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1  |  INTRODUC TION

Coronary artery disease (CAD) is a type of disease in which the lumen 
is narrowed or blocked due to atherosclerotic lesions in the coro-
nary artery, resulting in myocardial ischaemia, oxygen deprivation 

and necrosis. CAD is one of the highest mortality diseases in the 
world, with an estimated 12 million deaths due to coronary athero-
sclerosis by the end of 2030, including non- ST- segment elevation 
myocardial infarction and ST segment elevation myocardial infarc-
tion.1 The pathogenesis of CAD is complex, and there are no obvious 
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Abstract
Ferroptosis plays a key role in the death of cells including cardiomyocytes, and it is 
related to a variety of cardiac diseases. However, the role of ferroptosis- related genes 
(FRGs) in coronary artery disease (CAD) is not well characterized. We downloaded 
CAD- related information and FRGs from the gene expression omnibus (GEO) data-
base and Ferroptosis Database (FerrDb) respectively. A total of 10 CAD- related DE- 
FRGs were obtained, which were closely linked to autophagy regulation and immune 
response. Subsequently, CA9, CBS, CEBPG, HSPB1, SLC1A4, STMN1 and TRIB3 among 
the 10 DE- FRGs were identified as marker genes by LASSO and SVM- RFE algorithms, 
which had tolerable diagnostic capabilities. Subsequent functional enrichment analy-
sis showed that these marker genes may play a corresponding role in CAD by par-
ticipating in the regulation of immune response, amino acid metabolism, cell cycle 
and multiple pathways related to the pathogenesis of CAD. Furthermore, a total of 
58 drugs targeting 7 marker genes had been obtained. On the contrary, the ceRNA 
network revealed a complex regulatory relationship based on the marker genes. Also, 
CIBERSORT analysis showed that the changes in the immune microenvironment of 
CAD patients may be related to CBS, HSPB1 and CEBPG. We developed a diagnostic 
potency and provided an insight for exploring the mechanism for CAD. Before clinical 
application, further research is needed to test its diagnostic value for CAD.
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symptoms in the early stage, only abnormal ST- T changes during 
exercise plate electrocardiogram examination. Therefore, it is an ur-
gent need for biomarkers that can be detected in peripheral blood to 
facilitate the early detection of CAD.

Ferroptosis is an iron- dependent programmed cell death mode 
newly discovered in 2012,2 with its mechanism different from 
apoptosis, necrosis, pyroptosis and autophagy. Ferroptosis is char-
acterized by mitochondrial atrophy and increased mitochondrial 
membrane density, the accumulation of iron and lipid reactive 
oxygen species (L- ROS) and the involvement of a unique set of 
genes.3,4 The biochemical mechanism of iron is catalysed by the for-
mation of lipid radicals and the depletion of glutathione (GSH) or the 
inactivation of lipid peroxidase 4 (GPX4).5 Circulating iron plays a 
key role in the development of iron death. The use of iron chelating 
agents can inhibit iron death induced by Erastin, and the expression 
of transferrin on the cell membrane also increases the sensitivity of 
cells to iron death.2

Ferrostatin 1 (FER- 1), a specific inhibitor of ferroptosis, signifi-
cantly reduced the cardiotoxicity induced by doxorubicin (DOX) and 
effectively improved the survival rate in mice treated with cell death 
inhibition and cell death pathway- related gene knockout, revealing 
that ferroptosis is an important mechanism of myocardial injury.6 
In addition, high levels of L- ferritin were observed in the coronary 
arteries of patients with coronary heart disease, indicating iron ac-
cumulation in atherosclerotic plaques.7 Non- transferrin- bound iron 
(NTBI) is thought to be the pathologic trigger of iron overload, and 
iron in NTBI is more likely to be utilized by various plaque cell types, 
including endothelial cells, macrophages and vascular smooth mus-
cle cells.8 The use of deferoxamine can inhibit the development of 
atherosclerotic lesions and reduce ferroptosis of cardiomyocytes 
following cardiac ischaemic- reperfusion.9,10 Therefore, we analysed 
and verified the accuracy of iron death- related genes as biomarkers 
of CAD and their roles in the cardiac immune microenvironment via 
bioinformatics analysis.

2  |  MATERIAL S AND METHODS

2.1  |  Data source

In this study, the gene expression data for CAD and normal sam-
ples were obtained from the GEO database. The GSE20680 dataset 
embodied a total of 139 samples, including 52 normal samples and 
87 CAD samples. This dataset was considered as a training set for 
analysis by the main body of this research. The GSE20681 dataset 
containing 99 normal samples and 99 CAD samples was used to 
verify the expression of the marker genes. Additionally, the FRGs 
(n = 259) used in this study were obtained from FerrDb, and the 
detailed genes were shown in Table S1.

Drug Gene Interaction Database (DGIdb) was used to predict 
drugs targeting marker genes. Also, the structural information of the 
targeted drugs of the marker gene was retrieved from the DrugBank 
database.

2.2  |  Differential expression analysis

We first extracted expression data of 237 FRGs (only 237 FRGs ex-
pressed in this dataset) in normal samples and CAD samples from 
the GSE20680 database. Subsequently, the student's t- test in R was 
used to detect the FRGs that were differentially expressed in two 
different samples (Table S2). Genes with p < 0.05 were considered 
significant.

2.3  |  Functional enrichment performed 
in Metascape

Metascape (http://metas cape.org/) was used to analyse the po-
tential functions associated with DE- FRGs. These analyses in-
cluded Gene Ontology (GO), Reactome pathway enrichment, and 
Immunologic Signatures enrichment analysis (Table S3). Among 
them, Immunologic Signatures database used in the immunologic 
signatures enrichment analysis is based on the integration of the 
immune- related enrichment analysis of the target gene in the pub-
lished literature. In addition, Reactome is a database of articles writ-
ten by experts and peer- reviewed on various reactions and biological 
pathways in the human body.

2.4  |  Identification of optimal diagnostic gene 
biomarkers for CAD

The least absolute shrinkage and selection operator (LASSO) algo-
rithm was applied with the glmnet package to reduce the dimensions 
of the data.11,12 The DE- FRGs between CAD patients and normal 
samples were retained for feature selection, and gene biomarkers 
for CAD were identified with the LASSO algorithms. Meanwhile, a 
support vector machine- recursive feature elimination (SVM- RFE) 
model was established with a SVM package, which was compared by 
the average misjudgement rates of their 10- fold cross- validations.13 
Furthermore, optimal gene biomarkers for CAD were identified 
by overlapping biomarkers derived from the two algorithms. The 
diagnostic ability of the optimal gene biomarkers was assessed by 
calculating the receiver operating characteristic (ROC) curve, and 
measuring the area under the curve (AUC), accuracy, sensitivity and 
specificity. Furthermore, a logistic regression model based on seven 
marker genes was constructed to predict the sample types in the 
GSE20680 dataset using the predict function through the R package 
glm. Similarly, the diagnostic power of the logistic regression model 
was evaluated using ROC curves.

2.5  |  Single- gene Gene Set Enrichment Analysis 
(GSEA) enrichment analysis

This analysis is implemented in the GSEA (V.4.1.0) package in R. To 
further explore the related pathways of the seven marker genes, we 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20680
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20681
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20680
http://metascape.org/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20680
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calculated the correlation between the marker genes and all other 
genes in the GSE20680 dataset. Subsequently, all genes were sorted 
according to their correlations from high to bottom, and these sorted 
genes were considered to be the gene set to be tested. Meanwhile, 
the KEGG signalling pathway set was invoked as a predefined set to 
detect its enrichment in the gene set. Specific enrichment results of 
each marker gene were integrated into Table S4.

2.6  |  Single- gene Gene Set Variation Analysis 
(GSVA) enrichment analysis

This analysis was implemented in the GSVA (V.1.38.0) package in 
R. GSVA is a gene set variation analysis.14 In this study, we utilized 
the KEGG pathway set as the background gene set to perform 
GSVA analysis on each marker gene. Simultaneously, we applied 
the limma package to analyse the difference in GSVA score of the 
marker gene's high-  and low- expression group samples. The differ-
ence screening condition was |t| >2, p < 0.05. If t > 0, we considered 
the pathway to be activated in the high- expression group, on the 
contrary, if t < 0, we considered the pathway to be activated in the 
low- expression group. Specific enrichment results of each marker 
gene were integrated into Table S5.

2.7  |  Immune infiltration analysis

CIBERSORT, a method to characterize the cell composition of com-
plex tissues from the gene expression profile.15 In this study, we pre-
dicted the proportion of 22 types of infiltrating immune cell types 
in each tissue from the GSE20680 dataset by CIBESORT software 
(Table S6). For each sample, the sum of all evaluated immune cell 
type fractions equalled 1.16

2.8  |  Construction of ceRNA network

The starBase database was used to predict mRNA- miRNA interac-
tion pairs based on the 7 marker genes. Meantime, RNA sequences 
of 7 marker genes were downloaded from National Center for 
Biotechnology Information (NCBI), and the human miRNA sequences 
were obtained from miRbase. The miranda software predicted the 
binding of mRNA- miRNA nucleic acid, and the binding score thresh-
old was increased to 170 (the default was 140). Then, we searched 
the predicted miRNA in starBase and screened miRNA- lncRNA so 
that we obtained the ceRNA network of mRNA- miRNA- lncRNA.

2.9  |  Statistical analysis

The comparison between the two groups used the Student's t- test. 
Pearson correlation analysis was used to reveal the relationship be-
tween 10 DE- FRGs. The drawing of the Venn diagram was achieved 

through the Jvenn package. Cytoscape was used to visualize the 
ceRNA network. p < 0.05 was regarded as significant. All analyses 
were performed in R.

3  |  RESULTS

3.1  |  Identification of DE- FRGs in the GSE20680 
cohort

Ten of 237 FRGs were differentially expressed between CAD and 
normal samples, including 5 up- regulated and 5 down- regulated 
genes, which were identified from the GSE20680 dataset (Table 1). 
The clustering heatmap showed the expression pattern of DE- FRGs 
among samples (Figure 1A). The correlation between these genes 
was presented in Figure 1B. HSPB1 had a negative correlation with 
ALOX5, CBS, CEBPG, ATG3 and HMGB1. ATG3 was positively corre-
lated with ALOX5, CBS, CEBPG and HMGB1. Interestingly, TRIB3 and 
CA9 were not correlated with any DE- FRGs.

3.2  |  Functional analyses for the DE- FRGs

To elucidate the biological functions and pathways that were asso-
ciated with the DE- FRGs, GO enrichment and Reactome pathway 
analyses were perform. Consequently, GO enrichment analyses in-
dicated that DE- FRGs were significantly related to the function of 
‘positive regulation of binding’, ‘autophagy’ and ‘positive regulation 
of cytokine production’ (Figure 2A). Reactome pathway analyses 
indicated that the signalling by receptor tyrosine kinases, cellular 
responses to stress and external stimuli were enriched (Figure 2B). 
Interestingly, the DE- FRGs were also obviously enriched in many 
immune- related signatures (Figure 2C). These pieces of evidence in-
dicated that DE- FRGs may play a role in the pathogenesis of CAD by 
participating in the regulation of autophagy, immune cells, cytokines 
and a variety of kinases.

TA B L E  1  Ten of 237 FRGs were differentially expressed 
between CAD and normal samples, including 5 up- regulated and 5 
down- regulated genes

Gene p- Value
Expressing 
trend

STMN1 0.013295 DN

HSPB1 0.013299 DN

CBS 0.020652 UP

HMGB1 0.027065 UP

SLC1A4 0.027545 DN

CEBPG 0.03259 UP

TRIB3 0.034862 DN

ATG3 0.037813 UP

ALOX5 0.039414 UP

CA9 0.048775 DN

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20680
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20680
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20680
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3.3  |  7 DE- FRGs were identified as diagnostic 
genes for CAD

For considering the variation between CAD patients and healthy 
people, we aimed to estimate the diagnostic potential of DE- FRGs. 
Next, we performed two distinct machine learning algorithms 
in the GSE20680 dataset, the LASSO and SVM- RFE, to screen 
the significant DE- FRGs to distinguish CAD from normal people. 
LASSO logistic regression algorithm, with penalty parameter tun-
ing conducted by 10- fold cross- validation, was used to select 9 
CAD- related features (Figure 3A,B). We then applied the SVM- RFE 
algorithm to filter the 10 DE- FRGs to identify the optimal combi-
nation of feature genes. Finally, 7 genes (maximal accuracy =0.759, 
minimal RMSE =0.241) were identified as the optimal feature genes 
(Figure 3C,D). The marker genes obtained from the LASSO and 
SVM- RFE models were intersected, and 7 marker genes (CA9, CBS, 
CEBPG, HSPB1, SLC1A4, STMN1 and TRIB3) were identified for sub-
sequent analysis (Figure 3E).

Based on the above 7 marker genes, we constructed a logis-
tic regression model by R package glm, and the subsequent ROC 
curves indicated that the 7 marker gene- based logistic regression 
model differentiated normal and CAD samples with AUC = 0.748 
(Figure 3F). Moreover, to elucidate the ability of individual genes in 
distinguishing CAD from normal samples, ROC curves were gener-
ated for the 7 marker genes. As shown in Figure 3G, the AUC for 
all genes was greater than 0.6. The above evidence suggested that 
for differentiating CAD samples from normal samples, the logistic 
regression model provided a superior accuracy and specificity than 
the individual marker genes.

3.4  |  Marker genes were closely linked to a 
variety of CAD- related pathways

To further explore the potential function of marker genes to dis-
tinguish diseased samples from normal samples, we conducted a 

single- gene GSEA- KEGG pathway analysis. The top10 pathways 
enriched for each marker gene were illustrated in Figure 4A– G. 
After a comprehensive analysis, we found that these genes were 
enriched in ribosomes, autophagy, lysosomes, cell cycle, immune 
response (‘Neutrophil extracellular trap formation’, ‘T- cell receptor 
signalling pathway’, ‘ECM- receptor interaction’ and ‘B- cell receptor 
signalling pathway’), amino acid synthesis and metabolism (‘Caline, 
leucine and isoleucine degradation’, ‘Tyrosine metabolism’ and 
‘Biosynthesis of amino acids’) and various disease pathways (‘Renal 
cell carcinoma’, ‘Hepatitis B’, ‘Coronavirus disease— COVID- 19’ and 
‘Alzheimer disease’). Moreover, we found that the marker genes 
were also enriched in the ‘TNF signalling pathway’, ‘MAPK signal-
ling pathway’, ‘Rap1 signalling pathway’, ‘ErbB signalling pathway’, 
‘JAK- STAT signalling pathway’, ‘PI3K- Akt signalling pathway’, ‘TGF- 
beta signalling pathway’, ‘Wnt signalling pathway’, ‘Ras signalling 
pathway’ and ‘mTOR signalling pathway’. Besides, we also found that 
CEBPG was closely related to the ‘Regulation of actin cytoskeleton’ 
(also enriched in SLC1A4, STMN1 and CBS), ‘Vascular smooth muscle 
contraction’, ‘Dilated cardiomyopathy’, ‘Relaxin signalling pathway’, 
‘Cardiac muscle contraction’ and ‘Hypertrophic cardiomyopathy’.

Then, we observed the differentially activated pathways be-
tween the high-  and low- expression groups based on the expres-
sion levels of each marker gene combined with GSVA. The results 
showed that the low expression of CA9 in the disease may induce 
CDA by activating amino acid degradation, fatty acid metabo-
lism, peroxidase and oxidative phosphorylation, while the over-
expression of CA9 activated ‘VASCULAR SMOOTH MUSCLE 
CONTRACTION’ and ‘ARRHYTHMOGENIC RIGHT VENTRICULAR 
CARDIOMYOPATHY ARVC’ (Figure S1A). The up- regulation of 
CEBPG activated the amino acid metabolism/degradation and 
‘CARDIAC MUSCLE CONTRACTION’ pathways (Figure S1B). Low- 
expression of SLC1A4 was only related to ‘RIBOSOME’, while the 
high expression of this gene activated the ‘CELL CYCLE’, amino acid 
metabolism (arginine and proline) and ‘REGULATION OF ACTIN 
CYTOSKELETON’ (Figure S1C). Many CAD- related pathways, such 
as Wnt, PPAR, TGF- β, JAK- STAT, mTOR and ErbB signalling pathways 

F I G U R E  1  DE- FRGs expression levels in CAD. (A) Violin plots show expression patterns of DE- FRGs across samples. (B) The correlation 
of these genes. HSPB1 had a negative correlation with ALOX5, ATG3, CBS, CEBPG and HMGB1. ATG3 was positively correlated with ALOX5, 
CBS, CEBPG and HMGB1. Interestingly, TRIB3 and CA9 were not correlated with any DE- FRGs

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20680
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were activated by the low expression of STMN1. Incredibly, the 
highly expressed STMN1 was directly related to ‘CARDIAC MUSCLE 
CONTRACTION’ and ‘ARRHYTHMOGENIC RIGHT VENTRICULAR 
CARDIOMYOPATHY ARVC’ (Figure S1D). In the TRIB3 low- 
expression group, ‘HYPERTROPHIC CARDIOMYOPATHY HCM’, 
‘DILATED CARDIOMYOPATHY’ and immune- related path-
ways (‘CELL ADHESION MOLECULES CAMS’, ‘CHEMOKINE 
SIGNALLING PATHWAY’, ‘LEUKOCYTE TRANSENDOTHELIAL 
MIGRATION’) were enriched. The highly expressed TRIB3 played a 
central role in the metabolism and degradation of amino acids (Figure 
S1E). It is worth noting that for CBS, a variety of pathways related 
to CAD pathogenesis were enriched in its high- expression group, 

such as ‘JAK- STAT SIGNALLING PATHWAY’, ‘ERBB SIGNALLING 
PATHWAY’, ‘PPAR SIGNALLING PATHWAY’, ‘MTOR SIGNALLING 
PATHWAY’, ‘MAPK SIGNALLING PATHWAY’ and ‘TGF BETA 
SIGNALLING PATHWAY’ (Figure 5A). Furthermore, HSPB1, whose 
expression was inhibited in CAD tissue, was more closely related to 
immune response (‘T- CELL RECEPTOR SIGNALLING PATHWAY’, 
‘B- CELL RECEPTOR SIGNALLING PATHWAY’ and ‘NATURAL 
KILLER CELL- MEDIATED CYTOTOXICITY’), ‘REGULATION OF 
AUTOPHAGY’ and amino acid metabolism pathway. Unreasonably, 
the high- expression of HSPB1 activated the pathways such as 
‘ARACHIDONIC ACID METABOLISM’, ‘STEROID HORMONE 
BIOSYNTHESIS’, ‘DILATED CARDIOMYOPATHY’, ‘VASCULAR 

F I G U R E  2  Functional analyses for the 
DE- FRGs. (A) GO enrichment analyses 
indicated that DE- FRGs were significantly 
related to the function of ‘positive 
regulation of binding’, ‘autophagy’ 
and ‘positive regulation of cytokine 
production’. (B) Reactome pathway 
analyses indicated that the cellular 
responses to stress, cellular responses 
to external stimuli, and signalling by 
receptor tyrosine kinases were enriched. 
(C) Enrichment analysis of immune 
characteristic gene sets
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SMOOTH MUSCLE CONTRACTION’, ‘TGF BETA SIGNALLING 
PATHWAY’, ‘HYPERTROPHIC CARDIOMYOPATHY HCM’ and 
‘ARRHYTHMOGENIC RIGHT VENTRICULAR CARDIOMYOPATHY 
ARVC’ that may induce CAD (Figure 5B).

3.5  |  Immune landscape analysis

The previous results indicated that the marker genes were closely 
related to the immune response. Meanwhile, much pieces of evi-
dence pointed to the inseparable connection between the immune 
microenvironment and CAD.17- 19 Therefore, we implemented the 
CIBERSORT algorithm to explore the differences in the immune 
microenvironment between CAD patients and normal samples. As 
shown in Figure 6A, the proportion of B- cell naive in CAD samples 
was lower than that in normal samples, while T- cell follicular helper 
and monocytes were more expressed in CAD samples. In addition, 
Pearson correlation analysis revealed that neutrophils had strong 
positive and negative correlations with CBS (r = 0.487659, p = 1.14E- 
09) and HSPB1 (r = −0.31684, p = 0.000145) respectively. CEBPG 

was positively correlated with monocytes (r = 0.35092, p = 2.28E- 
05) (Figure 6B; Table S7). These pieces of evidence indicated that 
changes in the immune microenvironment of CAD patients may be 
linked to CBS, HSPB1 and CEBPG.

3.6  |  Prediction of marker gene- targeted drugs

We further revealed the drugs that may target marker genes through 
the DGIdb database and analysed the interaction relationship be-
tween the two parameters were set to default values; (Table S8). The 
results visualized by Cytoscape software were shown in (Figure 7). 
We had queried 58 drugs targeting marker genes, including 17 
for CA9, 5 for CBS, 33 for HSPB1, 1 for SLC1A4, STMN1 targeted 1 
drug and TRIB3 targeted 1 drug. Unfortunately, we did not forecast 
CEBPG's targeted drugs. Moreover, we also used the DrugBank da-
tabase to retrieve the structural formulas of the 58 drugs mentioned 
above. A total of 36 drug structures were retrieved. A total of 11 
drug structures were retrieved from 17 CA9 targeted drugs. Among 
them, benzthiazide, ellagic acid, ethoxzolamide, hydroflumethiazide, 

F I G U R E  3  7 DE- FGs were identified as diagnostic genes for CAD. (A and B) By LASSO logistic regression algorithm, with penalty 
parameter tuning conducted by 10- fold cross- validation, was used to select 9 CAD- related features. (C and D) SVM- RFE algorithm to filter 
the 10 DE- FRGs to identify the optimal combination of feature genes. Finally, 7 genes (maximal accuracy =0.759, minimal RMSE =0.241) 
were identified as the optimal feature genes. (E) The marker genes obtained from the LASSO and SVM- RFE models. (F) Logistic regression 
model to identify the AUC of disease samples. (G) ROC curves for the 7 marker genes

F I G U R E  4  Single- gene GSEA- KEGG pathway analysis in CA9 (A), CBS (B), CEBPG (C), HSPB1 (D), SLC1A4 (E), STMN1(F) and TRIB3 (G)
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sodium carbonate and zonisamide were known inhibitors of CA9. 
The structural formulas of CBS's five targeted drugs had been re-
trieved, and ademetionine and pyridoxal phosphate as its activator 
and cofactor respectively. 17 of 33 HSPB1 targeted drugs were dis-
played, of which apatorsen and artenimol were inhibitors and ligands 
of the gene respectively. The structural information of the targeted 
drugs of SLC1A4, STMN1 and TRIB3 was all revealed. The detailed 
results were illustrated in (Figure S2).

3.7  |  A ceRNA networks based on marker genes

Next, we constructed a ceRNA network based on 7 marker genes 
through starBase and miranda databases. The network included 
408 nodes (7 marker genes, 74 miRNAs and 327 lncRNAs) and 688 
edges (Figure 8). In detail, we found that a total of 170 lncRNAs 
could competitively bind hsa- miR- 103a- 3p, hsa- miR- 500a- 3p, hsa- 
miR- 181b- 5p, hsa- miR- 3681- 3p, hsa- miR- 181d- 5p, hsa- miR- 181a- 5p 
and hsa- miR- 107 regulated SLC1A4. Among them, hsa- miR- 103a- 3p 
and hsa- miR- 107 were shared 48 lncRNAs. In addition, 57 shared 
lncRNAs could target hsa- miR- 181a- 5p, hsa- miR- 181b- 5p and hsa- 
miR- 181d- 5p respectively. For TRIB3, we found that 28 lncRNAs 
could regulate the expression of TRIB3 through competitive binding 
with hsa- miR- 1271- 5p. Meanwhile, hsa- miR- 1271- 5p could be bound 
to 61 lncRNAs to exert its regulatory role in this gene. Among them, 
lncRNA EBLN3P could simultaneously target hsa- miR- 1271- 5p and 

hsa- miR- 1271- 5p. In the ceRNA network of STMN1, there were 40 
and 56 lncRNAs that could combine with hsa- miR- 138- 5p and hsa- 
miR- 545- 3p to regulate the gene. Among these, lncRNAs, LINC00294, 
NEAT1 and LINC00665 were shared lncRNAs. A total of 34 lncRNAs 
could be competitively bound with hsa- miR- 3173- 5p to affect the 
expression of CEBPG. The expression of CBS could be regulated by a 
competitive collection of 40 lncRNAs and hsa- miR- 361- 3p. Specific 
details of the ceRNA network were shown in Table S9.

3.8  |  Expression of the marker gene in the 
validation set

Finally, we also verified the expression of marker genes in the 
GSE20681 dataset. We discovered that the expression trends of 
CBS, HSPB1 and STMN1 were consistent with the GSE20680 data-
set. Among them, the expression of CBS (p = 0.0319) in CAD patients 
was greater than of normal samples, while the HSPB1 (p = 0.0279) 
and STMN1 (p = 0.0146) were lower in CAD samples (Figure 9).

4  |  DISCUSSION

Coronary atherosclerosis is a complex, persistent and progressive 
inflammatory disease characterized by remodelling of the coronary 
arteries that deliver oxygen and nutrition to the cardiac tissue. It has 

F I G U R E  5  High-  and low- expression groups based on the expression levels of each marker gene combined with GSVA in CBS (A) and 
HSPB1 (B)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20681
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20680
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a variety of clinical manifestations, ranging from asymptomatic to 
stable angina, acute coronary syndrome (ACS), sudden cardiac death 
(SCD) or heart failure (HF). Due to the nature of the disease, most 
patients may suffer from coronary atherosclerosis for many years, 
even decades.20,21

Atherosclerosis is the basic pathogenesis of CAD. Abnormal 
apoptosis of vascular endothelial cells (VECs), macrophages or 

vascular smooth muscle cells (VSMCs) is a common feature of ath-
erosclerosis, which can lead to the formation of atherosclerotic 
plaques or plaque instability.22 Endothelial cell repair after injury is 
associated with multiple genes, some of which are also involved in 
the maintenance of normal cardiac function and the formation of 
aortic aneurysms.23- 25 Autophagy is also involved in the process of 
coronary atherosclerosis, but its specific role is controversial. Some 

F I G U R E  6  Immune landscape analysis. (A) Implemented the CIBERSORT algorithm to explore the differences in the immune 
microenvironment between CAD patients and normal samples. (B) Pearson correlation analysis revealed that neutrophils had strong positive 
and negative correlations with CBS and HSPB1 respectively. CEBPG was positively correlated with monocytes (*p < 0.05, **p < 0.01)
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studies suggest that it is a protective factor against atherosclerosis, 
and that autophagy is inhibited in patients with cardiovascular dis-
ease, featured by the decrease of LC3 and Atg5 genes.26 However, 
other contrary findings suggest that autophagy worsens coronary 
atherosclerosis.27 It is worth noting that the relationship between 
coronary atherosclerosis and ferroptosis has not yet been reported. 
Thus it is important for the selection of gene chip data, two kinds of 
disease by gene expression data analysis, enrichment of single- gene 
analysis, enrichment of bioinformatics methods, such as, finding a 
common point, to analyse genetic differences in CAD and normal 
ferroptosis, explore the molecular pathogenesis in CAD ferroptosis. 
In the present article, a large number of gene chips most suitable for 
this research was selected and the use of multiple samples of genes 
as well as a large number of microarray data makes the experimen-
tal results more reliable and reduces the error rate, thus providing a 
valuable clinical reference for the treatment and prevention of CAD.

A total of 7 differential genes related to ferroptosis were 
screened in this study, including CA9, CBS, CEBPG, HSPB1, SLC1A4, 
HSPB1 and TRIB3. The AUC values represented by the area under 
the ROC curve of the 7 genes are all greater than 0.6, indicat-
ing that these 7 genes have certain accuracy and specificity for 
distinguishing coronary artery disease samples from normal sam-
ples. Among them, the AUC values of CEPBG, HSPB1 and CBS 
rank the top 3. HSPB1 is considered to be a molecular companion 

involved in regulating the composition of the cytoskeleton.28 
After phosphorylation, the oligomer of HSPB1 is dissociated into 
monomer, which then acts as an inhibitor of apoptosis and an in-
ducer of autophagy,29,30 The GSAV analysis of HSPB1 also con-
firmed that the autophagy regulatory pathway was activated in 
the low- expression group. HSPB1 is a key regulator of ferroptosis 
in cancer cells, and HSPB1 is a negative regulator of ferroptosis by 
reducing iron- mediated production of lipid reactive oxygen spe-
cies.31 Other studies have shown that HSPB1 plays an important 
role in the progression of liver cancer and ferroptosis, and that 
HSPB1 may be regulated by transcription factor ATF3.32 Studies 
have found that protease degradation is more abundant in ath-
erosclerosis than in normal arteries.33 Therefore, the decrease 
of HSPB1 in serum of patients with coronary artery disease may 
be caused by over- activation of protease, or excessive consump-
tion of HSPB1 caused by anti- ferroptosis in the body in the pro-
cess of atherosclerosis plaque formation, which needs further 
study. CBS- catalysed transsulfuration converts homocysteine to 
cysteine. Cysteine γ lyase converts homocysteine to cysteine.34 
Cysteine synthesis (or cysteine uptake by cells) is the rate- limiting 
step in the production of glutathione, a ubiquitous antioxidant. 
Studies have shown that structural activation of NRF2/CBS sig-
nalling confers Erastin- induced ferroptosis resistance, and that 
CBS overexpression increases intracellular cysteine, supplemental 

F I G U R E  7  Prediction of marker gene- targeted drugs. The drugs may target marker genes through the DGIdb database and the 
interaction relationship between the two
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F I G U R E  8  A ceRNA networks based on marker genes. The network included 408 nodes (7 marker genes, 74 miRNAs and 327 lncRNAs) 
and 688 edges

F I G U R E  9  Expression of the marker 
gene in the validation set. The expression 
of marker genes in the GSE20681 dataset

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20681
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to the decrease in intracellular cysteine caused by Erastin inhibi-
tion of the System XC− system.35 CBS enzyme deficiency can lead 
to hyperhomocysteinemia, leading to premature development of 
cardiac and cerebrovascular disease.36 H2S is also produced from 
the transsulfuration of homocysteine into cysteine catalysed by 
CBS. H2S has been proved to play an important role in the process 
of anti- atherosclerosis.37 Thus, CBS plays a role in both atheroscle-
rosis and ferroptosis. Our study found that CBS is highly expressed 
in the CAD group, which may be a protective mechanism of the 
body against the disease and control the continued development 
of the disease.

Immune cells maintain the homeostasis of the heart and all 
kinds of immune cells that reside or penetrate into the heart tis-
sue play an important role in the process of injury repair.17 The 
immune cells identified in the heart include macrophages, mono-
cytes, neutrophils, dendritic cells (DC), T and B cells, eosinophils 
and mast cells, which also play an important role in maintaining 
heart function.38 Our analysis shows that T- cell helper and mono-
cytes are highly expressed in the CAD group, while B- cell naive 
is lower than the normal group. Circulating monocytes and resi-
dent vascular macrophages are the first white blood cells known 
as early atherosclerotic plaques.39 Local inflammation is caused 
by damaged endothelial cells that release monocyte chemotac-
tic protein- 1 (also known as C- C motifchemotactic factor ligand 
2 (CCl2)). Monocyte chemokine protein- 1 interacts with chemok-
ine receptor 2 and chemokine receptor 4 expressed on circulating 
monocytes to recruit them to the lesions.40,41 Migrating mono-
cytes differentiate into macrophages, leading to inflammation and 
plaque development.42 Another study shows that T- cell follicular 
helper promotes atherosclerosis, and its consumption reduces ath-
erosclerosis.43 These studies have been confirmed in our analysis. 
CBS was positively correlated with neutrophils among different 
iron death- related genes. CBS is a key enzyme for H2S produc-
tion in vivo, and H2S can stimulate neutrophils adhesion and neu-
trophils tissue infiltration. These effects are associated with the 
up- regulation of various adhesion receptors and proinflammatory 
mediators.44,45 Other studies have found that H2S inhibits neu-
trophil tissue infiltration.46,47 Whether the positive correlation 
between CBS and neutrophils in CAD patients is mediated by H2S 
remains to be verified. HSPB1 has been shown to have a cell pro-
tective effect.48 HSPB1 is involved in a number of important phys-
iological functions, including inhibition of cytokine expression and 
inhibition of neutrophil infiltration.49 My study found that HSPB1 
was negatively correlated with neutrophils, and the expression 
of HSPB1 was decreased in CAD patients. Therefore, HSPB1 may 
be a potential target for improving cardiac immune microenviron-
ment in CAD patients.

Finally, we analysed the marker gene for gene- targeted drugs 
and the ceRNA network. Among the five CBS target drugs re-
trieved, ademetionine was confirmed to be an allosteric activator 
of CBS.50 The drug has been used in mentally related diseases and 
liver diseases,51,52 and its application in cardiovascular diseases has 
not been reported. Pyridoxal phosphate acts as a cofactor for CBS 

in the body, and its deficiency will lead to the loss of CBS activ-
ity.53 The combination of the antisense oligonucleotide Apatorsen of 
HSPB1 mRNA and a variety of anti- cancer drugs enhances the effect 
of anti- cancer drugs.54,55 As a predictive targeted drug of HSPB1, 
cloxyquin has been proved to play a cardioprotective effect by reg-
ulating autophagy,56 but the study of whether HSPB1plays a role in 
this process has not been clarified. Non- coding RNA plays an im-
portant role in the development of atherosclerosis, miR- 18a- 5p, miR- 
27a- 3p, miR199a- 3p, miR- 223- 3p and miR- 652- 3p abundance and 
atherosclerosis Closely related to cardiovascular- related reocclu-
sion.57 Whether our predicted gene- targeted drugs and non- coding 
RNA can play a role is unclear, and the specific pathways need to be 
further studied. Therefore, the selected drugs and non- coding RNA 
can be prospectively studied.

CA9, CBS, CEBPG, HSPB1, SLC1A4, HSPB1 and TRIB3 are genes 
that we have screened for iron death in coronary heart disease sam-
ples. Among them, we focus on the two genes— CBS and HSPB1. 
These two genes are not only related to iron death. In addition to 
being closely related, it may also be involved in the regulation of the 
cardiac immune microenvironment of CAD patients. Although gene 
expression may not be directly equivalent to protein expression, the 
biomarkers in this study should be regarded as genes, not proteins, 
but the significance of its research cannot be denied. We will con-
tinue to pay attention to these genes to deepen our understanding 
of the pathogenesis and treatment of coronary heart disease.
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