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Abstract
A genome-wide association study (GWAS) is used to identify genetic markers associated with phenotypic variation. In con-
trast, a transcriptome-wide association study (TWAS) detects associations between gene expression levels and phenotypic
variation. It has previously been shown that in the cross-pollinated species, maize (Zea mays), GWAS, and TWAS identify
complementary sets of trait-associated genes, many of which exhibit characteristics of true positives. Here, we extend this
conclusion to the self-pollinated species, Arabidopsis thaliana and soybean (Glycine max). Linkage disequilibrium (LD) can
result in the identification, via GWAS, of false-positive associations. In all three analyzed plant species, most trait-associated
genes identified via TWAS are well separated physically from other candidate genes. Hence, TWAS is less affected by LD
than is GWAS, demonstrating that TWAS is particularly well suited for association studies in genomes with slow rates of
LD decay, such as soybean. TWAS is reasonably robust to the plant organs/tissues used to determine expression levels. In
summary, this study confirms that TWAS is a promising approach for accurate gene-level association mapping in plants
that is complementary to GWAS, and established that TWAS can exhibit substantial advantages relative to GWAS in spe-
cies with slow rates of LD decay.

Introduction

Identifying genes that contribute to phenotypic variation
enhances our understanding of plant biology and can contrib-
ute crop improvement. Genome-wide association study
(GWAS) detects associations between genetic variants and
phenotypic variation in diversity panels by taking advantage
of ancient recombination events to identify genetic markers
that co-segregate with phenotypic variation (Hirschhorn and

Daly, 2005). Benefiting from cost-efficient genotyping technol-
ogies and improved statistical methods, GWAS is widely used
to dissect the genetic basis of complex traits in plants. Over
the past decade, thousands of loci have been identified for
hundreds of plant traits using variants of this method (Tian
et al., 2020). However, due to linkage disequilibrium (LD), it is
often not possible to unambiguously determine which of mul-
tiple genes linked to a genetic marker associated with a trait
via GWAS is in fact the causal gene (Wallace et al., 2014).
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Transcriptome-wide association study (TWAS) detects
associations between variation in gene expression levels and
phenotypic variation (GTEx Consortium et al., 2015; Gusev
et al., 2016). In maize (Zea mays), a TWAS method termed
expression read depth GWAS (eRD-GWAS; Lin et al., 2017)
that employs Bayesian statistical methods was developed.
Unlike some TWAS methods used in humans, where gene
expression levels were predicted, eRD-GWAS used empiri-
cally measured gene expression levels as explanatory varia-
bles. It was performed on 13 agronomic traits of maize and
many of the trait-associated genes have predicted functions
consistent with the corresponding traits (Lin et al., 2017).
One of the genes identified as being associated with flower-
ing time, MADS TRANSCRIPTION FACTOR69 (ZmMADS69),
has since been cloned and its role in flowering time is func-
tionally characterized (Liang et al., 2019). More recently,
eRD-GWAS has been used to identify genes associated with
root traits and again, many of the trait-associated genes
have been previously associated with root architecture
(Zheng et al., 2020). A different approach to TWAS was ap-
plied to analyze multiple traits using expression data from
seven diverse maize tissues (Kremling et al., 2019). These
studies used different approaches to interpret their results.
Because Lin et al. (2017) demonstrated that TWAS is com-
plementary to GWAS, they recommended treating the
union of the two sets of trait-associated genes as candidates.
In contrast, Kremling et al. (2019) employed an ensemble
approach that intersects results from GWAS and TWAS to
prioritize causal genes. Lin et al. (2017) and Kremling et al.
(2019) both obtained hundreds of associated genes but did
not quantitatively evaluate the qualities of the resulting
gene sets based on the published literature.

To assess the ability of TWAS to specifically identify causal
genes in self-pollinated species, we analyzed several well-
studied quantitative traits in Arabidopsis thaliana for which
hundreds of genes have been identified, and in many cases
characterized (Bouché et al., 2016). This body of prior re-
search made it possible to evaluate the ability of TWAS to
identify true positives. LD can complicate the interpretation
of GWAS results (Atwell et al., 2010). Some plant species ex-
hibit slow rates of LD decay, which reduces the utility of
GWAS in these species. To test whether TWAS can over-
come this challenge, we compared GWAS and TWAS results
on the qualitative trait pubescence color in soybean (Glycine
max), which has an average LD of �100 kb (Zhou et al.,
2015). Similarly, we show that TWAS does not identify
closely linked candidate genes.

Our results establish that in multiple plant species, TWAS
provides results that are complementary to those from
GWAS, and that TWAS can identify high-quality candidate
genes even in species with low rates of LD decay.

Results

TWAS is complementary to GWAS
Lin et al. (2017) reported that in the cross-pollinated species
maize, TWAS and GWAS identify complementary sets of

trait-associated candidate genes. To extend these findings to
a self-pollinated species, we conducted GWAS and TWAS
independently for the same phenotype using the same
Arabidopsis diversity panel. The data used for these compar-
isons are summarized in “Materials and methods”.

We repeated previously published single-nucleotide poly-
morphism (SNP)-based GWAS for flowering time at 16�C
(FT16) in a panel of 970 Arabidopsis accessions, and
detected the same two loci (Alonso-Blanco et al., 2016),
FLOWERING LOCUS C (AtFLC) and DELAY OF
GERMINATION1 (AtDOG1; Figure 1A). In parallel, TWAS was
performed on the subset of accessions from this panel for
which both leaf tissue RNA-seq data and FT16 phenotypes
were available (N¼ 690 samples). This analysis identified 14
trait-associated genes (Figure 1B; Table 1), including only
one of the two genes identified via GWAS, AtFLC. Although
the other gene associated with FT16 via GWAS, AtDOG1, is
expressed in leaf tissue, it was not associated with flowering
time via TWAS. A total of 6 of the 14 trait-associated genes
from TWAS are included in the FLOR-ID database (Bouché
et al., 2016), which includes 306 hand-curated Arabidopsis
flowering-related genes. This is substantially more overlap
than expected by chance (one-sided Fisher’s exact test P-
value 5E-8). The 2-Mb windows centered on four of these
genes do not contain any additional trait-associated genes
(Figure 1C). Two of the six genes (AGAMOUS-LIKE16
[AtAGL16] and SQUAMOSA PROMOTER BINDING PROTEIN-
LIKE15 [AtSPL15]) are separated by only 263 kb, but both
are known to be related to flowering time (Figure 1C;
Table 1). Five of these six genes encode transcription factors.
Four of these exhibit regulatory interactions. SUPPRESSOR
OF OVEREXPRESSION OF CO1 (AtSOC1; false-discovery rate
[FDR] 2.6E-06) and AtSPL15 (FDR 4.9E-03) are regulated by
AtFLC (FDR 4.5E-23), and AGAMOUS-LIKE24 (AtAGL24; FDR
1.1E-02) interacts with AtSOC1 (Supplemental Figure S1).

Information about the other eight trait-associated genes
identified via TWAS is summarized in Table 1. Antisense
suppression of PHYTOCHROME INTERACTING FACTOR3
(AtPIF3) leads to early flowering (Oda et al., 2004). There is
evidence that three of the other trait-associated genes
(ARABIDOPSIS CDK INHIBITOR1 [AtACK1], RNA HELICASE30
[AtRH30], and VITAMIN C DEFECTIVE5 [AtVTC5]) are in-
volved in flowering regulatory networks (Dowdle et al., 2007;
Kotchoni et al., 2009; Duan et al., 2016; Mahrez et al., 2016;
Szklarczyk et al., 2019). AtACK1 encodes a cyclin-dependent
kinase inhibitor and is a negative regulator of cell division
(Han et al., 2005). Its expression is altered in the early flow-
ering mutant BRR2a-T895I (Mahrez et al., 2016). Based on
the STRING database (Szklarczyk et al., 2019), AtRH30 has at
least two predicted “functional partners” involved in flower-
ing, SNW/SKI-INTERACTING PROTEIN and GLYCINE RICH
PROTEIN2. AtVTC5 encodes a guanosine diphosphate
(GDP)-l-galactose phosphorylase required for the biosynthe-
sis of ascorbic acid (Dowdle et al., 2007). Ascorbic acid can
affect flowering time in Arabidopsis (Kotchoni et al., 2009).
Furthermore, AtVTC5 is a putative target of the flowering
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gene, AtFLC (Duan et al., 2016). We have not identified evi-
dence linking the remaining four genes to flowering time.

To conduct a fair comparison between GWAS and TWAS,
association studies were performed on the subset of the
Arabidopsis samples for which genotypes, expression data,
and phenotypic data were all available (N¼ 631). Using
these data, GWAS and TWAS identified 1 locus and 10
genes associated with FT16, respectively (Supplemental
Figure S2; Table 1). The finding that many (1/1 from GWAS
and 7/10 from TWAS) of these trait-associated genes can be
linked to flowering time by independent studies demon-
strates that both methods identify true positives at high
rates.

To extend these conclusions, additional TWASs were per-
formed for five highly correlated developmental traits (three
for flowering time and two for leaf number), using data

from Grimm et al. (2017). The numbers of samples contrib-
uting phenotypic values, genotype, and expression levels
range from 574 to 620 depending upon the trait
(Supplemental Table S1). Across the five traits, TWASs iden-
tified 41 trait-associated genes, consisting of 16 unique
genes, using an FDR cutoff of 0.05 (Supplemental Table S1).
Ten of these 16 genes had also been identified by the FT16
TWAS. One of the remaining six genes is FLOWERING
LOCUS T (AtFT; AT1G65480), which was associated with the
trait rosette leaf (RL) number; AtFT mutants exhibit in-
creased leaf number (Onouchi et al., 2000). The number of
known flowering-related genes identified by TWAS ranged
from 4 to 6/trait (Supplemental Table S1). It is not surpris-
ing that flowering-related genes were associated with leaf
number because these two traits are highly and positively
correlated with flowering time in Arabidopsis (Pi~neiro and

Figure 1 GWAS and TWAS of Arabidopsis FT16. Manhattan plots of GWAS (A) and TWAS (B). Horizontal dashed lines in each panel designate
the 0.05 FDR significance cutoff. Each dot represents a single SNP in GWAS and a single gene in TWAS plots. The dots in (A) and (B) are in four
different colors to alternate through the association studies and chromosomes. Six TWAS identified Genes included in the FLOR-ID database are
labeled with black text with arrow (B). C, The 2-Mb windows centered on each of the six genes identified via TWAS that are included in the
FLOR-ID database. Each dot represents a single gene. The centered genes are highlighted in red and labeled in red text, while other significant
genes are labeled in black text.
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Coupland, 1998; Grimm et al., 2017). The corresponding
GWAS (Supplemental Table S1) identified five unique loci,
including AtDOG1. None of these candidate genes over-
lapped with those identified via TWAS (Supplemental Figure
S3). Using a superset of samples (N¼ 860–936; those with
genotype but not expression data), Grimm et al. (2017)
identified via GWAS 30 candidate genes for these 5 traits.
Only one of these, AtFLC, was also identified via TWAS. The
very limited overlap between the trait-associated genes from
GWAS and TWAS for these five developmental traits of
Arabidopsis provides further support for the complementar-
ity of these approaches in a self-pollinated species.

TWAS is less affected by LD than GWAS
GWAS exploits LD between markers and functional varia-
tion. In species with high LD, markers are often tightly
linked to multiple genes. In such instances, it is often diffi-
cult to uniquely associate a single causal gene to a trait
(Atwell et al., 2010). To test whether TWAS can overcome
this challenge in a species with high levels of LD, we con-
ducted GWAS and TWAS for pubescence color in soybean,
which has an average LD of �100 kb (Zhou et al., 2015).

Pubescence color trait data were available for 75 of 102
soybean lines for which both expression data and SNP

genotypes were available (Supplemental Table S2). These
lines had either tawny (N¼ 34) or gray (N¼ 41) pubescence
color. The T locus (Glyma.06g202300), which controls pubes-
cence color (Toda et al., 2002), encodes a flavonoid 30- hy-
droxylase (F30H). The dominant (T) and recessive (t) alleles
confer tawny and gray color, respectively. GWAS (Figure 2A)
and TWAS (Figure 2B) were conducted separately for pubes-
cence color using comparable statistical methods.

The GWAS detected 80 trait-associated SNPs spanning a
�1.4 Mb interval (Chr06: 17,632,002–19,029,221) that
includes 68 annotated genes, one of which is the T locus.
Within this interval, the SNP with the smallest FDR (Chr06-
18468010) is located 263-kb upstream of the T locus
(Glyma.06g202300; Figure 2C). Similarly, three previous
GWASs reported the most significant SNP as having distan-
ces of �100–600 kb away from the T locus, and associated
SNPs spanned intervals of 2–4 Mb using diversity panels
from 139 to 12,360 lines (Sonah et al., 2015; Wen et al.,
2015; Bandillo et al., 2017). Another trait-associated signal
detected in our GWAS (Chr06:165–167 Mb) has not previ-
ously been associated with this well-studied trait.

In contrast to the results obtained via GWAS, the T gene
was the only trait-associated gene identified by TWAS
within the 1.4-Mb interval defined by GWAS hits

Table 1 Fourteen Arabidopsis genes associated with flowering time via TWAS

Relationship to
FT in Literature

ID Gene Symbol FT16a

(690 Samples)
FT16a

(631 Samples)
Gene Annotation References

Known AT2G45660 AtSOC1 2.6E-06 5.3E-06 MADS-box transcription factor Bouché et al. (2016)
AT3G57230 AtAGL16 6.5E-03 NS MADS-box transcription factor Bouché et al. (2016)
AT3G57920 AtSPL15 4.9E-03 NS SBP-box transcription factor Bouché et al. (2016)
AT4G24540 AtAGL24 1.1E-02 5.4E-03 MADS-box transcription factor Bouché et al. (2016)
AT5G10140 AtFLC 4.5E-23 2.3E-20 MADS-box transcription factor Bouché et al. (2016)
AT5G27320 AtGID1C 1.3E-02 2.8E-02 GA INSENSITIVE DWARF1C.

Encodes a soluble gibberellin
receptor that targets DELLA
proteins

Bouché et al. (2016)

AT1G09530 AtPIF3 5.5E-03 8.0E-03 Transcription factor interacting
with photoreceptors phyA
and phyB

Oda et al. (2004)

Weak Evidenceb AT3G19150 AtACK1 1.3E-02 4.8E-02 Kip-related protein gene nega-
tively affects plant develop-
ment and fertility

Han et al. (2005);
Mahrez et al. (2016)

AT5G63120 AtRH30 1.0E-05 1.1E-05 P-loop containing nucleoside
triphosphate hydrolases su-
perfamily protein

Szklarczyk et al. (2019)

AT5G55120 AtVTC5 3.7E-02 NS GDP-L-galactose phosphorylase • Dowdle et al. (2007);
• Kotchoni et al. (2009);
• Duan et al. (2016)

No Evidence AT2G20440 1.7E-03 4.5E-03 Ypt/Rab-GAP domain of gyp1p
superfamily protein

AT1G35180 6.0E-03 7.8E-03 TRAM, LAG1, and CLN8 (TLC)
lipid-sensing domain-con-
taining protein.

AT4G33625 6.5E-03 NS Vacuole protein
AT5G49360 1.0E-03 3.3E-03 Putative beta-xylosidase gene

involved in secondary cell
wall metabolism and plant
development

aFDR of TWAS; NS, not significant.
bGenes are functionally related with flowering time but have no evidence that mutants alter flowering times.
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(Figure 2D). T exhibits significant differential gene expression
(Welch two Sample t test, P-value 8E-7) between gray versus
tawny lines (Figure 2E). Hence, despite the existence of ex-
tensive local LD (the average pairwise LD among these 80
trait-associated SNPs is 0.8), TWAS correctly identified the
causal gene (T) associated with pubescence color.

As discussed above, the pattern of LD decay affects the re-
solving power of SNP-based GWAS. Similarly, the resolving
power of TWAS would be limited if the expression patterns
of neighboring genes were highly correlated, which could re-
sult in false-positive signals, as has been reported in human
TWAS (Wainberg et al., 2019; Mancuso et al. 2019). We
(Lin et al., 2017; Zheng et al., 2020) and others (Kremling
et al., 2019) have not observed this problem in maize. If ex-
pression patterns of neighboring Arabidopsis genes were
highly correlated, we would have expected to identify many
closely linked genes associated with the newly analyzed de-
velopmental traits of this species (i.e. flowering time and leaf
number). But this was not the case. These data, therefore,

indicate that TWAS is less affected by LD than is GWAS,
even in high LD species.

Effect of tissue selection on TWAS
Gene expression patterns differ across organs, tissues, envi-
ronments, and developmental stages, which leads to the
question of the importance of identifying the appropriate
RNA-seq source to conduct TWAS for a given trait. To ad-
dress this question, we used RNA-seq data from seven maize
tissues derived from a diversity panel of maize inbreds
(Kremling et al., 2018) to conduct TWASs for qualitative en-
dosperm color. Endosperm color phenotypes are available
for 229 of the 300 inbreds in this panel (Supplemental
Tables S3 and S4). The yellow endosperm1 (y1) and white
cap1 (wc1) genes, which are known to regulate endosperm
color (Buckner et al., 1996; Tan et al., 2017), have diverse ex-
pression patterns across the genotypes and tissues analyzed
in this study (Figure 3).

Figure 2 Analysis of soybean pubescence color via GWAS and TWAS. Manhattan plots of GWAS (A) and TWAS (B). Horizontal dashed lines des-
ignate the 0.05 FDR significance cutoff. Each dot represents a single SNP in GWAS and a single gene in TWAS plots. The known causal locus (T) is
highlighted. The regions surrounding the T gene from the GWAS and TWAS analyses are magnified in parts (C) and (D), respectively. The red
dots in these panels designate the most significant trait-associated SNP (C) and gene (D) in each analysis. In (D), the causal gene, T, is labeled and
arrows indicate the directions in which genes are transcribed. Gray arrows represent genes that are not expressed in the RNA samples used in the
TWAS. E, violin plots and boxplots of expression of the T gene in soybean lines with gray and tawny pubescence. The unit of expression is TPM.
Violin plots show the probability density curves of T expression in two groups of soybean lines, the width of the curve corresponds with the ap-
proximate frequency of expression values in each region. The box in the boxplot shows 25–75th percentiles; black line within the box shows the
median; whiskers represent the 1.5 times interquartile range; points represent outliers.
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Both the y1 and wc1 genes were associated with endo-
sperm color via TWAS using expression data from kernels
(Figure 3A). Similar results were obtained using expression
data from the leaf base. Additionally, the wc1 gene, but not
the y1 gene, was associated with endosperm color when us-
ing expression data from two additional tissues, shoot, and
root. Interestingly, our ability to detect an association of the
y1 gene with endosperm color using expression data from
leaf base was due to the fact that, in contrast to the situa-
tion in kernels, inbred lines having white endosperms accu-
mulated higher levels of y1 transcript in leaf base tissue than
did those with yellow endosperms (Figure 3B).

To extend this exploration, we used the same seven sets
of expression data to conduct TWASs on the flowering time
trait, days to anthesis (DTA; Peiffer et al., 2014). The number
of inbreds for which both expression data and phenotypes
varied from 191 to 258, with an average of 238
(Supplemental Table S5). A total of 24 unique genes were

associated with flowering time across the 7 TWASs with the
more relaxed P-value cutoff of 1E-04 (Figure 4; Supplemental
Table S5). Four genes known to function in flowering (Liang
et al., 2019; Castelletti et al., 2020) were identified in one or
more of the seven tissues. MADS TRANSCRIPTION
FACTOR69 (ZmMADS69) was identified in three of seven tis-
sues. Interestingly, although the ZmMADS69-regulated genes,
RELATED TO APETALA2.7 and ZEA CENTRORADIALIS8, were
both identified using expression data from leaf tip,
ZmMADS69 per se was not identified using this dataset. At
least one of the four known flowering-related genes was
detected in five of the seven tissues, including root and ker-
nels, which are not obviously associated with the DTA trait.
Two of the 24 genes (ZmMADS69 and GRMZM2G430526)
were identified in a set of five DTA-associated genes from
another TWAS that relied on the same phenotypic data,
but independent expression data (Lin et al., 2017). This is
more overlap than expected by chance (one-sided Fisher’s

Figure 3 Effects of tissue source on TWAS results for maize endosperm color. A, Manhattan plots of TWAS conducted for maize endosperm color
on each of seven tissues; each dot represents a single gene. The gray points adjacent to wc1 designate GRMZM2G089421. Horizontal dashed lines
designate the 0.05 FDR significance cutoff. The red and blue triangles represent the known causal loci, y1 and wc1, respectively. The distributions
of expression levels of the y1 (B) and wc1 (C) genes in inbred lines with yellow (yellow) and white (gray) endosperms. The density plots show the
probability density across each bandwidth. Sum of densities � bandwidth equals to 1.
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exact test, P-value 2E-5). The analysis of expression data
from multiple tissues, even some of which would appear
unrelated to flowering, detected additional loci associated
with the DTA trait.

To further explore the effects of using expression data
from unrelated tissues, TWASs were performed for 24 carot-
enoid-related traits in kernels (Owens et al., 2014) using ex-
pression data from maize seedlings (Hirsch et al., 2014).
Although Owens et al. data set contains carotenoid concen-
trations for over 200 inbreds, expression data from Hirsch
et al. were available for only about half of these samples
(Supplemental Table S6). Using a somewhat relaxed P-value
cutoff of 1E-04 data (refer to “Materials and methods”) to
control for the limited number of samples (�100), 16
unique trait-associated genes were identified for the 24 ca-
rotenoid-related traits (Supplemental Table S6).
GRMZM2G143202 (LUTEIN DEFICIENT1) had the most signif-
icant P-value (i.e. 5E-6) and encodes a cytochrome P450 pro-
tein required for the biosynthesis of lutein (Tian et al.,
2004). Another cytochrome P450 family gene,
GRMZM2G013357 was associated with two carotenoid traits,
“b-Cryptoxanthin/Zeaxanthin” and “Provitamin A.”
GRMZM2G087207 is involved in hydroxymethylglutaryl-CoA
synthase activity, which takes part in supplying a precursor
of b-carotene biosynthesis (Qiang et al., 2020). Only 1 of the
16 candidate genes, that is, LUTEIN DEFICIENT1, identified
via TWAS was also detected via a GWAS based on the same
phenotypic dataset but using data from nearly twice as
many inbreds (N¼ 210), despite the fact that this GWAS
identified 58 candidate genes (Owens et al., 2014). The suc-
cess of using seedling expression data to identify

presumptively true positives for carotenoid traits in kernels
lends further support to our conclusion that it is possible to
use expression data from unrelated tissues to identify causal
genes via TWAS.

Discussion
It has previously (Lin et al., 2017; Zheng et al., 2020) been
shown that at least in the cross-pollinated species, maize,
TWAS is complementary to GWAS, in that these two types
of analyses identify only partially overlapping sets of trait-as-
sociated genes that exhibit characteristics of true positives.
This study extends this conclusion to the self-pollinated spe-
cies, Arabidopsis. Our TWAS of development-related traits
in Arabidopsis identified distinct trait-associated genes as
compared to those identified via GWAS using the same gen-
otypes and the same phenotypic data. Importantly, half of
the identified TWAS-specific genes associated with
Arabidopsis traits have been functionally associated with
flowering time by independent studies.

Lin et al. (2017) recommended treating all genes in the
union of results from GWAS and TWAS as candidates to
better explain the genetic basis of the traits. In contrast,
Kremling et al. (2019) intersected the results from GWAS
and TWAS to achieve higher predictive ability than genes
identified by either method alone. This is presumably be-
cause the frequency of true positives in the intersection of
the gene sets identified via GWAS and TWAS is higher than
among the method-specific trait-associated genes. We note,
however, that many of the true positives detected in our
Arabidopsis TWASs were not identified by the comparable
GWAS and that the estimate of true positives, that is, the

Figure 4 Maize genes associated with DTA via TWAS. A, Regulatory relationships among four known flowering genes (Liang et al., 2019; Castelletti
et al., 2020); (B) the 24 genes identified via TWAS identified using expression data from seven tissues. Red cells represent genes that were signifi-
cantly associated with the DTA trait in the indicated source of expression data. Significant P-values are indicated. Gray cells represent tests that
were not significant.
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percentage of known genes and evidence supported genes
detected, identified via TWAS ranged from 50% to 71% for
each of the Arabidopsis traits (Table 1; Supplemental Table
S1). Hence, there may be substantial lost opportunities if
candidate genes detected only by TWAS are ignored.

How might TWAS identify trait-associated genes missed
by GWAS? If a mapping population does not contain a poly-
morphic genetic marker near a causal gene, GWAS cannot
associate that gene with phenotypic variation. But this
gene–trait association could potentially be detected via
TWAS if variation in the expression of this gene contributes
to phenotypic variation. This situation could arise in several
ways. First, absent full genome sequences, the failure to de-
tect a polymorphic marker near the trait-associated gene
does not indicate the absence of cis-expression quantitative
loci (eQTL). Second, differences in expression could be the
result of heritable epigenetic variation in or near the trait-as-
sociated gene that would not be detected via sequence anal-
yses. Third, the differences in the expression of the trait-
associated gene could be due to the segregation of trans-
eQTL. In this case, the detected trait-associated gene is serv-
ing as a read-out for variation in the trans-eQTL. Finally, be-
cause TWAS involves fewer statistical tests than a typical
SNP-based GWAS and the need to control for multiple test-
ing, it is expected that all other things being equal, TWAS
will be capable of detecting gene–trait associations with
smaller effect sizes than GWAS.

Just as GWAS can fail to identify candidate genes identi-
fied via TWAS, TWAS can fail to identify candidate genes
identified via GWAS. At least some of these could be false-
negative results (others may have been false-positive results
from the corresponding GWAS). False-negative results could
occur because a gene is not expressed (or not expressed at
levels sufficient to provide statistical significance) and/or be-
cause the functional variation segregating in the association
panel is not associated with variation in expression levels.
For example, an allele that encodes an altered protein might
be detected via GWAS but not by TWAS.

LD can result in false-positive gene–trait associations dur-
ing GWAS. This is particularly challenging in species that ex-
hibit low rates of LD decay. In such species, a single trait-
associated marker may be in LD with dozens of candidate
genes. It is often difficult to prioritize among these candidate
genes to select those for functional analyses. Fortunately, we
have demonstrated that TWAS can accurately identify trait-
associated genes even in species with high levels of local LD.
For example, in soybean, the causal gene for pubescence
color, T, was uniquely identified via TWAS, whereas GWAS-
associated markers across a 1.4-Mb interval that includes 68
genes with the T.

These results with soybean represent a single case in
which TWAS correctly identified the causal gene despite
high levels of local LD. If LDs were resulting in many false-
positive trait associations in TWAS, we would expect to ob-
serve sets of closely linked candidate genes, as occurs in
GWAS and in human TWAS, which rely upon imputed

expression data (Wainberg et al., 2019; Mancuso et al.
2019). In contrast, the minimum physical distance between
the trait-associated genes for the five Arabidopsis develop-
mental traits (flowering time and leaf number) is 813 kb
(Supplemental Table S1). Because Arabidopsis exhibits a
global LD of <10 kb (Kim et al., 2007), our results are incon-
sistent with TWAS generating high levels of LD-induced
false-positive associations.

Our TWAS for endosperm color identified the true posi-
tive, wc1 (Tan et al., 2017). The same TWAS also associated
GRMZM2G089421 with endosperm color (Figure 3A) despite
the fact that no prior literature links GRMZM2G089421 with
this trait. Interestingly this gene is only 39 kb from wc1 and
the two genes share a common cis-eQTL (Wang et al.,
2018). Consequently, GRMZM2G089421 may represent a
false-positive signal that arose as a consequence of co-regu-
lation. Although we cannot rule out the possibility that
GRMZM2G089421 has an as yet undescribed role in regulat-
ing endosperm color, it is certainly possible that a transcrip-
tion factor that co-regulates two closely linked loci could
result in the two genes exhibiting correlated expression pat-
terns, and thereby being co-discovered via TWAS. If only
one of these genes actually contributes to phenotypic varia-
tion in the trait of interest, the second gene would represent
a false positive. But our empirical data suggest that this situ-
ation with linked co-regulated loci does not often occur;
otherwise, we would have observed linked candidate genes
in the Arabidopsis TWAS. More generally, however, false
positives will be detected via TWAS if a gene’s expression
patterns are correlated with phenotypic variation, but that
gene is not causative (Wainberg et al., 2019). This situation
might be more common when using expression data from
tissues unrelated to the trait of interest.

Because it is possible to identify SNPs from RNA-seq data,
it is possible to conduct both GWAS and TWAS using RNA-
seq data. This combined approach is particularly attractive
for species with large genomes, in which genome re-se-
quencing of large diversity panels remains expensive.
Practitioners of TWAS are faced with the selecting tissue
samples from which to analyze gene expression. Our results
demonstrate that although expression data from tissues as-
sociated with the trait of interest may be optimal, even tis-
sues that would not be expected to be associated with the
trait can be used to identify gene–trait associations. For ex-
ample, although two maize genes known to affect endo-
sperm color (i.e. y1 and wc1) were successfully identified via
TWAS using expression data from kernel, these genes were
also identified using expression data from some (but not all)
other tissues. Similarly, we used previously published sets of
expression data from diverse tissues to conduct TWASs on
a maize flowering time trait (DTA). At least one of four
known flowering-related genes was detected using expres-
sion data from five of seven tissues. Finally, genes known to
be associated with development-related traits in Arabidopsis
at 16�C were identified via TWAS using expression data
from plants grown at 20�C. Hence, our results indicate that
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although expression data from a trait-related tissue or envi-
ronment is ideal for TWAS, even expression data from less
obviously trait-related tissue samples or from plants grown
in different environments can enable the discovery of trait-
associated genes. This demonstrates the feasibility of con-
ducting TWAS using existing gene expression data sets.
Finally, our results also suggest that trait-associated genes
identified via TWAS using different sources of expression
data can be complementary.

Conclusions
We extended TWAS from cross-pollinated maize to self-pol-
linated Arabidopsis and soybean and confirmed that TWAS
is also complementary with GWAS (Lin et al., 2017) in self-
pollinating species. By studying well-characterized traits, we
demonstrated that TWAS offers high rates of true positive
results and is less affected by LD than GWAS, which makes
it a promising tool in species with high LD. Although trait-
related tissue is preferred as the source of expression data,
our results show that expression data from other tissues can
also be used to identify trait-associated genes. In summary,
by addressing these important open questions about TWAS
and making its implementation more accessible, this study
promises to encourage more plant scientists to exploit this
complementary approach to identifying gene–trait
associations.

Materials and methods

Data sources
Arabidopsis thaliana

SNPs from The 1001 Genome Project (Alonso-Blanco
et al., 2016) were downloaded and filtered for those with a
minor allele frequency (MAF) cutoff of �5% and site-level
missingness of <20%. The 1,064,218 remaining SNPs were
further imputed using Beagle version 4.1 (Browning and
Browning, 2007, 2016), with default parameters. Read counts
of RNA-seq data of 728 accessions from RLs grown at 20�C
(Kawakatsu et al., 2016) were downloaded and normalized
with transcripts per kilobase million (TPM) method. Then
22,708 annotated protein-coding genes with an average
TPM> 0.1 were used for subsequent TWAS. Flowering time
data of plants grown at 16�C with 4 replicates (blocks) in a
random block design were from Alonso-Blanco et al. (2016).
Data for three additional flowering time traits and two leaf
number traits scored at 16�C with four replicates (blocks) in
a random block design were from Grimm et al. (2017).

Expression data from seven maize (Z. mays) tissues
Fragments per million (FPM) normalized expression data

from seven tissues, viz., germinating shoot (Shoot), germinat-
ing root (Root), third leaf base (Leaf Base), third leaf tip
(Leaf Tip), adult leaf collected during the day (Leaf-Day), ker-
nels 350 growing degree days after pollination (Kernels), and
adult leaf collected at night (Leaf-Night) were collected from
a maize diversity panel with an average of 255 inbreds
(Supplemental Table S4; Kremling et al., 2018) and were
used directly for TWAS because the 30-RNA-seq method

used to collect these data negates the impact of gene length
(Ma et al., 2019). And annotated protein-coding genes with
average FPM values of >0.1 were used for TWAS for each
tissue (Supplemental Table S4).

Soybean (G. max) and maize phenotypic data
Pubescence color phenotypes of soybean lines and endo-

sperm color phenotypes of maize lines were obtained from
the US National Plant Germplasm System Website (https://
npgsweb.ars-grin.gov/gringlobal/search.aspx; Supplemental
Tables S2 and S3). Phenotypic data associated with flowering
time (DTA) and kernel carotenoid composition (24 traits) in
maize were obtained from Peiffer et al. (2014) and Owens
et al. (2014), respectively. Peiffer et al. (2014) evaluated the
DTA for each inbred with 12–15 plants in each of the three
different environments in 2010. Owens et al. (2014) mea-
sured carotenoid levels of �4 ears/year grown in two differ-
ent years (2009 and 2010) but at the same location.

Trimming and alignment of soybean and maize
RNA-seq reads
Soybean RNA-seq data generated from V2 (18 d old) leaves
of the 41 soyNAM parental lines and 61 milestone cultivars
(El Baidouri et al., 2018) were aligned to the reference ge-
nome of G. max Williams 82 V2 (Schmutz et al., 2010).
Maize RNA-seq data generated from whole seedlings of 503
inbreds (Hirsch et al., 2014) were aligned to the B73 refer-
ence genome Z. mays B73 AGPv3 (Schnable et al., 2009).

Prior to alignment, raw sequence reads were trimmed using
Trimmomatic version 0.36 (Bolger et al., 2014) using following
parameters: LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15,
and MINLEN:40. Trimmed reads were aligned to the corre-
sponding reference genome with GSNAP (Wu and Watanabe,
2005) according to the method of Liu et al. (2012). Only
uniquely qualified aligned reads were retained for subsequent
SNP calling and gene expression analyses. Trimming and align-
ment results for each line are summarized in Supplemental
Tables S2 and S3.

SNP calling from aligned soybean RNA-seq reads
Bi-allelic SNPs were identified within each sample using cus-
tom scripts (Liu et al., 2012; Li et al., 2019). For each sample,
uniquely aligned reads were used while ignoring the first
and last 3 bp of each read and only considering sites with
PHRED scores �20. SNPs sites were required to have at least
five covered reads and a combined overall allele frequency
of �80%. Subsequently, the genotypes of those identified
SNPs sites were determined for each sample using the fol-
lowing parameters. Homozygous SNP sites were defined as
having �5 reads of the major allele, and overall major allele
reads account �90%. Heterozygous SNP sites were defined
as having �2 reads for each of the two alleles and the sum
of the reads from both alleles being �5, each allele account-
ing for 20% of all reads and together accounting for �90%
of all reads. For all the other situations, a missing genotype
was assigned to the site in a given sample.

The SNPs were further filtered. First, SNPs were required
to have a MAF of �5%, the number of samples homozygous
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for the minor allele was required to be �5 and the missing
data rate was required to be �50%. Finally, 75,289 SNPs
were retained for the 102 soybean lines. Those SNPs have a
median coverage of 32 reads for genotyped samples, and
the median missing rate of SNPs per sample is only 7.8%
(Supplemental Figure S4).

Next, imputation was performed among those remaining
SNPs using Beagle version 4.1 with default parameters. The
imputed genotypes were used for GWAS.

Read counting from aligned RNA-seq reads and
conversion for TWAS
The number of reads uniquely aligned to each gene in each
individual was determined. TPM was used to normalize read
counts, and only annotated protein-coding genes with an
overall average TPM of >0.1 were defined as expressed and
used for subsequent TWAS.

Normalized expression values were transformed for use in
GAPIT (Lipka et al., 2012), which requires a numeric range
from 0 to 2 for each gene. To handle extreme expression
values (outliers), first, expression values smaller than quantile
5 were converted to 0 and values larger than quantile 95
were converted to 2. The remaining expression values were
linearly transformed into values between 0 and 2.

GWAS and TWAS
The GWAS and TWAS were conducted using the
Compressed Mixed Linear Model implemented in the R
package GAPIT (Zhang et al., 2010; Lipka et al., 2012). A fur-
ther MAF cutoff of �5% on samples with a phenotype was
applied for GWAS. The first three components of principal
component analysis derived from input SNPs (GWAS) and
gene expression (TWAS) were used to separately control for
population structure. The resulting P-values were adjusted
to control for multiple testing (Benjamini and Hochberg,
1995). SNPs or genes that exhibited an FDR of <0.05 were
defined as trait associated if not otherwise specified. To en-
hance the probability of identifying true positives given the
reduced sample numbers in the maize DTA and maize ca-
rotenoid studies, for only these analyses we used a relaxed
significance cut-off of 1E-04 (which is close to 1/genes num-
ber [i.e. 4E-05]) to define trait-associated genes. The LD R2

between SNPs in the soybean GWAS was estimated using
Plink version 1.9 (Gaunt et al., 2007). The LD heatmap analy-
sis was conducted with LDheatmap version 0.99-8 (Shin
et al., 2006).

Statistical analyses
The difference between the average expression levels of the
T gene in the two soybean pubescence color groups (tawny
and gray) was analyzed using the Welch two-sample t test
(Welch, 1947). A one-sided Fisher’s exact test (Fisher, 1922)
was used for whether there is more overlap than expected
by chance between two groups of genes. P <0.01 from
those tests was considered significant.

Data accession numbers
All of the data used in this study were previously published
or obtained from public databases (Supplemental Table S7).
Maize seedling RNA-seq raw sequenced data (SRP018753)
and soybean leaf RNA-seq raw sequenced data (SRP108748)
were obtained from Sequence Read Archive, NCBI. The ex-
pression data from seven maize tissues were downloaded
from Data Commons; Arabidopsis genotype data came from
1,001 Genome and expression data (GSE80744) came from
Gene Expression Omnibus.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Interaction network of four
Arabidopsis flowering time genes.

Supplemental Figure S2. GWAS and TWAS for
Arabidopsis flowering time (FT16) on the subset of samples.

Supplemental Figure S3. GWAS and TWAS for five
Arabidopsis developmental traits (three for flowering time
and two for leaf number).

Supplemental Figure S4. Summary of soybean SNPs iden-
tified from leaf RNA-seq data.

Supplemental Table S1. Genes or loci identified via
TWAS and GWAS for Arabidopsis flowering time and leaf
number traits using data from Grimm et al. (2017).

Supplemental Table S2. Summary of leaf RNA-seq data
and processing and pubescence colors of component geno-
types from a soybean diversity panel.

Supplemental Table S3. Summary of seedling RNA-seq
data and processing and endosperm colors of component
genotypes from a maize diversity panel.

Supplemental Table S4. Numbers of genes expressed in
seven tissues of a maize diversity panel and the frequencies
of yellow and white endosperm phenotypes in subsets of
this panel.

Supplemental Table S5. DTA-associated maize genes
identified via TWAS using expression data from seven
tissues.

Supplemental Table S6. Carotenoid-associated maize
genes identified via TWAS using expression data from maize
seedling.

Supplemental Table S7. Data used.
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