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Abstract

Objective: To compare D-bar difference reconstruction with regularized linear reconstruction in 

electrical impedance tomography.

Approach: A standard regularized linear approach using a Laplacian penalty and the GREIT 

method for comparison to the D-bar difference images. Simulated data was generated using a 

circular phantom with small objects, as well as a ‘Pac-Man’ shaped conductivity target. An L-

curve method was used for parameter selection in both D-bar and the regularized methods.

Main results: We found that the D-bar method had a more position independent point spread 

function, was less sensitive to errors in electrode position and behaved differently with respect to 

additive noise than the regularized methods.

Significance: The results allow a novel pathway between traditional and D-bar algorithm 

comparison.
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1. Introduction

Electrical impedance tomography (EIT) images the conductivity distribution within a body 

using body-surface measurements. Because electrical current propagates in a diffuse way, 

EIT is much less sensitive at depth than close to the electrodes. Reconstruction of EIT 

images is thus a challenging non-linear problem. Over the years, many EIT reconstruction 

methods have been proposed for 2D and 3D geometries, as well as difference, absolute, and 

frequency difference reconstructions. Two approaches to difference EIT reconstruction 

algorithms have been widely used in experimental studies in biomedical application (Adler 

et al 2012). One that gained wide popularity in the 1990s, Sheffield backprojection (Barber 
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et al 1992), was implemented in the Sheffield and Goettingen EIT devices and reported in 

most of the early EIT experimental studies. Subsequently, reconstruction methods based on 

regularization techniques have become most widely used, and are distributed with EIT 

devices from Dräger, SenTec and Timpal. While in biomedical EIT difference imaging has 

been widely used mainly due to the difficulty in modeling body shape and electrode 

position, in geophysical applications of EIT difference data was typically not available and 

consequently absolute EIT reconstruction is common (Adler et al 2015). In this case, an 

accurate forward model is used and the absolute conductivity iteratively fitted to the data. 

Absolute EIT reconstruction was reported for the human chest (Newell et al 1992) but is still 

not widely used in vivo.

One relatively novel approach to 2D EIT image reconstruction is D-bar, a non-iterative 

absolute imaging approach (Nachman 1996, Isaacson et al 2004, Knudsen et al 2009). The 

literature on D-bar image reconstruction describes several potential advantages to other 

techniques, such as a robustness to errors in electrode positions and the body shape. The D-

bar literature is rich, but there is little direct comparison of its performance to that of 

traditional (regularized) approaches.

The goal of our paper is thus to directly compare D-bar to other widely used EIT 

reconstruction algorithms. Since a general comparison is a vast problem, we have decided to 

limit this paper to consideration of the linearized difference EIT problem.

Comparison of algorithms is challenging, as there are multiple comparison criteria: 

resolution, position error, reconstruction shape accuracy, ability to suppress noise, ability to 

maintain sharp edges, resistance to electrode movement and other artefacts. In the following 

sections, we review the methods considered (section 2), discuss the comparison framework 

and criteria (section 3), present results (section 4), and analyze and discuss those results 

while drawing conclusions and suggesting further work in section 5.

2. Methods: reconstruction

We compare the results of three separate reconstruction methods: (1) the D-bar difference 

method, (2) generalized Tikhonov regularized linear difference imaging with a Laplacian 

penalty: or RL for regularized linear method, and (3) the GREIT method. Each method is 

briefly explained in this section. For notation, a difference EIT reconstruction calculates a 

vector of image elements, x, from a vector of difference EIT measurements, y = vσ − vref, 

between two frames of voltage measurements, vσ and vref.

2.1. The D-bar method for difference imaging

D-bar methods for EIT use nonlinear Fourier transforms specific to the EIT problem. The 

most common D-bar method (Nachman 1996, Isaacson et al 2004, Knudsen et al 2009) 

comes from transforming the conductivity equation
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∇ ⋅ σ ∇u = 0,

(1)

to a Schrödinger equation

− ∇2 + q(z) u(z) = 0,

(2)

via the change of variables ũ(z) = σ l/2(z)u(z) where q(z) = ∇2 σ(z)/ σ(z) for z ∈ Ω ⊂ ℝ2, 

and ∇2 denotes the Laplacian operator. This Schrödinger equation (2) can be solved using a 

D-bar method (Beals and Coifman 1985) which introduces an auxiliary parameter k ∈ ℂ and 

uses special solutions ψ(z, k) to

− ∇2 + q(z) ψ(z, k) = 0,

(3)

asymptotic to eikz for large |k| or |z|. We associate ℝ2 with ℂ via z = (z1, z2) ↦ z1 + iz2 here 

so kz is the complex product. The solution process involves using a special transform, which 

can be thought of as a nonlinear Fourier transform, specific to this problem (3). The 

breakthrough for EIT is that this special nonlinear Fourier data (called Scattering data), can 

be computed from current and voltage measurement data. Then, the conductivity can be 

recovered using the inverse transform.

Difference imaging with the D-bar method uses a modified scattering transform, called the 

differencing scattering transform (Isaacson et al 2006). The process is

Current/Voltage Data
Λσ, Λσref

  1  , Scattering Data
tR
diff(k)

  2  Conductivity
σdiff z

.

Step 1: Compute the low-pass differencing scattering data tR
diff(k). For each k ∈ ℂ\ 0 , 

evaluate the approximate scattering data
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tR
diff(k) =

1
σb

∫
∂Ω

eikz Λσ − Λref eikzdS(z), 0 < k ⩽ R

0 k > R

(4)

where σb denotes the best constant conductivity approximation to the conductivity near the 

boundary, Λσ and Λref are the Dirichlet-to-Neumann (DN) maps corresponding to the two 

frames of voltage measurements vσ and vref, respectively, for the chosen applied current 

patterns. Matrix approximations to the DN maps can be formed using discrete inner products 

(see Isaacson et al (2004).

Step 2: Recover the low-pass conductivity σdiff (z). For each z ∈ Ω, solve the D-bar equation 

via the integral equation

μR
diff(z, k) = 1 + 1

4π2∫
ℂ

tR
diff k′ e−i k′z + k′z

k − k′ k′ μR
diff z, k′ dk1′dk2′ ,

(5)

and recover the low-pass D-bar difference conductivity

σdiff(z) = σb μR
diff(z, 0) 2 − σb

(6)

which corresponds to the reconstructed image, x, in other methods.

The parameter R is considered the regularization parameter in the D-bar method as it 

controls the radius of the low-pass filter in the nonlinear Fourier domain. For additional 

stability, a thresholding is also commonly used by setting tR
diff k = 0 if either Re tR

diff(k)  or 

Im tR
diff(k)  is greater than a chosen threshold. The thresholding helps to control blowup in 

the scattering domain where neighboring pixels can differ by a factor of 10, 100, etc. Note 

that Step 2 is the inverse transform step, whereas in Step 1 we bypass the full plane ℝ2

formulation of the forward transform by instead computing the scattering data from a 

boundary integral equivalent through integration by parts.
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2.1.1. Computational notes—In practice, equations (4) and (5) are discretized and 

computed with matrices. Note that the integral equation in (5) can be written using 

convolutions:

μR
diff(z, k) = 1 + 1

πk *
tR
diff(k)e−i(kz + kz)μR

diff(z, k)
4πk

,

(7)

where * denotes convolution over k ∈ ℂ. Therefore, we can solve the integral equation (5) 

using fast Fourier transforms (FFTs) as in Vainikko (2000), Knudsen et al (2004) and 

Mueller and Siltanen (2012). We use a uniformly spaced k-grid on a square [− Dk, Dk)2, 

where Dk ⩾ R, of size M × M, where M is a power of 2, and the grid-size is hk = 2Dk/(M 

− 1). This k-grid defines the points where we compute the scattering datatR
diff k . For the 

reconstructed image σdiff (z), the computational z-grid is very flexible since the solution to 

the D-bar equation is computed point-wise. One can use whatever type of grid is most 

appropriate for the task: uniformly spaced, non-uniformly spaced, FEM mesh, etc.

The evaluation of the scattering transform tR
diff k  in Step 1 requires knowledge of how the 

DN maps Λσ and Λref act on the exponential function eikz for z ∈ ∂Ω. We approximate this 

by using the discrete matrix approximations Lσ = (Rσ) −1 and Lref = (Rref) −1, where, e.g.

Rσ(m, n): = ∑
𝓁 = 1

L ϕ𝓁
mv𝓁

n

e𝓁
,  1 ⩽ m, n, ⩽ numLI,  1 ⩽ 𝓁 ⩽ L,

(8)

where {ϕm} and {vn} are the normalized current, and voltage, patterns respectively, numLI 

denotes the number of linearly independent current patterns applied, L the number of 

electrodes used, and |eℓ| denotes the area of the ℓ th electrode. We then expand the asymptotic 

behavior eikz, at the centers of the electrodes zℓ, in the orthonormal basis of normalized 

current patterns {ϕm} as

e
ikz𝓁 ≈ ∑

m = 1

numLI
am(k)ϕ𝓁

m .

(9)
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Discretizing (4) using a simple Simpson’s type rule gives

tR
diff(k) ≈

1
σb

P
L eikzΦ Lσ − Lref a(k), 0 < k ⩽ R

0 k > R,

(10)

where P is the perimeter of the domain Ω, z ∈ ℂ1 × L is the row vector of positions of the 

centers of the electrodes, Φ the orthonormal matrix of normalized current patterns ϕm, and 

a(k) the vector of coefficients in the expansion (9).

To solve the D-bar equation, and recover the D-bar conductivity σdiff, the integral equation 

must be solved for each z point in your chosen mesh. Using convolution, (5) can be written 

as (7), and thus can be written as a linear system

[I − 𝒜𝒯( ⋅ )]μdiff = 1,

(11)

for each value of z, where 𝒜 and 𝒯 are defined by their actions via

𝒜g(k) = 1
πk * g(k),   and  𝒯 f (k) =

tR
diff(k)e−i(kz + kz)

4πk
f (k) .

The convolutions can be computed using 2D fast Fourier transforms as

1
πk * g(k) = hk

2 IFFT2  FFT2  1
πk  FFT2( f (k)) ,

and thus the linear system (11) solved using a matrix-free solver such as GMRES, separating 

the real and imaginary parts. For further details of the numerical implementation of the D-

bar method the interested reader is referred to Mueller and Siltanen (2012) and Hamilton et 
al (2018).

2.2. RL

Tikhonov regularization-based approaches to EIT were developed in the 1980s, e.g. Yorkey 

(1986). The key idea is to separate the reconstruction into a ‘forward’ and an ‘inverse’ 

problem. First, the body region is discretized into elements that map to a finite element grid, 

and represented as a vector, σ.
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Linear difference EIT uses as data a change, Δσ = σ – σref, between a time of interest, σ, and 

a reference instant σref, which we model as homogeneous.

A frame of voltage measurement data, v, is acquired through a set of drive and measurement 

patterns. Measurement data are simulated using a forward problem, F(·), typically using a 

FEM: vσ = F(σ) and vref = F(σref), from which the measurement change vector, y = vσ − vref 

is calculated.

Differences from the reference value of the discrete conductivity in the forward model σ are 

parametrized by a coarse-to-fine map, Δσ = Mx, where x is the vector of image voxel values. 

Here, each element, Mij, represents the volume fraction of forward model element i 
contained within the image element j. Since the forward model requires a high density of 

mesh parameterization in areas near the electrodes (Grychtol and Adler 2013). Using the 

map M, we parameterize the body onto the reconstruction mesh.

The sensitivity of measurement i to changes in voxel element j, is then given by the matrix, 

Jij = ∂yi/∂xj evaluated at σref.

As J is a severely ill conditioned matrix (Breckon and Pidcock 1988), rather than simply 

solving for x, reconstruction methods seek an x to minimize

Jx − y 2 + λΨ2(x),

(12)

where Ψ is a regularizing penalty term, and the regularization hyperparameter λ > 0 controls 

the trade-off between fitting the data of the linearized problem and satisfying the a priori 
assumption that Ψ (x) is small. To enforce a smoothing assumption on the images we 

choose Ψ (x) = ||Lx ||2 where Lx is an approximation to the Laplacian of the conductivity. 

This corresponds also in the Bayesian formulation to the MAP estimate when the errors in 

the data are assumed to be Gaussian and uncorrelated with equal variance, and the prior 

distribution is a generalized multivariate Gaussian with inverse covariance matrix 

proportional to LTL. The generalized Tikhonov regularized solution to the Regularized 

Linear(RL) problem is given by

xLR = JTJ + λLTL −1JTy .

(13)

Other common choices for regularization penalty terms in EIT include truncated singular 

value decomposition, and Total Variation. For further details see Adler et al (2015), and the 

references therein, as well as other chapters in the same work.
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2.2.1. GREIT—The GREIT algorithm (Adler et al 2009) is a type of regularized image 

reconstruction in which the values of the reconstruction parameters are set in a systematic 

way, from a set of desired characteristics defined by the authors.

We use the formulation of GREIT developed by Grychtol et al (2016), which we briefly 

review to illustrate the relevant choices. Linear algorithms for difference EIT represent 

image reconstruction by a reconstruction matrix, R, which calculates a reconstructed image 

x = Ry, from difference data, y. The GREIT reconstruction matrix minimizes an error ϵ2(R) 

= E [‖x − Ry‖2]. The expectation, E[·] is over a distribution of ‘training’ targets, t (i), for 

which the corresponding data, y(i), and a ‘desired’ image, x(i) = Dt(i), are calculated, where 

D is the ‘desired image’ matrix, which maps each training sample location onto a larger 

image region. The reconstruction matrix which minimizes ϵ is R = E [xyT] (E [yyT]) −1.

Given a distribution t 𝒩 0, Σt  of training targets and noise n 𝒩 0, Σn ,

R = DΣt
−1JT JΣt

−1JT + λΣn
−1 .

(14)

The parameter λ is selected so that noise performance of the reconstruction matrix matches 

a selected ‘noise figure’ (NF) value.

3. Methods: evaluation

Here we present the simulated phantoms used for the experiments, as well as figures of merit 

that will be used to evaluate and compare the various reconstruction methods. Since we plan 

to compare D-bar to linear difference reconstructions, we choose phantoms with very small 

contrasts (Δσ/σ ⩽ 0.1) for which the linearized problem is a good approximation.

3.1. Simulation models

We examined the behavior of the algorithms on three different phantoms: ‘Pac-Man’, a small 

single point target, and two point targets (see figure 1). These three targets have quite 

different characteristics; ‘Pac-Man’ has sharp edges and a hole, the single point target 

example studies a point target moving from the center of the domain to the outside, and the 

two point targets start close to each other in the center of the domain and move away from 

each other towards the boundary. Small contrasts were used in this study, 0.1 × the 

background value. ‘Skip-4’ stimulation was simulated, using 32 equally spaced electrodes of 

width 0.05 m, with monopolar voltage measurements on all electrodes (including the driven 

electrodes). All algorithms computed difference image reconstructions on the FEM 

reconstruction grid shown in figure 1 (right).

In order to reduce the possibility of an ‘inverse crime’ simulation and reconstruction models 

were intentionally different. Simulation models were three dimensional, based on a complete 

electrode model, and used finite element models based on 9800 (‘Pac-Man’) and 94 400 
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(‘moving targets’) vertices. All 3D models were circular with a radius of 1 m and a height of 

0.2 m, and with a background conductivity of 1.0 S m −1. The ‘Pac-Man’ region had a 

radius of 0.75 with a 90° ‘mouth’ and an ‘eye’ of radius 0.2 m, centered half-way (0.375) 

between the center and the region edge. The point targets were cylinders of radius 0.01 m a 

height 0.2 m spaced by 1
21  of the region radius on each side of the center. The reconstruction 

mesh was a regular 2D mesh with 1024 elements and 545 vertices and used point electrodes.

3.2. Figures of merit

Most EIT reconstruction methods allow control of the trade-off between resolution and noise 

performance. We use the term ‘hyperparameter’ for the parameter which controls this 

behavior. For, D-bar, the parameter is the radius R of the admissible scattering data in (4). 

Regularized techniques use a hyperparameter to control the weighting of the regularizing 

penalty function. In RL, this hyperparameter is λ, while for GREIT this hyperparameters is 

typically converted into a noise figure (NF) value.

Since each method has an independent parameter space, a ‘fair’ method to select comparable 

values was needed. We chose a method based on the ‘L curve’ (Hansen and O’ Leary 1993). 

We use the notation that a reconstruction method at hyperparameter value λ calculates an 

image xλ from difference EIT data y. We then find the best fitting multiplicative factor fλ 
which minimizes the norm

Dλ(x) = F σref  + f λxλ − F σref  − y 2 .

(15)

For each reconstructed image we calculated two norms, an image norm Ψλ = ‖Lx‖2 (equal 

to the regularization penalty function), and a data misfit Dλ. We chose L as a matrix 

formulation of the discrete Laplacian on the reconstruction FEM and the ‖ · ‖2 norm. We 

note that these norms are the ones used in the RL algorithm, which thus had an ‘advantage’ 

in the sense that it was formulated to minimize the norms against which it is subsequently 

evaluated.

Next, we plotted Ψλ against Dλ and selected λm as the hyperparameter value at the L-curve 

corner. Since in EIT the L-curve minimum is typically over-regularized with respect to a 

visual selection, we also chose values, λ2m, λ3m, and λ4m, where λKm was chosen so that 

the image norm Ψ λKm
= KΨ λm

 was a multiple of the L-curve minimum. Using the zero noise 

‘Pac-Man’ data, the parameter values λm, λ2m, λ3m, and λ4m were chosen and then held 

fixed across all other experiments. The parameters were thus fixed at λ = 46.4 × 10−3, λ = 

5.41 × 10−3, λ = 0.903 × 10−3, and λ = 0.215 × 10−3 for the RL method, NF = 0.921, NF = 

3.43, NF = 9.19, and NF = 36.4 for GREIT, and R = 4.0, R = 5.6, R = 6.6, and R = 7.6 for 

the D-bar method.
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In order to evaluate reconstruction algorithm performance, various figures of merit (FoM) 

have been proposed over the years. We chose FoM which were proposed in Adler et al 
(2009) and have subsequently seen fairly wide application (figure 2). For this calculation, 

small targets were simulated at known radial positions, rt in a cylindrical medium. From 

each reconstructed image, A, a threshold was chosen at 1
4  of the maximum difference, and a 

thresholded-image, B calculated. The center of gravity of B is rq and its area Aq. We used 

the following parameters: AR (amplitude response) equal to the sum of all image elements 

(scaled so the center target is 1), PE (position error) the difference in original to 

reconstructed position, and Re s (resolution) the square root of the resolution ratio compared 

to the medium (π).

4. Results

The first step was an analysis of reconstructions parameter values using the L-curve 

approach, as shown in figure 3. For each reconstruction method (and two variants of the D-

bar method) images were calculated across a large range of hyperparameter values. Data 

were simulated using the ‘Pac-Man’ model (1) with no-noise (N0) and two levels of added 

noise (N1; N2). To ensure comparability, the same noise values were used for all images. For 

each reconstruction method, ten representative hyperparameter values were chosen 

corresponding to the L-curve minimum, m, and its multiples, as well as examples of 

extremely smooth (left images) and noisy (right images).

We note that the L-curve shape displays a ‘folded’ pattern in which the noisiest images have 

an increased data fit in comparison to the L-curve minimum. This effect is explained by the 

mismatch between the forward and reconstruction models, and is most severe for D-bar, 

which does not perform an explicit fitting of a forward model.

The visual patterns are reflective of the details of each method. For N0, the pattern of noise 

at the right reflects the effect of model mismatch. This effect is seen as a boundary artefact 

for RL and as a more interior noise in GREIT. The pattern of noise is also central, and has a 

lower spatial frequency in D-bar, and this depends on the threshold chosen. Thresholds of 

2.5 and 5.0 were used. The accuracy with which the methods were able to reconstruct 

features of the target varies across algorithms. For example, the edges of the ‘Pac-Man’ 

‘mouth’ were best reconstructed by RL, and this effect was likely due to the closeness of 

match of the RL forward and inverse models. For the noisy images, N1 and N2, the visual 

effect became more severe for as the hyperparameter increased from m up to 4m. Again the 

visual pattern of the projected noise had a different behavior in D-bar versus the regularized 

algorithms.

To explore the spatial variation in image reconstruction performance, figure 4 shows the 

images reconstructed for small targets moving from the center to the edge of the domain. For 

all methods, as expected, the resolution is relatively low at m, but improves as the image 

norm is allowed to increase 2m … 4m. We note that D-bar shows a very spatially uniform 

reconstruction: both the resolution and the ‘ringing’ region around it is extremely uniform 

with position. The RL method shows a characteristic improvement in resolution toward the 

boundary, and also displays a changing spatial pattern with a increase in the level of ringing 
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with a smaller reconstructed target near the boundary. The GREIT algorithm shows 

somewhat more uniform spatial resolution than RL, but less so than D-bar. It also shows 

much lower levels of ringing, as is expected since this was a key design requirement for the 

algorithm.

To quantify the image reconstruction characteristics of figure 4, we calculated figures of 

merit for the amplitude (AR), position error (PE) and resolution (RES) (figure 5). AR is 

roughly uniform for regularized algorithms, but is less uniform at the hyperparameters 

corresponding to 4m than m. Here D-bar has an oscillating AR behavior with a spatial 

frequency that increased with image resolution. This spatially-varying behavior appears to 

be due to the ringing in the D-bar images; as a part of the otherwise spatially-uniform image 

response is ‘cut’ outside the domain, the AR varies with the amplitude of the ringing.

PE was fairly low for all methods and increased toward the medium boundary. PE was lower 

for GREIT than RL, again because this is a design requirement for the method. For both 

regularized methods, PE was higher for hyperparameters corresponding to m than 4m, 

largely due to the increased RES. On the other hand, D-bar showed a very uniform PE with 

both radial position and with hyperparameter level, except for right next to the boundary for 

some hyperparameter values. Using a calibration factor (i.e. spatially scaling the image by 

about 5%), it would be possible to create D-bar images with very low PE. The RES for the 

regularized methods was large in the center but decreased (improved resolution) toward the 

boundary. This effect was less visible in GREIT than RL, because GREIT explicitly seeks to 

achieve uniform, rather than small, RES. This spatially-varying behavior was not seen in D-

bar, which had extremely uniform resolution at all radial positions.

The ability of EIT to resolve separate objects was determined by the resolution and also 

influenced by image reconstruction features such as ringing. Figure 6 shows the images as a 

function of target separation. Using the point target phantom, figure 1, targets were 

simulated at opposite radial positions, moving away from each other. The resulting images 

show the resolving ability of each algorithm as a function of hyperparameter. There is a clear 

influence of both the point resolution and the ringing in each case.

Lastly, we explored the ability to reconstruct difference images where electrodes move 

between measurements, as shown in figure 7. These figures reconstructed data from the 

‘Pac-Man’ phantom, in which the electrode in the center of the ‘mouth’ was moved between 

the Vσ and Vref measurements. These reconstructions evaluated the ability of the algorithms 

to manage data with uncertainty in the electrode positions for four fixed regularization 

parameters. For all methods, with the hyperparameter corresponding to m, very little effect 

of electrode movement was seen, but the effect increased and was visible for all methods at 

4m. Overall, the influence on the reconstructed image is greatest for the RL algorithm and 

least for D-bar when looking at the response of the algorithms to only electrode 

displacement. For the regularized approaches, the electrode movement effect was seen 

largely at the medium boundary, while for D-bar there effect appeared to move inside the 

domain as well (only for 4m).
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5. Discussion and conclusions

In this paper we compared three reconstruction methods for 2D difference EIT that are linear 

once regularization parameters are chosen. While GREIT and RL explicitly trade off data fit 

of the linearized problem against a penalty on the image term, D-bar uses an explicit 

theoretically devised approximate inverse where regularization is applied at an intermediate 

step.

Our analysis in this paper was limited to the region where linear difference EIT 

reconstruction is valid. All simulated contrasts were constrained to be small to ensure this 

validity. This means that this paper does not explore the very interesting comparison of D-

bar and iterative regularized methods in cases where the non-linearities are important. The 

small level of contrasts also explains why very small levels of noise (SNR = 105) have a 

perceptible influence on the reconstructed images.

Numerous differences were seen between the reconstruction behavior of D-bar and that of 

regularized algorithms. To our knowledge, we are the first to observe these effects and thus 

cannot validate them against other reports. In many cases, the behavior is consistent with our 

understanding of the mathematics of the methods; however, in some cases these differences 

are less well understood and would merit further study, see end of this section.

The GREIT and RL methods have a position dependent resolution operator. Since the 

sensitivity of boundary measurements to a conductivity change decreases with distance from 

the driven and measurement electrodes, these methods compensate for the lack of 

information in the measurements by applying the a priori information included in the 

regularization term which results in broader point spread function. The effect of noise in the 

data on the reconstructed images is very different in the case of D-bar and regularized 

approaches. RL (and to a lesser extent) GREIT ‘project’ noise to the image boundary, while 

the noise in the D-bar images is roughly uniformly distributed. In regularized algorithms, 

this boundary effect can be explained by the increased sensitivity of EIT near the electrodes; 

if a method wants to ‘explain’ measurement noise, it can do it most economically using 

contrasts at the boundary.

Measurements near the boundary are inevitably much more sensitive to changes in electrode 

position and changes in the boundary shape than they are to conductivity changes deep in 

the body. In Lionheart (1999) the case is made that the dimension has the biggest effect and 

2D data will generally not fit a 2D model. It is also claimed that one needs to get the shape 

and electrode positions correct before one can expect to use the measurements to fit the 

conductivity. However that is not the whole story as the boundary voltage data, in the linear 

approximation, contains some components that are related only to conductivity changes and 

not confounded by shape and electrode position error (Lionheart 1999, Boyle et al 2012). 

We observed that D-bar appears to be much less sensitive to electrode position errors than 

regularized reconstructions, holding the regularization parameter fixed. Future work will 

explore and quantify the effect of boundary shape errors across methods, in particular for the 

D-bar method.
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In this work, we present numerical evidence for these properties of D-bar, but we hope that a 

greater theoretical understanding will follow in the future. If we can understand theoretically 

the approximate position invariant point spread function and the robustness to electrode 

position error in D-bar difference imaging, then there is a hope that it will spur the 

development of 3D EIT reconstruction methods with the same qualities.

D-bar methods use a complete set of voltage data from the system of electrodes, and 

approximate the continuum Dirichlet-to-Neumann map from those measurements. In this 

paper, we used this complete data set for all methods, whereas several biomedical EIT 

systems discard the voltages on driven electrodes. Future research will include studying the 

effect of interpolating this missing data using a priori assumptions about the conductivity 

near the boundary.

Regularized linear difference methods, as well as the regularized non-linear fitting methods, 

are derived from systematic assumptions about the noise distribution in the data and a priori 
assumptions about the image. By contrast D-bar methods use an explicit reconstruction 

method that is exact for noise free continuum data. This situation is similar to exact methods 

for CT reconstruction, such as filtered back projection in 2D and Katsevich’s method in 3D, 

in that regularization is applied at an intermediate step. These methods also do not include 

an explicit forward problem so that the misfit to the data is not calculated and the effect of 

inconsistent data unpredictable. In EIT, we do not have a complete characterization of the 

range in 3D, so in contrast to CT it is harder to detect inconsistent data. In EIT and CT, data 

fitting methods give a reasonable idea of inconsistent data as the residual difference between 

fitted forward model and measured data will be large. An interesting area for future 

exploration is the combination of explicit inversion methods such as D-bar with a forward 

model test consistency, a work we began in this work with the L-curve plots.
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Figure 1. 
Phantoms: ‘Pac-Man’ shape (left), point targets (middle), and reconstruction grid. Two 

scenarios are considered for the point targets phantom. The first tracks the response of each 

reconstruction method to a single point target as it moves across the domain. The second 

explores the algorithms’ responses two two point targets located close together versus 

further away.
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Figure 2. 
Illustration of figures of merit used. A: Reconstructed image with position of the simulated 

target, rt. B: Thresholded reconstructed image, with center of gravity, rq.

Hamilton et al. Page 16

Physiol Meas. Author manuscript; available in PMC 2019 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Left: Reconstructed difference images displayed for varying hyperparameters from 

smoothest reconstruction to least smoothed for the RL, GREIT, and D-bar methods. D-bar 

reconstructions are shown for a fixed threshold of 2.5 as well as 5.0. Each row in the 

respective subfigures corresponds to a different data noise level. The boxed images (m) 

correspond to the L-curve minimum selected from the corresponding L-curve shown on the 

right. Images 2m, 3m, and 4m correspond to reconstructions whose image norms are 2, 3, 

and 4 times the L-curve minimum. Right: The ‘L curve’ of data-norm (horizontal axis) 

versus the image-norm (vertical axis) with each square marker corresponding to a 

reconstruction on the left for the noise levels: N0: No noise (yellow), N1: SNR = 105 (blue), 

and N2: SNR = 104 (red).
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Figure 4. 
Images as a function of position using the single moving target phantom in figure 1. 

Simulated target positions are shown above (Sim). Reconstructions are compared for RL 

(first), GREIT (second), and D-bar with a threshold of 5.0 (third). Fixed parameter values of 

λ, NF, and R were used for the algorithms.
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Figure 5. 
Figures of merit for the reconstructions of the single point-targets shown in figure 4, 

computed as a function of radial position (horizontal axis with center 0 and boundary 1).
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Figure 6. 
Comparison of reconstructions with a two moving targets for RL (first), GREIT (second), 

and D-bar with a threshold of 5.0 (third) with fixed parameter (λ, NF, R) values 

corresponding. Simulated target positions are shown above (Sim).
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Figure 7. 
Reconstructions of an electrode position error for the ‘Pac-Man’ phantom. The electrode at 

the ‘mouth’ was moved between voltage measurements by the indicated amount (degrees). 

Fixed values of the regularization parameters (λ, NF, R) were used.
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