods). Additionally, having included the ‘relatively noisy’ fMRI IDPs did not dam-

age estimation of more structural modes: if we exclude fMRI IDPs from all analysis, and rerun the

mode-cluster estimation, the five mode-clusters not dominated by fMRI IDPs were still found (in all

cases having high correlation, r>0:9, with their original estimation).

Although there is a good deal of literature relating patterns of normal brain aging to some dis-

eases (including our results discussed above), one should not assume that all diseases display
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patterns identical to accelerated normal brain aging. This does not mean that the study of normal

brain aging would not be of value in such diseases; indeed, thorough characterisation of normal

brain aging could well help disentangle disease effects from (non-disease) aging effects in the sub-

jects with disease. Additionally, identification of latent factors of population variation (such as carried

out here) may help in the discovery of distinct disease sub-groups.

All modes’ subject-weight vectors are oriented (by definition) to increase with age. However, with

respect to their unique signal (obtained by regressing out all other modes from any given mode), a

small number of modes are negatively correlated with age, as described in Materials and methods

and shown in Figure 1—figure supplement 2. Two examples are visualised in Figure 6. Mode 5362
involves changes in white matter fibre organisation in the posterior thalamic radiation (also known as

the optic radiation, and connecting to visual cortex), and was associated with glaucoma, as previ-

ously reported (Wang et al., 2018). Mode 5062 involves changes in white matter diffusivity in the

superior cerebellar peduncle, and was associated with IQ and several markers of socio-economic sta-

tus. In such cases, where a mode’s unique variance is contributing to reducing (and not increasing)

brain age, one possible interpretation is that the mode represents cognitive reserve, that is, working

against the general pattern of age-related decline (indeed, aspects of socio-economic status are fre-

quently used as proxies for cognitive reserve). The primary goal of this work is the decomposition of

aging effects in the brain into multiple modes, which would ideally be biologically distinct and inter-

pretable. It is unsurprising that, by incorporating all modes (and hence all IDPs), the all-in-one brain-

age modelling achieves higher accuracy in age prediction; however, this is achieved at the expense

of diluting associations, as seen here with the genetics. It nevertheless could be the case that deeper

consideration of how the modes interact with each other to achieve optimal integrated modelling

(for example, considering their ‘partialled’ regression parameters in depth) may bring new under-

standing about brain aging. For example, this could shed new light on how different external causal

factors and distinct brain aging responses to these interact with each other.

A B

0.1 0.3-0.1-0.2

Figure 6. Spatial mapping of modes 5062 and 5362 from the diffusion MRI data. (A) Voxelwise correlation of the partialled brain-age delta values (one

per subject) from mode 5062, into the dMRI MD (mean diffusivity) data. The colour overlay shows correlation r values, thresholded at a magnitude of

0.1. (B) Voxelwise correlation of the partialled brain-age delta from mode 5362, into the dMRI FA (fractional anisotropy) data.
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A major premise behind the modelling of multiple brain-aging modes is that each mode in each

subject has a distinct delta: for a given subject, the different modes are ‘aging’ differently. Although

the common approach in the brain-aging literature is to estimate a delta (or brain age gap) by sub-

tracting actual age from estimated brain age, this has the potential weakness of assuming that this

offset would be constant for a given subject, as the subject gets older. For example, this assumption

is implicit when looking for genetic associations, as one would like to be finding associations with an

age-independent marker of relative brain health. However, it may be more likely that (for example) a

given subject’s brain is aging faster than the population average in terms of a distinct aging rate,

implying that their delta would be increasing over time (and not therefore being a constant offset

relative to their age). Indeed, our results show that there is evidence for this being a more appropri-

ate model of brain aging (Figure 1—figure supplement 10 shows several modes where the variance

of delta increases with age, and a few where it decreases). Unfortunately, the two models can be

hard to distinguish, particularly at the level of individual subjects, when given only single-time-point

(cross-sectional) data. For example, it may be hard to disambiguate whether total brain volume is

different than the population average because of aging effects, or because the subject had a larger/

smaller brain at ‘baseline’ (before age-related decline began). This is similar to the distinction

between ‘shallow’ vs. ‘lagged’ early-life maturation investigated by Kessler et al. (2016). Naturally

some preprocessing helps ameliorate this, for example, normalisation of brain volume by head size.

However, it is still the case that longitudinal data, and more advanced modelling, may result in more

sensitive and meaningful study of brain aging in future. Notably, UK Biobank has now started re-

imaging 10,000 of the 100,000 subjects, with an average scan-rescan interval of about 2 years. Raw

and preprocessed data from almost 1500 of these rescanned subjects will be released in early 2020.

Future work on brain-age modelling can hope to take advantage of the ever-increasing size and rich-

ness of such datasets, to enable better understanding of the aging brain in health and disease.

Materials and methods

Data and preprocessing
We used data from 21,407 participants in UK Biobank, 53% female, aged 40-69y at time of recruit-

ment and 45-80y at time of imaging. As described in detail in Miller et al. (2016), the UK Biobank

data includes 6 MRI modalities: T1-weighted and T2-weighted-FLAIR (Fluid-Attenuated Inversion

Recovery) structural images, susceptibility-weighted MRI (swMRI), diffusion MRI (dMRI), task func-

tional MRI (tfMRI) and resting-state functional MRI (rfMRI).

We (and colleagues) have developed and applied an automated image processing pipeline on

behalf of UK Biobank (Alfaro-Almagro et al., 2018) https://www.fmrib.ox.ac.uk/ukbiobank/fbp. This

removes artefacts and renders images comparable across modalities and participants; it also gener-

ates thousands of image-derived phenotypes (IDPs), distinct measures of brain structure and func-

tion. Here we used 3913 IDPs available from UK Biobank, spanning a range of structural, diffusion

and fMRI summary measures (as described in the central UK Biobank brain imaging documentation

http://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf and listed in full in a spread-

sheet available at https://www.fmrib.ox.ac.uk/ukbiobank/BrainAgingModes).

Code for all processing in this paper is freely available (see Data availability). Each IDP’s

Nsubjects � 1 data vector had outliers removed (set to missing, with outliers determined by being

greater than 6 times the median absolute deviation from the median); the vector was then quantile

normalised [Miller et al., 2016], resulting in each IDP’s data vector being Gaussian-distributed, with

mean zero, standard deviation one. We then discarded subjects where 50 or more IDPs were missing

(for any reason, which could be due to: data acquisition incompleteness; data quality problems as

described in Alfaro-Almagro et al., 2018; or the above-described outlier removal), leaving 18,707

subjects (54% female). The small amounts of remaining missing data were replaced with close-to-

zero values (random signal of standard-deviation 0.01). This resulted in an IDP data matrix W of size

18,707�3,913.

Confounds were removed from the data as carried out in Elliott (2018) (except that age-depen-

dent confounds were not removed from W). This includes confounds for: head size, sex, head motion

during functional MRI, scanner table position, imaging centre and scan-date-related slow drifts.

Smith et al. eLife 2020;9:e52677. DOI: https://doi.org/10.7554/eLife.52677 16 of 28

Research article Neuroscience

https://www.fmrib.ox.ac.uk/ukbiobank/fbp
http://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf
https://www.fmrib.ox.ac.uk/ukbiobank/BrainAgingModes
https://doi.org/10.7554/eLife.52677


In applications with a specific disease of focus, it is common to generate a model such as brain-

age-estimation based on healthy subjects and then apply it to both healthy and disease subjects.

However, here (and in UK Biobank in general) there is no one specific disease focus, with all diseases

being of potential interest, and with the imaged population being largely healthy at the time of

imaging. The fractions of imaged subjects having specific existent diagnoses are low (e.g. with less

than 10% having mental health or neurological diagnoses, and none having gross anatomical pathol-

ogy according to the processing pipeline QC Alfaro-Almagro et al., 2018). We therefore did not

exclude individual subjects from the modelling here.

Estimation of multiple population modes of brain aging
We then applied independent component analysis (ICA), using the FastICA algorithm (Hyväri-

nen, 1999). ICA decomposes a data matrix into multiple factors that are statistically independent of

each other with respect to one of the data matrix dimensions (the input data matrix is W , meaning

that the data dimensions are subjects and IDPs). This generates multiple independent modes of pop-

ulation covariance (patterns of IDPs that co-vary together across subjects).

In order to help focus this data-driven decomposition on age-related population modes, both

with respect to the pre-ICA dimensionality reduction (achieved using PCA - principal component

analysis) and the core ICA unmixing, each IDP vector Wi (after normalisation as described above)

was rescaled by an age-related factor of ð0:1þ absðcorrðage;WiÞÞÞ, before PCA+ICA was applied.

ICA requires the estimated (output) components to be non-Gaussian in their distributions, and

our data matrix W is more highly non-Gaussian in the IDP dimension than in the subject dimension

(which is largely Gaussian for most IDPs, even before quantile-normalisation). We therefore appply

ICA to estimate modes of independent IDP weights. Each ICA component therefore comprises a

mode of population covariation described by two vectors: the ‘ICA source vector’, spanning all IDPs,

with one (signed) scalar weight value per IDP; and the subject-weights vector, with one (signed) sca-

lar weight value per subject. The rank-1 outer product of these two vectors comprises this mode’s

contribution to the full original data matrix. IDP-weight-vectors are statistically independent of each

other (by definition, according to the ICA algorithm) and hence also orthogonal, whereas the sub-

ject-weight-vectors are only restricted to being non-co-linear (and indeed below we utilise their cor-

relations with each other to help identify clusters of modes).

Estimation of association of a given mode with age or non-imaging variables (such as cognitive

test scores and physical body measures) can proceed simply by correlating/regressing the subject-

weights vector against any relevant non-imaging Nsubjects � 1 vector. As described above, all modes

have distinct (from each other) subject-weights-vectors and IDP-weights-vectors, and hence are dis-

tinct modes of population variation. Note that the ICA algorithm will always produce the requested

number of modes, and as such the statistical robustness of identified modes requires some form of

test, such as the reproducibility testing described below.

A major controlling parameter in an ICA decomposition of a data matrix is the number of compo-

nents it is asked to estimate - that is, how fine-grained the ‘clustering’ output should be. It is com-

mon to specify just one controlling parameter when running FastICA, that being the initial PCA

dimensionality reduction. ICA would then output the same number of components. However, it is

also possible to control the PCA dimensionality, and separately determine which ICA output compo-

nents to keep. Our general approach (detailed below) was to maximise both dimensionalities sepa-

rately, in order to obtain the richest possible description of multiple population modes. However,

this needs to be done with the constraint that reported modes are statistically robust (i.e. avoiding

over-fitting).

Therefore, starting from 3913 columns (IDPs) in W, we ran PCA and ICA at dimensionalities from

60 to 150, evaluating each with respect to a metric of split-half reproducibility (all code for this is

available, as described above). For each PCA dimensionality reduction, this test of reproducibility

applies the following procedure: ICA is run three times - first with all data, and then twice on ran-

domly-split-halves of the data; the components from the two split-half runs are then ordered accord-

ing to best-match (via the Hungarian greedy-pairing algorithm) to the all-data ICA run; correlation

between the split-half paired ICA components’ source (IDP) vectors was estimated, and only

extremely similar components (r>0:9, see below for estimation of the associated statistical signifi-

cance) were retained; all the above steps were run 10 times (each with a different split-half-subjects
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randomisation) and averaged together to give the reproducibility test-statistic - the number of

reproducible components estimable by the current dimensionality.

The PCA dimensionality resulting in the largest number of highly reproducible components was

found to be 128, and from this, 62 ICA components were highly reproducible. Finally, ICA was rerun

with this PCA dimensionality 30 times, each time with random split-half-subjects, and the most

robust run (in terms of reproducibility) was then utilised, resulting in the final set of 62 ICA

components.

As a simple highly conservative test of significance, we computed null correlations between an

‘IDP-weight vector’ of random noise of 62 samples (the minimum possible degrees-of-freedom, and

hence the most conservative test) and 128 other random vectors, taking the maximum correlation

magnitude across all 128, and then building up the null distribution of this maximum across 1 million

random null tests. The maximum across all 1 million only reached jrj ¼ 0:68 (90th percentile

jrj ¼ 0:41), whereas we are only keeping modes with split-half reproducibility jrj>0:9. We can there-

fore be confident that the final components are robustly present with a significance of at least

P<10�6 (and probably much greater).

As a second test of significance of the overall data-driven modelling, including the age-weighting

of inputs to the PCA+ICA, we applied the following null evaluation. We used a random vector

instead of age to carry out the IDP weighting, ran ICA at dimensionality of 128, and correlated all

128 resulting subject-weight-vectors with the random vector, recording the maximum correlation

magnitude across all 128 (and by doing so making this more conservative than by testing just 62

modes chosen through split-half reproducibility). From 100 random repeats of this test, the maxi-

mum absolute correlation (across 100 repeats and 128 ICA modes) was just jrj ¼ 0:032 (to be com-

pared against the age correlations shown in Figure 1—figure supplement 2D).

A given ICA component is unchanged in its modelling of the input data if the sign of both the

subject-weights-vector and the IDP-weights-vector are inverted (as these two inversions cancel each

other out - the initial sign of each is arbitrary, as with PCA). Hence we oriented the 62 modes of pop-

ulation variability so that their subject-weights-vectors were all positively correlated with age, in

order for simplicity of later interpretation.

We next investigated whether the 62 modes of brain aging could be arranged in fairly clean clus-

ters having similar patterns of aging; if so, this could aid in simplifying interpretation of the modes.

Figure 1—figure supplement 1 shows hierarchical clustering of the correlation matrix of subject-

weight-vectors. The reasonably strong diagonal-block-structure suggests that a lower-dimensional

clustering could be a useful way to help simplify the interpretation of the 62 modes of brain aging.

Therefore, in order to carry out a lower-dimensional analysis, we re-ran the ICA, this time on PCA

dimensionalities running from 2 to 50 (from the same IDPs matrix that was fed into the

higher dimensional mode estimation above). We evaluated objectively which dimensionality pro-

vided the cleanest clustering of the 62 modes, by optimising the following cost function: We esti-

mated the correlation matrix of 62 modes’ subject-weight vectors with each low-dimensional ICA set

of subject-weight vectors, took the magnitude of this, sorted each column (spanning the low-dimen-

sional analysis), subtracted the second-strongest correlation from the first, and summed this over

columns (the high-dimensional components). This cost function therefore describes how cleanly each

high-dimensional mode is associated with just a single low-dimensional component. We found that

the optimal lower dimensionality was 6.

As well as being sign-oriented to positively correlate with age, the modes (from both 62 and 6

dimensionalities) were ordered (numbered) according to decreasing correlation with age, again for

convenience of interpretability and with no loss of generality in the modelling. We refer to the

higher-dimensional modes of aging via their (ordered) number with subscript 62 (e.g. ‘brain aging

mode 262’), and lower-dimensional mode-clusters via their number with subscript 6 (e.g. ‘brain aging

mode-cluster 36’). Figure 1—figure supplement 1B shows the correlation matrix between subject-

weight-vectors from the two dimensionalities, with the fairly clear clustering visible (i.e. most of the

62 modes are strongly associated with at most one of the 6 mode-clusters).

Brain-age visualisation and sex-separated aging curves
We used the estimated population modes to model brain aging, following the general regression-

based approaches laid out in Smith et al. (2019).
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For simple visualisation of each mode’s overall age dependence, we utilise the simple ‘switched’

model, where imaging measures are characterised as a function of age. We used an age model with

linear, quadratic and cubic powers of age, to fit to each mode’s subject-weights-vector. The fitted

age curves for all 62 modes are shown in Figure 1, as well as the raw data (scatterplot points, one

per subject) and fitted curves for two example modes. By definition (see above), all modes have pos-

itive age correlation, although for some modes these positive coefficients are close to zero. Fig-

ure 1—figure supplement 1C shows the equivalent fitted age curves for the 6 mode-clusters.

Figure 1—figure supplement 2A shows the ratio of the standard deviation explained by the mean-

age-dependent-curves to the standard deviation of the data (the mode subject-weights). There is a

continuous distribution of ratio values, from above 0.6 in the lowest-numbered modes, through to

almost zero for the highest-numbered modes (though all of the mode-clusters are above 0.3). (Sig-

nificance testing on strength of age dependence is reported below).

Figure 1—figure supplements 3–9 show, for each mode, sex-separated aging curves, and also

the aging curves for the unique variance captured by each mode. For the latter, the subject-weights-

vector for each mode is ‘partialled’ - that is, has all other modes’ subject-weights-vectors regressed

out, before re-fitting the average age curves for visualisation in the figures. For these sex-separated

aging curves, sex-separated subject-weight-vectors were first estimated, by multiplying the ICA IDP

weights matrix into a version of the original data matrix that had all confounds removed as before,

but this time without including sex as one of the confounds. Averaged age-curves were then gener-

ated; for these visualisations, sex-separated age curve fitting was carried out in a more model-free

way than the parametric (cubic) age model used for our more quantitative analyses. Specifically, for

the purposes of showing the data in a more raw form, we simply use sliding windows of width 5y to

average (sex-separated) data points around each 1y age bin centre (although averages of the two

sex-separated curves are visibly highly consistent with the cubic average age model shown under-

neath in grey). For the majority of modes, the two sexes have highly similar age curves, but for some

(e.g. mode 162), there are strong differences.

As one would expect, the age dependence is less strong in the partialled modes, as each has a

large amount of shared variance regressed out. Some even show negative overall age dependence

after partialling (e.g. mode 2262).

Brain-age delta modelling
For our quantitative modelling of brain-age delta (estimated brain-age minus actual age), we use the

common approach of modelling age as a function of imaging features (as opposed to the other way

round as above), combined with the second step from Smith et al. (2019), which removes age-

related bias in the brain-age delta. Hence, for the first step, one would model

Y ¼ Xb1 � d1; (1)

where Y is age, X is the modes’ subject-weights matrix (size Nsubjects�Nmodes), b1 is the (Nmodes � 1) vec-

tor of regression parameters, and d1 the initial estimate of brain-age delta. The above produces a d

that is orthogonal to X (the imaging measures) rather than Y (age). Thus, we can think of the first

stage residuals, d1, as the aspects of age that cannot be accounted for by the imaging measures.

The second stage of modelling aims to refine this model by identifying aspects of this first-stage d1

that cannot be accounted for by age terms or confounds. Note that this stage explicitly forces d2 to

be orthogonal to all of the components in Y2, including age:

d1 ¼ Y2b2 þ d2; (2)

where the regression matrix Y2 includes not just linear, quadratic and cubic age terms, but also the

other confound variables. One can equivalently view the first step above as a sum over modes:

Y ¼
X

i

ðXib1i � d1iÞ; (3)

where we have separated out the contributions to the modelling from each mode, along with break-

ing down the delta into a delta vector per mode. The b regression parameters remain determined

by the standard multiple regression inversion, b1 ¼ ðX0XÞ�1
X0Y, and each d1i is estimated simply as
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Xib1i� aY . Here a is an arbitrary scaling (e.g. 1=Nmodes) whose value is not important because the term

aY will be removed by the second step that regresses out age and confounds. One can then keep

the second step deltas also separated:

d1i ¼ Y2b2iþ d2i; (4)

The original d1 is the sum of the individual modes’ d1i vectors, and d2 is the sum of all modes’ d2i
vectors. By separating out each mode’s contribution to the overall brain aging delta, and by doing

so in the context of the modelling being an ‘all-in-one’ multivariate model (multiple regression using

all modes’ subject-weights vectors), we are able to then go on to study how the different modes’

brain-aging are distinct from each other, as well as how they combine to give an overall best-esti-

mate of brain age. The combined modelling across all modes (summed d2i) results in a mean abso-

lute ‘error’ of 2.9y.

As with the partialled subject-weight-vectors described above, we also generate partialled ver-

sions of the modes’ deltas; for each mode’s d2i, we regress out all of the others. We can then, for

example, correlate these partialled delta estimates with non-imaging variables in order to find asso-

ciations with the unique variance in each mode’s brain-aging delta.

In Figure 1—figure supplement 2B,C, we show the standard deviation (variation across subjects)

associated with the individual modes’ brain-age modelling from step 1 (Xib1i), the deltas after step

2, and the partialled deltas. There is not a qualitative difference between the three curves, because

the b regression parameters are driven by the unique variance components of the original modes’

subject-weight-curves. There is not (expected to be) a simple relationship between the original

strength of age dependence for a given mode, and the age dependence in its unique variance; this

also explains why the curves are not monotonically decreasing (as they clearly are, by definition, in

the univariate analyses shown in Figure 1—figure supplement 2A).

In Figure 1—figure supplement 2D,E, we show related information - statistics from the multiple

regression in the age modelling first step (as well as the simple univariate correlation between indi-

vidual modes’ subject-weight-vectors and age, for reference). The regression b values vary highly

from mode to mode (as mentioned above), driven by the unique variance in each mode. Several

modes have negative b weights, meaning that their unique variance is negatively associated with

age, even though their original correlation with age was (by definition) positive. Two modes (2262
and 5062) have quite strongly negative b (more negative than �0.5).

Non-additive brain-age delta estimation
Following the approach outlined in Smith et al. (2019), we estimated the extent to which the scale

(size) of delta changes across the age range present in the UK Biobank data. This is a distinct model

from those outlined above, which treat delta as additive to age (to form brain age), and hence being

constant in overall scale (as a function of aging). This would represent not a simple shift in brain age,

but potentially (e.g.) something like an acceleration in aging (delta gets bigger with age). Of course,

with a limited range of ages, such a scaling term might be effectively captured with a purely additive

term, so this modelling is really asking whether our data show evidence for a scaling effect, rather

than making a strong statement about the form deltas take over the entire age range.

The results are shown in Figure 1—figure supplement 10. 17 modes and three mode-clusters

show statistically significant amount of non-additive brain aging. In most cases, delta is increasing

with age (e.g. as can be seen visually in Figure 1—figure supplement 10C for mode 462, but some

modes are decreasing (e.g. as seen in Figure 1—figure supplement 10D for mode 1162).

Brain-age modes’ structural and functional interpretation
The raw ICA IDP-weights-vectors are plotted in Figure 2—figure supplement 1, with IDPs running

along the x axis. FreeSurfer-derived structural IDPs are to the right, functional connectivity (from

resting-state fMRI) estimates in the central portion (this is largely - but not completely - empty), and

other structural, diffusion MRI and task fMRI measures in the left-most block. These are the raw

weights, and we do not discuss this visualisation in greater detail here, because the more compact

summary of IDP weights in Figure 2 is more interpretable, and also the full lists of strongest weights

are provided in spreadsheets (see Data availability).
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Figure 2 arranges IDPs into logical groupings of distinct types of measures (‘modality types’ - for

the full list of IDPs and their modality groups, see Data availability). For each modality group j com-

prising Nj IDPs, the Nmodes � NIDPsj matrix is fed into ICA to reduce the number of IDPs to a more visu-

ally-compact form of IDP ‘clusters’ - thus each column in the figure represents a group of IDPs with

similar behaviour across modes. For each IDP modality group, the number of displayed components

is data-dependent, utilising the PCA eigenspectrum to determine ICA dimensionality and then

retaining ICA components with sufficiently strong maximum weight, though always displaying at

least one strongest component (see code linked in Data availability for full implementational details).

We show separate visualisations for the 62 modes and also the 6 mode-clusters, with the same

IDP groupings for each (but separate ICA decompositions, as we did not want either decomposition

to influence the other). We can see many clear correspondences between the modes and mode-clus-

ters in compatible ways to those described above. For example, modes 562 and 1062 and mode-clus-

ter 36 relate closely to each other, and all are driven by T1 contrast across the grey-white boundary.

These figures are discussed in greater detail in Results.

Finally, voxelwise mapping of deltas were estimated to help interpret some modes and relevant

imaging modalities. In some cases, it was found to be useful to simply correlate delta against the

Nsubjects � Nvoxels full imaging data, and in other cases we averaged the images from the 1000 subjects

having the lowest (e.g. most negative) delta values, and separately averaged the 1000 subjects with

the largest values, to generate two average images for direct visual comparison. Where appropriate,

the imaging data was deconfounded (across-subjects) using the same confound regressors as

described above.

Associations of brain-age Delta with non-imaging measures
We utilised 8787 non-imaging, non-genetic measures (which we refer to here as nIDPs - non-imag-

ing-derived phenotypes) from UK Biobank, spanning 16 groups of variable types, including early life

factors (such as being breastfed as a baby), lifestyle factors (e.g. exercise, food, alcohol and tobacco

variables), physical body measures (e.g. body size, fat, bone density variables and blood assays),

cognitive test scores, and health (including mental health) variables (see Figure 3—figure supple-

ments 2–3 and online spreadsheets described in Data availability). These variables were automati-

cally curated using the freely available FUNPACK (the FMRIB UKBiobank Normalisation, Parsing And

Cleaning Kit https://git.fmrib.ox.ac.uk/fsl/funpack) software; this sorts variables into hand-curated

groups, ensures that quantitative variable codings are parsed into at least monotonically-sensible

values, and separates categorical variables into multiple binary indicator variables.

The nIDPs were then passed through similar preprocessing as above for IDPs; they were quantile

normalised and had all confounds regressed out (including age-related confounds). The one differ-

ence here was that, to avoid statistical instability when working with variables that only exist for one

sex (e.g. related to menopause), the confound variables were sex-separated before being applied.

The UK Biobank nIDPs have varying amounts of missing data. Here, we used 8787 variables hav-

ing data from 40 subjects or more. Therefore, the full set of associations of nIDPs against brain-age

delta have widely-varying degrees-of-freedom, and taking into account correlation p-values is impor-

tant (and not just correlation r values). The histogram of non-missing data proportions is shown in

Figure 2—figure supplement 2.

To identify the strongest associations between brain-age delta (for each mode and mode-cluster),

we used simple Pearson correlation (as described above, both IDPs and nIDPs have been quantile-

normalised, that is, Gaussianised). For each mode/mode-cluster, we computed correlations between

nIDPS and the delta estimates, and also partialled delta estimates (to identify associations between

nIDPs and the unique variance in the deltas). We also computed the same sets of associations for

just females and just males. In detailed spreadsheets (see Data availability), we report all associations

where any of the tests (i.e. using all subjects, and just females, and just males) have a significance

value of �Log10P >5, although these should be interpreted in the light of the fact that conservative

Bonferroni correction across 62 modes and all nIDPs would have a �Log10P threshold of 7.0, while

across 6 mode-clusters this would be 6.0.

Summary plots simplifying the mapping of modes onto nIDP variables and variable groups (using

variable-group-specific ICA) were created in the same manner as described above for IDPs, and

form part of Figure 3—figure supplements 2–3.
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GWAS of brain-age delta
We carried out genome-wide association studies (univariate regressions) of all delta estimates, fol-

lowing the approach used in Elliott (2018). We used the second UK Biobank release of imputed

genetic data, comprising over 90 million structural variants (which are primarily SNPs, and are

referred to here in general as SNPs for brevity).

We used a minor allele frequency (MAF) threshold of 1%, imputation information score threshold

0.3 and Hardy-Weinberg equilibrium P-value threshold 10-7. We reduced the subjects used for

GWAS to a maximal subset of unrelated subjects with recent British ancestry (to avoid the confound-

ing effects of gross population structure and complex cross-subject covariance). Relatedness was

determined by thresholding the kinship matrix at 0.175, and recent British ancestry was determined

using the variable in.white.British.ancestry in the provided genetic data files. 40 population principal

components (as supplied by UK Biobank) were used as GWAS confound regressors (again, to avoid

the confounding effects of gross population structure).

This QC filtering resulted in a total of 9,812,242 SNPs and 15,952 subjects (samples), which we

partitioned at random into a 10,612 subject discovery sample and a 5,340 subject replication sam-

ple. GWAS was carried out using BGENIE v1.2 (https://jmarchini.org/bgenie/).

The standard single-phenotype GWAS threshold is �Log10P ¼ 7:5. Our Manhattan plots (of signif-

icance vs. SNPs) show this threshold as well as an adjustment of this for the Bonferroni factor of 62

+6 phenotypes, i.e., �Log10P ¼ 9:33. This is likely conservative due to correlations across phenotypes

(modes and mode-clusters).

After performing the GWAS, we used a method described in Elliott (2018) to identify meaning-

fully distinct lead (peak) SNPs, taking into account correlation amongst neighbouring SNPs (linkage

disequilibrium). In effect, this identifies distinct clusters of significantly associated SNPs. This method

works by forming a set containing all of the significant SNPs, and then iteratively retains only the

top-most significant hit among all SNPs in the set while removing other SNPs within 0.25 cM

(approximately 250kbp on average) of the reported peak SNP, terminating after all significant SNPs

are removed or retained for reporting.

Figure 3 shows various Manhattan plots for individual delta estimates as well as all-in-one esti-

mates. Individual Manhattan plots for every mode/mode-cluster, both sex-combined and sex-sepa-

rated, and for delta and partialled delta, were generated (see Data availability). Summary plots

simplifying the mapping of modes onto SNPs and chromosomes (using variable-group-specific ICA)

were created in the same manner as described above for IDPs and nIDPs, and form part of Fig-

ure 3—figure supplements 2–3.

Finally, we ran several distinct kinds of additional genetic analyses. Using the Genome Browser

https://genome.ucsc.edu we manually identified RSIDs for all indel variants that we found to have

peak associations (that is, all peaks for all modes and all mode-clusters). We then used FUMA

https://fuma.ctglab.nl (Watanabe et al., 2017) to map SNPs/variants to genes. Next, we used

FUMA in conjunction with ANNOVAR http://annovar.openbioinformatics.org/en/latest/

(Wang et al., 2010) to identify SNPs in LD with the peak SNPs, and to functionally annotate them.

Taking advantage of gene expression and chromatin databases, we identified eQTL and chromatin

mappings/interactions for SNPs and genomic loci, again via FUMA. We also carried out PHEWAS,

identifying details of other traits from previous (largely non-UK Biobank) studies having associations

with our peak SNPs, via the PHEWAS-atlas/FUMA tool. Finally, we used LD score regression with

LDSC v1.0.1 (Bulik-Sullivan et al., 2015) (applied separately to each mode/mode-cluster) to esti-

mate genetic (SNP) heritability of all modes and mode-clusters, as well as to estimate genetic co-her-

itability with Alzheimer’s disease (Lambert et al., 2013) and Parkinson’s disease (Simón-

Sánchez et al., 2009) (see online supplemental materials for AD/PD summary statistics information

detail and acknowledgements). All LDSC analysis was done with LD scores computed using the 1000

Genomes European (EUR) subjects (Auton et al., 2015).
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Data availability

All subject-level data (IDPs, nIDPs and genetics) are available upon application to UK Biobank. The

UK Biobank data acquisition MRI protocol, and the image processing and IDP generation pipelines

are all freely available (https://www.fmrib.ox.ac.uk/ukbiobank). Additional resources relating to

group-average image analysis can be found at https://www.fmrib.ox.ac.uk/ukbiobank/. This includes

population-average templates for all of the different imaging modalities, and lists/images of all rfMRI

nodes and edges. All code developed for the work reported here (Matlab) is freely available from

https://www.fmrib.ox.ac.uk/ukbiobank/BrainAgingModes. The same website also contains the fol-

lowing additional supplemental materials: Figures with all modes’/mode-clusters’ individual GWAS

Manhattan plots; GWAS summary statistics files; rfMRI summary brain images showing visually the

brain regions (‘nodes’) and pairs of brain regions (‘edges’) significantly associated with all modes

and mode-clusters; tables/spreadsheets listing all IDPs used, the strongest nIDP associations with all

modes/mode-clusters, the strongest IDP weights for all modes/mode-clusters, and the peak GWAS

associations (tables can be downloaded or viewed online); and additional genetic analyses including

functional annotation, gene expression, associated traits from previous GWAS studies, and genetic

heritability/co-heritability results.
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Appendix 1

Supplementary comments on body size and other
‘baseline’ causal factors in IDPs and brain aging
We now include a simple discussion of the opposing signs of involvement of the various body-

size-related variables seen for mode-clusters 16 and 26.

The typical starting point for modelling brain aging (e.g., see Smith et al., 2019) is

YB ¼ Y þ d¼ f ðXÞ ¼ Xb; (5)

where actual age is Y (an Nsubjects� 1 vector), brain age is YB and the brain-age delta is

d¼ YB�Y. The imaging data matrix is X, which has Nsubjects rows and D columns; the columns

are features from the imaging data, and might be different voxels, or different IDPs (imaging-

derived phenotypes - summary measures of brain structure and function), or different modes.

Here we treat X as a single feature, for example, total volume of grey matter. We might

expect grey matter volume G for subject i to depend both on overall body size as well as age-

related atrophy, and hence follow a form like:

Gi ¼ bBi�YiðaaverageþaiÞ (6)

where Bi is a subject’s ‘baseline’ body size, b the coefficient relating body size to grey matter

volume, aaverage is the population average rate of atrophy (the reciprocal of b in general), and

ai is the subject’s deviation (in atrophy rate) from the population average. By definition here b

and aaverage are positive.

Now, in such cases where the imaging feature is negatively correlated with age (hence the

minus sign above), the mode preprocessing used in our modelling flips the sign of the mode

so that the subject weights are positively correlated with age (see Materials and methods).

Hence we have:

Xi ¼�Gi ¼�bBi þYiðaaverageþaiÞ (7)

Xib¼�bbBiþYi þYiaib (8)

di ¼ Xib�Yi ¼ Di� b2Bi; (9)

where b2 ¼ bb (i.e., is typically a positive coefficient, although multiple-regression age

prediction from multiple modes can result in negative b, as discussed above) and Di ¼ Yiaib is

the aspect of the brain age delta that is separate from the effect of the baseline body size (i.e.,

relates to the ongoing atrophy).

Hence estimated d does correctly reflect the atrophy-related delta; however, additionally,

between-subject variations in baseline body size result in a larger body giving an apparently

lower d. In cases where the IDP/mode changes are positively correlated with aging (e.g., CSF

volume, as in mode-cluster 16), there is no negative sign above, and no sign-flipping for the

mode, and hence the apparent effect of body size is not reversed. Of course, to further

complicate matters, some ‘baseline’ or ‘background’ factors (such as socio-economic status)

may well have a significant causal role both in baseline IDP/mode values as well as aging rate.

Put more simply and qualitatively, a subject with large body size will have large baseline

CSF, and the brain-age modelling will therefore likely consider that large body size is a ‘bad

thing’ with respect to mode-cluster 16; on the other hand, the same subject will have large

baseline grey matter, and the brain-age modelling will therefore consider that large body size

is a ‘good thing’ with respect to mode-cluster 26. For such cases of course neither simplistic

conclusion is appropriate.

Note that in the simpler case where an nIDP is more directly related to an IDP or mode

(for example, as is found with alcohol and smoking), the signs of the associations between d
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and the IDP and the nIDPs are all simply consistent and easily interpretable. For example, for

mode-cluster 16, CSF volume is positively correlated with d (higher CSF volume is indeed a

‘bad thing’); for mode-cluster 26, grey matter volume is negatively correlated with d (grey

matter volume is a ‘good thing’), and for both mode-clusters, alcohol and smoking are

positively correlated with d (they are both ‘bad things’).
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