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A B S T R A C T   

Previously we have identified that the expression number and levels of oncogenes and antioncogenes are highly positively or negatively associated 
with major cellular progress in a cancer cell. However, we have not defined any cellular potentials of a human tumor cell at the level of the overall 
gene expression. Here, we counted the overall number of expression genes and overall counts of mRNA in depth and revealed that the expression 
levels of mRNA were directly associated with the expression number of genes in a human tumor cell. Gene expression networks revealed steady 
states of tricarboxylic acid (TCA) cycle and ATP production, differentiation potentials that might be disturbed and blocked by uncertain gene 
expressing networks, and potential capabilities to undergo epithelial-mesenchymal transition (EMT), neurogenesis, angiogenesis, inflammatory 
response, immune evasion, and metastasis in a human tumor cell. Our analysis identifies unpredictable gene expression characteristics in human 
tumor cells. The results might profoundly influence mechanisms how a human tumor cell generates and undergoes its progresses.   

1. Introduction 

Tumor related cellular specialization plays a central role in controlling behaviors of the tumor tissues. On a whole tumor tissue 
level, cells of different classes (for example, tumor cells, fibroblasts, macrophages, lymphocytes, and endothelial cells) interact to 
maintain tumor mass and enable the progression of tumor tissues in human body [1,2]. On a tumor cell level, subtle specializations can 
control behaviors that distinguish tumor cells, including proliferation [3], resisting cell death [4], altered autophagy [5], reassessing 
senescence [6], activating invasion and metastasis [7], conducting epithelial-mesenchymal transition (EMT) [8], gaining self-renewal 
capabilities and stemness [9], promoting inflammation [10], reprogramming energy metabolism [11], and inducing angiogenesis [12] 
and neurogenesis [13]. Some tumor cell populations have been characterized in detail; many remain uncharacterized or have yet to be 
discovered [14,15]. To date, high-throughput single-cell RNA-seq (scRNA-seq) discloses plenty of cell-type classifications in the tumor 
tissues and reveals the RNA repertoires of every tumor cell type and state and identifies molecular markers for each population of 
tumor cells [16,17]. The systemic endeavors would help to understand the roles and interactions of cells in tumor tissue, including the 
roles of distinct tumor cell types in the disease. 

Gene expression networks (GENs) or gene expression patterns in a tumor cell provide hierarchic evaluation of cellular behaviors in 
tumor tissues [18,19]. GENs generate and guide specific roles of cells involved in the initiation and progression of tumor tissues, 
including tumor tissue genesis and formation of tumor cell types [20]. GENs also determine the main events of activating invasion and 
metastasis [21]. Beyond that, GENs control a vast array of capabilities and modes of response of a tumor cell to environmental 
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fluctuations and challenges [22]. Thus, gene expression plays a key role in a wide variety of core biological processes in tumor cells, 
ranging from tumor tissue development, homeostasis, and tumor cell specialization to cellular stress response [23]. Previously, we 
have analyzed single-cell sequencing datasets of human hepatocellular carcinoma and identified that the expression number and levels 
of oncogenes and antioncogenes are highly positively or negatively associated with many major cellular progresses, including pro
liferation, apoptosis, autophagy, EMT, angiogenesis, neurogenesis, and cellular differentiation [24]. These findings indicate that the 
overall transcriptional activation of oncogenes and antioncogenes transform the activation of genes involved in these cellular pro
cesses. In addition, we identified that the overall expression levels of genes is weakly inked to the expression number and levels of 
oncogenes and antioncogenes. In the present work, we counted total expression number of genes and total counts of mRNA in depth to 
define the gene transcriptional activation in each human tumor cell and identified unpredictable gene expression characteristics in 
human tumor cells. 

Fig. 1. Association of the copies of mRNA and the gene expression number in a human tumor cell. A. The tSNE shows all types of cells 
derived into 6 HCC samples. B. The stacked bar charts show max/min gene expression numbers and levels in different HCC samples. C.D.E.F. The 
bar plots show cell counts for 16 and 100 gene classifications of the overall gene in the P1 sample of HCC, while pie charts display their percentages. 
G. The scatter plot shows the correlation between the gene expression numbers and gene expression levels. H.I. The scatter plots show the cor
relation between the copy number variation (CNV) score and the gene expression levels or gene expression levels, respectively. All plots with 
Pearson correlation coefficient (R-value) and P-value labeled at the top. 
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2. Results 

2.1. Association of mRNA counts and the gene expression number in a human tumor cell 

We collected single-cell sequencing datasets of 6 samples of human hepatocellular carcinoma from 5 patients as described [24]. 
Cells with more than 20 % mitochondrial gene expression were excluded from the datasets. We obtained single-cell transcriptomes of 
30,429 tumor cells after quality control defined by gene expression patterns in each cell. Principle-component analysis (PCA) and 
t-distributed stochastic neighbor embedding (tSNE) analysis showed that human hepatocellular carcinoma (HCC) had high molecular 
heterogeneity of inter-samples and intra-sample (Fig. 1A), consistent with previous observations [24]. We counted total expression 
number of genes and total counts of mRNA in each HCC cell in each HCC sample. The expression levels and expression numbers of 
genes expressed in each single cancer cell were measured and counted separately in an HCC sample. For instance, we captured the 
maximum number of gene expressed was 3144 in a tumor cell and the minimum number of gene expressed was 307 in a tumor cell in 
P1 sample. In addition, the maximum count of mRNA was 13314 in a tumor cell and the minimum counts of mRNA was 655 in a tumor 
cell in the P1 sample. The largest expression number of genes in a tumor cell was about 10-fold higher, in comparison to the smallest 
expression number of genes in a tumor cell. The largest number of mRNA counts in a tumor cell were about 20-fold higher, in 
comparison to the smallest number of mRNA counts in a tumor cell (Fig. 1B). The mRNA count (expression level (EL)) and number 
level (NL) of genes were classified into four classes according to their respective quartiles. EL or NL- 1 to 4 indicated increasing 
expressing level or number of genes, respectively. Combining the EL and NL labels of genes respectively in an individual cell, the cancer 
cells of human HCC were theoretically clustered into 16 groups (Fig. 1C). The cancer cells were clustered into four large groups and a 
few small groups. The four large groups are EL1NL1 (22.0 %), EL2NL2 (19.4 %), EL3NL3 (20.5 %), EL4NL4 (23.0 %). The small groups 
consisted of EL1NL2 (3.0 %), EL2NL1 (3.1 %), EL2NL3 (3.0 %), EL3NL2 (2.4 %), EL3NL4 (2.0 %), EL4NL3 (2.0 %) (Fig. 1D). To 
examine the data further, we classified the expression level (EL) and number level (NL) of cancer cells into eight (data not shown) and 
ten classes according to their respective octuple and decile (Fig. 1E and F). The similar gene expression pattern in an HCC cell was 
obtained. We obtained the same gene expression pattern from further measurements from the rest of the HCC samples. Figure S1 A, B, 

Fig. 2. Constitutive relationships of human tumor cells with differential gene expression. These five pseudotime plots display the potential 
differentiation trajectories of cancer cells for each HCC sample. The first two plots for each sample are derived from calculated pseudotime and 
states. The third plot maps the HCC cells onto the Monocle 2 inferred cell development trajectory based on a four-level classification of expression 
count and expression level, combined pairwise. Except for sample P1, the other samples do not show a clear differentiation trajectory under the four- 
level classification of expression count and expression level. 
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C, and D). In addition, the correlation analysis revealed that the mRNA count was directly associated with the gene number of 
expression in an HCC cancer cell (Fig. 1G and data not shown). 

Comprehensive analysis of copy number variations (CNV) showed that the gene expressing regions of chromatins in HCC cancer 
cells of an individual sample manifest a unique pattern as we previously described [24]. A distinctive CNV pattern was visualized in 
each cancer cell in a sample of cancer tissues. In the present works, we analyzed the relationship between the CNV and overall gene 
expression in an HCC cell. The results showed that the CNVs were not associated with the overall gene expression, including the 
expression number of genes (Fig. 1I) and mRNA count number (Fig. 1H) in a cancer cell. Thus, the chromatin variations do not affect 
overall gene expression in a cancer cell. 

To further visualize the gene expression patterns in a human tumor cell, we collected single-cell sequencing datasets from three 
human colorectal carcinoma (CRC) patients, with each patient corresponding to one sample. Cells with more than 20 % mitochondrial 
gene expression were excluded from the datasets. After quality control, single-cell transcriptomes of 5560 tumor cells were analyzed. 
The gene expression patterns were the same as the ones of HCC cells (Figs. S1E, F, and G). We also verified our findings in published 

Fig. 3. Differentiational potential of a human tumor cell with a given gene expressing pattern.  

Y. Lv et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e35529

5

datasets (Figs. S2A–H and data not shown), including published single cell sequencing data from 6 samples of human acute 
lymphoblastic leukemia [25] (Fig. S2A), 7 samples of human uveal melanoma [26] (Fig. S2B), 5 samples of human osteosarcoma [27] 
(Fig. S2C), 3 samples of human prostatic carcinoma [28] (Fig. S2D), 5 samples of human pancreatic ductal adenocarcinoma [29] 
(Fig. S2E), 4 samples of human breast cancer [30] (Fig. S2F), and 5 samples of human non-small cell lung cancer [31] (Fig. S2G). The 
same tendencies of gene expression patterns were identified in a human tumor cell. We also analyzed published datasets of single-cell 
chromatin accessibility assays of chronic lymphocytic leukemia [32] and revealed the same gene expression tendencies as the ones 
found in a human tumor cell (Fig. S2H). All results showed a tendency in the distribution of gene expression in terms of gene number 
rather than gene expression level among human tumor cells. Based on the number of genes expressed in an individual tumor cell, the 
mRNA level is associated with the expression number of gene in a cancer cell. Thus, the expression number of genes determines mRNA 
counts in a human tumor cell. 

2.2. Constitutive relationships of human tumor cells with differential gene expression activations 

The transcriptome expression data obtained from the large number of HCC cells allowed us to obtain insight into the functional and 
constitutive relationships among these cells. We explored the relationships and connectivity among HCC cells by inferring the state 
trajectory using Monocle2 in each HCC sample. The analysis showed that the types of HCC cells were aggregated into several cellular 
states in each HCC sample (Fig. 2). For instance, HCC cells of sample P1 displayed 5 cellular states and HCC cells of sample P3 were 7 
cellular states. No distribution tendencies of the cancer cells labeled by different classifications of gene expression profiling in the HCC 
samples were manifested by the moncle trajectories, except for sample P1. In P1, the transcriptional activation in cancer cells showed 
somewhat distribution tendencies. The cancer cells in the cellular state 1 carried higher transcriptional activities. In contrast, the lower 
transcriptional activities were identified in cancer cells of cellular states 4 and 5. However, a significant fraction of cancer cells with 
higher gene expression levels were revealed to be in the cellular state 4 and 5. In the rest of HCC samples, the cancer cells with lower or 
higher transcriptional activations were identified in all the cellular states. We then analyzed the functional and constitutive re
lationships of cancer cells in the 3 CRC samples (Figs. S3A, B, and C). The results showed that cancer cells labeled by different clas
sifications of gene expression networks in two samples displayed similar patterns as ones in HCC sample P1 and had somewhat 
distribution tendencies. Cancer cells of one CRC sample labeled by classifications of gene expression networks did not show any 
tendencies(Fig. S3A,B,C). 

Next, we examined published datasets (Figs. S3D–J and data not shown), including published single cell sequencing data of human 
acute lymphoblastic leukemia (Fig. S3D), uveal melanoma (Fig. S3E), osteosarcoma (Fig. S3F), prostatic carcinoma (Fig. S3G), 
pancreatic ductal adenocarcinoma (Fig. S3H), breast cancer (Fig. S3I), and non-small cell lung cancer (Fig. S3J) to determine the state 
trajectory of tumor cells with the differential gene expressing profiling in each sample. Some samples, especially carcinoma samples, 
showed no distribution tendencies of the cancer cells with differential gene expression profiling. The rest samples analyzed displayed 
tendencies of the tumor cells labeled by different classifications of gene expressing profiling. Together, the results suggest that the total 
gene expression level or number may not define the cellular states of a human tumor cell. 

2.3. Differentiational potential of a human tumor cell with a given gene expressing pattern 

We detected the cellular statuses of cancer cells with differential expression activities of genes in HCC samples via gene expression 
patterns. We first measured the hepatocytic signatures of a cancer cell to ascertain the differentiation properties of cancer cells in HCC 
(Figs. S4 and S5). Based on the averaged expression of genes, the hepatocytic signatures were scored in each cancer cell. The distri
bution of the hepatocytic signatures showed a clear tendency in tSNE projection as previously described. A cancer cell with higher gene 
expression activities had more possibilities to carry differentiated hepatocytic signatures. To be more convincing, we scored the po
tentialities of cellular response to toxic substances, which represent the physiological functions of hepatocytes, in cancer cells and 
identified that toxic responses were highly correlated with hepatocytic signatures and gene expressing activities in an HCC cancer cell. 

We analyzed the differentiation statuses of cancer cells with differential expression activities of genes in CRC samples via gene 
expression patterns (Fig. 3, S6-S7). The epithelial signatures of a CRC cancer cell were analyzed to ascertain the differentiation 
properties of cancer cells with differential gene expression. A CRC cancer cell with the signatures of goblet cells, enterocytes, and 
Paneth cells, all the differentiated epithelial cell types in colon mucosa, were identified in the populations of CRC cancer cells with any 
levels of gene expression. The cancer cells with the expression of Lgr5, a marker of intestinal stem cell, was also found in the pop
ulations of CRC cancer cells with any levels of gene expression (Fig. 3). 

The tSNE projections and stacked bar charts show 4 levels of goblet cells, enterocytes, Paneth cells, and Lgr5+ cells potentialities, 
while the subsequent box plots illustrate the differences in these characteristics under varying gene expression counts and levels 
(Fig. 3). The tSNE projections are split by 10 categories of overall genes, formed by integrating 10 gene expression levels and 10 
number levels, with lower levels consolidated into broader groups. The stacked bar charts show the 4 levels of differentiational po
tential in the P1 sample of CRC, and from blue to red indicating increasing levels. Statistical differences are indicated by asterisks. p- 
values were calculated by Wilcoxon test. ns: not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 

We analyzed published datasets of human B-acute lymphoblastic leukemia to define the differentiation status of leukemia cells 
(Fig. S8). The ratio of leukemia cells with marker gene expression of immature B cells or mature B cells were not significantly altered in 
the populations of leukemia cells with gene expression activations enhanced. However, the ratio of CD38− leukemia cells and leukemia 
cells with marker gene expression of hematopoietic stem cells were increased in the populations of leukemia cells with higher gene 
expression activities. In all samples of human B-acute lymphoblastic leukemia analyzed, we identified that a fraction of tumor cells did 
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not carry any gene expression networks involved in known cellular programs. 
We verified our findings in published datasets of human tumors including uveal melanoma (Figure S9 A), osteosarcoma (Figure S9 

B), prostatic carcinoma (Figure S9 C), pancreatic ductal adenocarcinoma (Figure S9 D), breast cancer (Figure S9 E), non-small cell lung 
cancer (Figure S9 F) and obtained the differentiation pattern in those tumor cells. All the data indicate that a human tumor cell carries 
potentials to undergo differentiation via the pathways of a cell that the human tumor cell is generated from. 

2.4. Energy production in a human tumor cell with a given gene expressing pattern 

We evaluated the gene expression networks involved in the processes of glycolysis, tricarboxylic acid (TCA) cycle, ATP production, 
and oxidative phosphorylation, key programs of energy metabolism in an HCC cancer cell (Figs. S10–13). When comparing changes in 
energy metabolism in cells, the results showed that increasing gene expression activations in a cancer cell greatly enhanced the ac
tivities of oxidative phosphorylation. Increasing gene expression activations significantly enhanced the activations of glycolysis and 
ATP production in a HCC cancer cell in some samples, but not all HCC samples. The gene expression activities did not altere the 
activities of tricarboxylic acid (TCA) cycle in a cancer cell in most HCC cells. However, in some samples, the HCC cells with high 
transcription activations might carry higher TCA activations. 

We next evaluated the gene expression networks involved in the key programs of energy metabolism in a cancer cell of three CRC 
samples (Fig. 4, Figs. S14 and S15). The results showed that increasing gene expression activations in a cancer cell also greatly 
enhanced the activities of oxidative phosphorylation in a CRC cell (Fig. 4). In addition, enhanced activations of glycolysis might be 
detected in a CRC cell with higher transcription activities. In two samples, the gene expression network involved in ATP production 
was not significantly altered in a cancer cell with any level of transcriptional activation. In one sample, enhanced gene expression 
network involved in ATP production was identified in a CRC cell with high transcription activities. The gene expression activities did 
not alter the activities of tricarboxylic acid (TCA) cycle in a CRC cell in all samples (Fig. 4). The data indicate that a cancer cell always 
carries steady state of gene expression networks involved in ATP production and tricarboxylic acid (TCA) cycle regardless gene 
transcription activation. The measurements of published datasets of human tumors confirmed the observations (Figs. S16–22). Thus, 
most human tumor cells maintain steady state of energy supply in spite of transcription activities, especially the activities of gene 
expressing networks involved in glycolysis and oxidative phosphorylation. 

2.5. Cellular programs of a human tumor cell with a given gene expressing pattern 

Next, we anayzed the proliferation, apoptosis, autophagy, stemness, and senescence statuses of cancer cells via gene expression 
patterns in an HCC cancer cell (Figs. S23–26). The results showed that those potentialities of cancer cells were heterogeneous among 
samples as described [24]. In all HCC samples, individual cancer cells increased their proliferative abilities when they exhibited higher 
gene expression activities. Additionally, in some samples, individual cancer cells showed increased possibilities of undergoing 
apoptosis and autophagy with higher gene expression activities. In the rest of the samples, the possibilities of individual cancer cells 
undergoing apoptosis and autophagy were similar regardless of their gene expression activities. In an HCC cancer, the stemness and 
senescence statuses of cancer cells via gene expression patterns showed that increasing gene expressing activities decreased or did not 
change the possibilities to display stemness and senescence statuses. 

We analyzed the cellular statuses of cancer cells with differential expression activities of genes in CRC samples via gene expression 
patterns (Fig. 5, S27-S28). The potentials of proliferation, apoptosis, autophagy, stemness, and senescence statuses of a CRC cancer cell 
were found to be highly similar to the ones of an HCC cancer cell. The measurements of human tumor cells in published datasets also 
showed similar patterns to those observed in HCC cancer cells (Figs. S29–35). The results indicate that a human cancer cell could carry 
gene expression networks of multiple cellular programs. However, a given overall gene expression activation indefinitely defines 
cellular statuses of a human tumor cell. 

2.6. Cellular reaction programs of a human tumor cell with a given gene expressing pattern 

We measured the abilities of epithelial-mesenchymal transition (EMT), neurogenesis, angiogenesis, inflammatory response, im
mune evasion, migration, and metastasis in an HCC cancer cell with differential gene expressing activities (Figs. S36–39). The results 
showed that an HCC cancer cell with higher gene expression activities might have increased possibility to undergo neurogenesis and 
decreased ability to display the capabilities to undergo EMT and to stimulate angiogenesis. The gene expression activities in a cancer 
cell did not significantly alter the abilities of a cancer cell to display activities involved in its inflammatory response, immune evasion, 
migration, and metastasis. 

We analyzed the cellular reactions of cancer cells with differential expression activities of genes in CRC samples via gene expression 
patterns (Fig. 6, S40-S41). The potentials of EMT, neurogenesis, angiogenesis, inflammatory response, immune evasion, migration, 
metastasis werer found to be highly similar to the ones of an HCC cancer cells. We verified our findings in published datasets of human 
B-acute lymphoblastic leukemia (Fig. S42). The results showed lymphocyte migration and immune response (including B cell acti
vation and cytokine production) programs were not significantly altered in the populations of leukemia cells with gene expression 
activations enhanced. The measurements of other published datasets of human tumor cells confirmed the observations that a human 
tumor cell might carry the potential abilities to undergo EMT, neurogenesis, angiogenesis, metastasis and to stimulate inflammatory 
response and immune evasion (Figs. S43–48). 
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2.7. The expression patterns of designed driven genes in tumor cells 

We analyzed the expression patterns of the genes that were supposed to be driving genes in human cancers. We first measured 
published datasets of human non-small cell lung cancer cells with EGFR mutations [33] (Fig. 7A). The results showed that EGFR 
mRNAs were not detected in a significant fraction of cancer cells. A portion of cancer cells with any given levels of gene expression 
carried the high levels of EGFR mutant mRNA, suggesting that EGFR mutant gene expression is not dependent on the gene transcription 
activities in a non-small cell lung cancer cell. Next, we analyzed the published datasets of human acute lymphoblast leukemia cells with 
ETV6-RUNX1 fusing gene and revealed similar gene expressing patterns. A portion of leukemia cells with any given levels of gene 
expression carried high levels of ETV6 or RUNX1 mRNA (Fig. S49). To verify our results, we analyzed the expression of driving genes in 
mouse tumor induced by transgenes. The results obtained from Myc induced mouse prostatic carcinoma [34] cells showed that the 
expression of transgenic myc mRNA was detected in a fraction of cancer cells with any given gene expressing activation (Fig. 7C). 
Similar results of supposed driving gene expression were observed in tumor cells of MYCN-driven mouse neuroblastoma [35] (Fig. 7B). 
All the analyzing results are consistent with our previous observations [24] and show that the proposed driving gene expression in a 
cancer cell does not rely upon the transcriptional activities in a human tumor cell. The data also reveal that uncertainty of transcription 
activation occurs in a tumor cell. 

3. Discussion 

ScRNA-seq can generate very large datasets of thousands of gene transcripts in each individual cell. The scRNA-seq datasets can 
cluster cells according to their similarity and the expression of single or multiple genes and identify rare cell types, cell subtypes, 
disease-specific cell types and interactions among cells. Furthermore, computational analyses, such as pseudo-time diffusion mapping 
or RNA velocity, can provide cell linkages and trajectories between cell types or among cell subtypes [36]. To date, analytical pipelines 
for scRNA-seq datasets have matured and limitations of scRNA-seq assays were discovered. For instance, tissue dissociations and single 
cell captures are the potential to induce ectopic gene expression, especially the expression of stress response genes. The induced 
expression of genes can lead to mischaracterization of certain cell subpopulations [37]. However, overall analysis, not determination 
of specific gene involved in certain pathways, of scRNA-seq datasets can overcome the limitations of scRNA-seq assays. In this study, 
we analyze scRNA-seq datasets to provide fine map of gene expression networks (GENs) of a human individual tumor cell and to show 
that the number of gene expressed shapes the mRNA counts in a human tumor cell. The gene expression patterns in each human tumor 
cell display distinctive gene expressing networks. Designed orienting gene expression networks always exist in a human tumor cell. 

There are two kinds of designed orienting gene expression networks existing in a human tumor cell. One is the gene expression 
networks for surviving. For instance, the gene expression networks of energy production are key programs for cell survival. We identify 
that there is steady gene expression 

involved in tricarboxylic acid (TCA) cycle and ATP production, in spite of the alteration of the gene expressing activation and the 
gene expression networks responsible for glycolysis and oxidative phosphorylation. We also measure other gene expression networks 
(data not shown) involved in cell survival and housekeeping and obtain the similar phenotypes (data not shown). Another kind of 
oriented gene expression networks is required for differentiation programs no matter whether the gene transcription activations are 
high or low in a human tumor cell. Dedifferentiation, blocked differentiation, and transdifferentiation are features of human tumor 
cells. Human tumor cells always fail to conduct the conveyer belt of terminal differentiation to form functional mature cells [38]. 
Immature cells, undifferentiated cells, and cells with markers of other type cells can be detected in the human tumor tissues [39]. 
Suppression of differentiation factor expression are always detected in human tumor tissues and are shown to facilitate tumorigenesis 
by enabling more well-differentiated cells to dedifferentiate into incompletely differentiated cells [40]. Often-identified factors 
mediate alterations in differentiation programs during lineage development from stem cells and progenitors, thereby stopping the 
differentiating steps of an incipient cell that freeze an undifferentiated state in human tumors [41]. Our measurements show that there 
always existed gene expression networks involved in differentiation programs in a human tumor cell, regardless whether the cell has 
high transcriptional activation or low transcriptional activities. The human tumor cell seems to try to differentiate via the way its origin 
cell differentiates. However, the uncertain gene expression networks are always involved in multiple cellular behaviors that disturb 
and block its designated differentiation pathways in a human tumor cell. The disturbance might determine the features of a tumor cell 
to remain in the state of dedifferentiation, blocked differentiation, or transdifferentiation. 

In a human tumor cell, mRNA levels are directly associated with the expression number of genes. Exclusive of the designed ori
enting gene expression networks, a given human tumor cell always carries a distinctive gene expression pattern despite gene tran
scriptional activations. We identify that the number of expressing genes and the mRNA levels are not correlated to the copy number 
variations in a human tumor cell. In addition, the patterns of chromatin accessibility are highly similar to the gene expression patterns 
in human tumor cells. The results suggest that distinctive gene expression pattern is not related to the unique copy number variations 

Fig. 4. Energy production in a human tumor cell with a given gene expressing pattern. The tSNE projections and stacked bar charts show 4 
levels of glycolysis, TCA cycle, ATP production, and oxidative phosphorylation, while the subsequent box plots illustrate the differences in these 
characteristics under varying gene expression counts and levels. The tSNE projections were split by 10 categories of overall genes, formed by 
integrating 10 gene expression levels and 10 number levels, with lower levels consolidated into broader groups. The stacked bar charts show the 4 
levels of energy production in the P1 sample of CRC, and from blue to red indicating increasing levels. Statistical differences are indicated by 
asterisks. p-values were calculated by Wilcoxon test. ns: not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. Cellular programs of a human tumor cell with a given gene expressing pattern. The tSNE projections and stacked bar charts show 4 
levels of proliferation, apoptosis, autophagy, stemness, and senescence statuses, while the subsequent box plots illustrate the differences in these 
characteristics under varying gene expression counts and levels. The tSNE projections were split by 10 categories of overall genes, formed by 
integrating 10 gene expression levels and 10 number levels, with lower levels consolidated into broader groups. The stacked bar charts show the 4 
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but might result from distinctive chromatin structures in an individual human tumor cell. Genomic and epigenetic mutations and 
alterations, including single-nucleotide variants (SNVs), small insertions or deletions, somatic mutations, gene copy number alter
ations, chromatin structural variants, chromatin regulator mutations, DNA methylation changes, and altered compositions of en
hancers and repressors, and mutations in protein that modulate chromatin structure and activity of enhancers or repressors crossing 
genomes, are considered fundamental components of cancer genesis, formation, and progression [42,43]. It seems that genomic and 
epigenetic mutations and alterations organize, modulate, and maintain distinctive chromatin architectures in a human tumor cell. 
Thus, we propose that the chromatin architecture caused by genomic and epigenetic mutations and alterations in a human tumor cell 
are further modified by chromatin instabilities in a cancer cell, as well as signals from surrounding cells and elements include cancer 
cells, endothelial cells, neural cells, fibroblasts, and inflammatory cells and other elements in external microenvironment of a tumor 
cell. The modified chromatin architectures thereby globally control gene expression in a human tumor cell and are responsible for the 
distinctive gene expression of a given human tumor cell. 

The discoveries here have profoundly influenced mechanisms of how cancer cells undergo its progresses and modify a conception 
we have previously proposed [24]. Rapid transformations in the expressions of genes are induced by incidental dynamics of chromatin 
architectures, which are caused by genomic and epigenetic mutations and alterations and microenvironment signals, in a human tumor 
cell [44,45]. The transformations of gene expression drives a human tumor cell to express balanced combinations of synergistic, 
agonistic, and antagonistic genes and undergoes a given biological process by a quick change in gene expression networks resulting 
from the simultaneous activation of a new gene expression program and the extinction of the old one. The finally outcoming gene 
expression networks control a human tumor cell to perform a specific cellular process in cancer tissues. Further experiments using 
single-cell mass cytometry and absolute quantification are required to capture the temporal dynamics of chromatin architectures and 
provide evidence to solve the mechanisms of how a cell selected becomes a cancer cell or how a cancer cell is progressing in cancer 
tissues. 

4. Methods 

4.1. Data sources 

We used hepatocellular cancer [24] and Colorectal cancer [46] single-cell RNA-seq data which we previously published. Specif
ically, HCC data can be found at the China National GeneBank DataBase under the accession number CNP0004283. CRC data can be 
accepted in the Genome Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in National Genomics Data Center (Nucleic 
Acids Res 2021), China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-Human: 
PRJCA007492) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human. For the other tumor single-cell RNA-seq data, we 
utilized resources from the Gene Expression Omnibus (GEO). The respective accession numbers are as follows: acute lymphoblastic 
leukemia (ALL) [25] is GSE148218, uveal melanoma (UM) [26] is GSE139829, osteosarcoma (OS) [27] is GSE152048, prostate cancer 
(PCa) [28] is GSE193337, pancreatic ductal adenocarcinoma (PDAC) [29] is GSE155698, breast cancer (BRCA) [30] is GSE180286, 
and non-small cell lung cancer (NSCLC) [31] is GSE207422. Additionally, we incorporated known tumor-driven genes data from both 
humans and mice, including ETV6-RUNX1 in human ALL [25], EGFR mutant in human lung adenocarcinoma [33] (GSE171145), 
MYCN in mouse neuroblastoma [35] (GSE180101), and c-MYC in mouse prostate cancer [34] (GSE163316). As for the sc-ATAC data, 
we extracted chronic lymphocytic leukemia [32] data with the accession number GSE159417. 

4.2. Single-cell RNA-seq data processing 

All downstream analyses were implemented using R version 4.0.2. For the HCC and CRC single-cell RNA-seq data, we deal with 
these as same as previously described in methods [24,46]. The tumor single-cell data retrieved from GEO primarily comprises standard 
10X Genomics format. These data were then read using the read10X function and subsequently processed to create a SeuratObject 
utilizing the Seurat package v4.4.0. Before analyses, we performed strict quality control (QC) to ensure cell activity, the QC standards 
are (i) genes expressed by < 3 cells were excluded; (ii) cells that had either fewer than 200 (low-quality cells) or over 8000 expressed 
genes (possible doublets), or over 20 % of unique molecular identifiers (UMIs) derived from the mitochondrial genome were removed. 
After QC, the NormalizeData and ScaleData functions from the Seurat package were employed to normalize and scale the gene 
expression data for all samples. Then 3000 highly variable genes (HVGs) of each cell were generated with the FindVariableFeatures 
function for Principal Component Analysis (PCA) analysis. After performing PCA, graph-based clustering was conducted using the top 
30 principal components (PCs) with a resolution ranging from 0.1 to 0.8 to identify suitable cluster numbers. The clustering results 
were then visualized using t-distributed Stochastic Neighbor Embedding (tSNE) or uniform manifold approximation and projection 
(UMAP) for a comprehensive representation. Additionally, to address individual differences and batch effects, we employed the 
RunHarmony function especially when notable disparities among samples were observed in the tSNE or UMAP visualizations. Then we 
used the FindAllMarkers function (Wilcoxon rank sum test, logfc.threshold = 0.5) to identify cluster markers and used FindMarkers 
(Wilcoxon rank sum test, logfc.threshold = 0.5) to find differentially expressed genes between clusters. Moreover, we leveraged the 

levels of ceullar programs in the P1 sample of CRC, and from blue to red indicating increasing levels. Statistical differences are indicated by asterisks. 
p-values were calculated by Wilcoxon test. ns: not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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SingleR package for automatic annotation and incorporated marker genes from relevant articles to enrich and enhance our annotation 
results. Then, the classic marker genes were used to annotate the cell types of each cluster. 

4.3. Single-cell copy number variation (CNV) analysis 

To identify malignant cells, the CNVs for each cell in each sample except ALL were estimated with the inferCNV package v1.2.1 
[47]. Leveraging immune cells from the same sample as a reference, we inferred copy number variations in tumor cells based on gene 
expression profiles. A sliding window including 100 genes was used to average the expression of these genes. By aligning the genes to 
human chromosomes, we derived the overall inferred copy number variations for each cell. In the heatmap, each horizontal line 
depicts a single cancer cell. The red areas indicate higher copy numbers relative to the reference, while the blue areas signify lower 
copy numbers. 

4.4. Classification defining of tumor cells based on expressed overall genes 

The malignant cell clusters from the scRNA-seq data of every sampls were extracted at first. Based on the single-cell expression 
matrix, the “nFeature_RNA” (represents the measured total number of genes) and “nCount_RNA” (represents the measured total 
number of mRNA molecules) information of each cell were calculated after creating SeuratObject. Using the quantile function within 
each sample, we categorized the tumor cells into 4, 6, 8, and 10 classifications based on “nFeature_RNA”. Consequently, we obtained 
the number levels (NLs) for each quantile, where each NL represents the corresponding interval range within the respective quantile. 

Fig. 6. Cellular reaction programs of a human tumor cell with a given gene expressing pattern. The tSNE projections and stacked bar charts 
show 4 levels of EMT, neurogenesis, angiogenesis, inflammatory response, immune evasion, migration, and metastasis, while the subsequent box 
plots illustrate the differences in these characteristics under varying gene expression counts and levels. The tSNE projections were split by 10 
categories of overall genes, formed by integrating 10 gene expression levels and 10 number levels, with lower levels consolidated into broader 
groups. The stacked bar charts show the 4 levels of cellular reaction programs in the P1 sample of CRC, and from blue to red indicating increasing 
levels. Statistical differences are indicated by asterisks. p-values were calculated by Wilcoxon test. ns: not significant. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. The expression patterns of designed driven gene in tumor cells. A.B.C. The tSNE projection shows the distribution of 10 categories of 
overall genes, formed by integrating 10 gene expression levels and 10 number levels, with lower levels consolidated into broader groups. The feature 
plot shows the expression level of EGFR, and the ridge plot depicts the density of EGFR expression level. A. EGFR in human lung adenocarcinoma 
with EGFR mutations. B. MYCN in MYCN-driven mouse neuroblastoma. C. MYC in MYC-driven mouse prostate cancer. 
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The classification of “nCount_RNA” was labeled using EL, following a similar approach as that for “nFeature_RNA”. The final classi
fication IDs of overall genes were obtained by combining the EL and NL labels of each cell, which were then utilized for subsequent 
analytical procedures. 

4.5. Classification defining of tumor cells based on single-cell chromatin accessibility 

To further investigate the extent of chromatin accessibility in tumor cells, we analyzed single-cell chromatin accessibility data from 
one CML sample. Analogous to single-cell RNA sequencing analysis, we employed the open number (ON) and open degree (OD) metrics 
to classify chromatin accessibility patterns. 

4.6. Pearson correlation analysis 

The Pearson correlation analysis was conducted to investigate the correlation between “nFeature_RNA”, “nCount_RNA”, and CNV. 
score. Initially, the CNV.score was computed based on the outcomes of inferCNV, which generates the file named infercnv.observa
tions.txt. Subsequently, this score was appended to the Seurat object’s metadata by employing the AddMetaData function. To visualize 
the correlation among these variables, the ggscatter and stat_cor functions were utilized. 

4.7. Trajectory analysis 

To explore the potential lineage differentiation within the tumor, we inferred its trajectory based on pseudotime analysis using 
Monocle v2.28.0. The newCellDataSet function was used to create a monocle object based on the normalized data and metadata of 
above Seurat object. To select genes suitable for trajectory inference, the dispersionTable function from Monocle 2 was employed to 
compute a smooth function capturing expression variance across cells alongside their mean expression levels. Genes with a mean 
expression of at least 0.1 were exclusively considered for analysis. Subsequently, the variable genes identified by Seurat underwent 
dimension reduction using the reduceDimension function, specifying reduction_method = “DDRTree” and max_components = 2. To 
visualize and order the single cells, the plot_cell_trajectory function from Monocle 2 was leveraged, enabling the inference of cell 
trajectories. By adjusting the color_by parameter, all classification labels were mapped onto the respective trajectories. 

4.8. Evaluation of multiple cellular potentialities 

To evaluate the potentialities linked to cell states and identities in individual cancer cells, scores of numerous cellular programs and 
behaviors were computed utilizing the AddModuleScore function within the Seurat R package. We specifically measured the poten
tialities related to HCC, CRC, and ALL. For HCC, we delved into potentialities encompassing hepatocytic signatures, toxic substances, 
proliferation, apoptosis, autophagy, stemness, senescence statuses, Epithelial-mesenchymal transition (EMT), neurogenesis, angio
genesis, inflammatory response, immune evasion, migration, metastasis, glycolysis, tricarboxylic acid (TCA) cycle, ATP production, 
and oxidative phosphorylation. For CRC, we explored similar potentialities to HCC, including proliferation, apoptosis, autophagy, 
stemness, EMT, neurogenesis, angiogenesis, inflammatory response, immune evasion, migration, metastasis, as well as goblet cells, 
enterocytes, Paneth cells, and Lgr5+ cell characteristics. In the case of ALL, our focus was on potentialities such as apoptosis, auto
phagy, proliferation, lymphocyte migration, and immune response (comprising B cell activation and cytokine production), along with 
CD38− leukemia cell, hematopoietic cell, immature B cell, and mature B cell signatures. The corresponding gene sets were downloaded 
from the Molecular Signatures Database (MSigDB; https://www.gsea-msigdb.org/gsea/msigdb/). Based on the AddModuleScore 
function algorithm, all analyzed genes were grouped based on their average expression, and control genes were selected randomly 
from each expression bin, as per established protocols [48]. The score of each cell was determined by calculating the average 
expression level of all genes within a specific gene set. Subsequently, based on the quartiles of the scores across all samples, four 
distinct levels were assigned to each cellular program. Cells exhibiting scores below the Q1 (lower quartile value) were categorized as 
level 1. Cells with scores ranging from Q1 to Q2 (median value) were designated as level 2. Cells scoring between Q2 and Q3 (upper 
quartile value) were classified as level 3. Finally, cells with scores exceeding Q3 were grouped into level 4. 

To visualize the distribution of these levels across samples, we utilized the Dimplot and ggplot functions. Specifically, we focused 
on the final 10 classifications, which were aggregated based on their lower-level groupings. This visualization approach allowed us to 
gain a comprehensive understanding of the expression patterns and potentialities associated with each cellular program across 
different cancer types. 

4.9. Expression of driven genes in different types of tumors 

To better understand the expression level of different types of tumors, we utilized data from humans and mice. We employed the 
Dimplot, ggplot, and geom_density_ridges functions to visualize the driving gene expression level of each sample. 

4.10. Statistical analysis 

All statistical analyses were implemented in R software. For the comparisons between two subpopulations of cancer cells, the 
ggpubr package v0.4.0 was used (Wilcoxon test). ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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