
genes
G C A T

T A C G

G C A T

Review

Sex Determination and Differentiation in Decapod and
Cladoceran Crustaceans: An Overview of Endocrine Regulation

Kenji Toyota 1,2,3,*, Hitoshi Miyakawa 4, Chizue Hiruta 5, Tomomi Sato 6,*, Hidekazu Katayama 7, Tsuyoshi Ohira 2

and Taisen Iguchi 6,*

����������
�������

Citation: Toyota, K.; Miyakawa, H.;

Hiruta, C.; Sato, T.; Katayama, H.;

Ohira, T.; Iguchi, T. Sex Determination

and Differentiation in Decapod and

Cladoceran Crustaceans: An Overview

of Endocrine Regulation. Genes 2021,

12, 305. https://doi.org/10.3390/

genes12020305

Academic Editor: Artyom Kopp

Received: 29 January 2021

Accepted: 19 February 2021

Published: 21 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Marine Biological Station, Sado Center for Ecological Sustainability, Niigata University, Sado,
Niigata 952-2135, Japan

2 Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka,
Kanagawa 259-1293, Japan; ohirat-bio@kanagawa-u.ac.jp

3 Department of Biological Science and Technology, Faculty of Industrial Science and Technology,
Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan

4 Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan;
h-miya@cc.utsunomiya-u.ac.jp

5 Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo,
Hokkaido 060-0810, Japan; chizueh@gmail.com

6 Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
7 Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa 259-1292, Japan;

katay@tokai-u.jp
* Correspondence: toyotak@cc.niigata-u.ac.jp (K.T.); tomomi@yokohama-cu.ac.jp (T.S.);

taiseni@hotmail.co.jp (T.I.)

Abstract: Mechanisms underlying sex determination and differentiation in animals are known to
encompass a diverse array of molecular clues. Recent innovations in high-throughput sequencing
and mass spectrometry technologies have been widely applied in non-model organisms without
reference genomes. Crustaceans are no exception. They are particularly diverse among the Arthro-
poda and contain a wide variety of commercially important fishery species such as shrimps, lobsters
and crabs (Order Decapoda), and keystone species of aquatic ecosystems such as water fleas (Order
Branchiopoda). In terms of decapod sex determination and differentiation, previous approaches have
attempted to elucidate their molecular components, to establish mono-sex breeding technology. Here,
we overview reports describing the physiological functions of sex hormones regulating masculiniza-
tion and feminization, and gene discovery by transcriptomics in decapod species. Moreover, this
review summarizes the recent progresses of studies on the juvenile hormone-driven sex determina-
tion system of the branchiopod genus Daphnia, and then compares sex determination and endocrine
systems between decapods and branchiopods. This review provides not only substantial insights
for aquaculture research, but also the opportunity to re-organize the current and future trends of
this field.

Keywords: crustacean; sex determination; sexual differentiation; insulin-like androgenic hormone (IAG);
androgenic gland hormone (AGH); crustacean female sex hormone (CFSH); juvenile hormone (JH)

1. Introduction

Crustaceans form a large subgroup of arthropods that live in virtually all regions of
Earth. The latest molecular phylogenetic studies of arthropods have revealed that extant
Crustacean lineages can be categorized into three major groups: Ostracoda, such as the
sea firefly, Malacostraca such as crabs and shrimps, and Branchiopoda such as water fleas
and brine shrimp; and that the Crustacea and Hexapoda (insect group) together form the
Pancrustacea [1–3] (Figure 1). The sex manipulation of Malacostraca, especially species that
are important for fishery, has been more thoroughly studied than those of other crustaceans,
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since it has been recognized as an effective and beneficial technique for aquaculture. Gener-
ally, fishery-important Malacostracans have different commercial values between females
and males, due to differences in growth rates between sexes and animals of larger body
size being of higher value. Additionally, in terms of building up large-scale aquaculture,
females may be more valuable than males since they provide more benefit in increasing the
numbers of individuals within population [4,5]. In Malacostracans, although the primary
sexual fate is generally decided by genetic factors such as the sex chromosomes (genotypic
sex determination: GSD), androgenic gland factor and crustacean female sex hormone
(CFSH) are also recognized as the peptide hormones involved in the development of sexu-
ally dimorphic characteristics [6,7]. For Branchiopoda, it is known that the majority has
GSD but not peptides such as insulin-like androgenic gland hormone (IAG) [8] and CFSH
in their genomes. Furthermore, part of the Branchiopoda, such as the cladoceran water
flea genus Daphnia, have environmental sex determination (ESD). Recently, understanding
of the molecular mechanisms underlying sex determination and differentiation in daph-
nids has been enhanced by the discovery of the phenomenon that induces male-biased
production in response to juvenile hormone (JH) exposure. In this review, we summarize
current knowledge on sex determination mechanisms and sex hormones (IAG and CFSH)
in Malacostraca decapods and JH-driven sex determination pathways in the Branchiopod
cladocerans from various studies, including recently developed OMICS approaches.
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Figure 1. Phylogeny of extant arthropods. The branching pattern is based on [1] with some mod-
ifications. Crustaceans are one of the four major groups of arthropods and consist of Ostracoda,
Malacostraca, and Branchiopoda.

2. Sex Determination and Differentiation Mechanisms in Crustaceans

Sex determination is the most fundamental developmental process that governs the
establishment of sexually dimorphic traits, and then leads to sex-specific characteristics
in physiology and behavior. Although development as either a female or male is a robust
mechanism in animals, there is an amazing diversity of modes of sex determination. In most
organisms, sexual fate is thought to be genetically pre-decided at fertilization (GSD) rather
than to be determined by environmental cues (ESD). Substantial examples of GSD factors
are sex chromosomes that carry sex-determining genes. Such sex chromosome systems can
be grouped into two major forms: male heterogamety (called XX/XY system), and female
heterogamety (called ZW/ZZ system). In Malacostraca, the majority of shrimps, crayfishes,
and terrestrial isopods employ a ZZ/ZW sex determination system [9–15], while some
species of crabs and lobsters employ XX/XY determination [16–19] (Figure 2). Mode of
sex determination in decapods, isopods, amphipods, and branchiopods is summarized in
Table 1 and has been well reviewed [20].
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the water flea Daphnia (Branchiopoda, cladoceran). IAG: insulin-like androgenic gland hormone,
CFSH: crustacean female sex hormone, JH: juvenile hormone, DAPALR: doublesex1 alpha promoter-
associated long noncoding RNA, Dsx: doublesex.

Table 1. Modes of sex determination and available genome in Malacostracan and Branchiopod crustaceans.

Species Taxonomy Sex Determination Manner Draft or Complete Genome

Pacific white shrimp
Litopenaeus vannamei Malacostraca Decapoda GSD with ZZ/ZW [21] [22]

Giant freshwater prawn
Macrobrachium rosenbergii Malacostraca Decapoda GSD with ZZ/ZW [23] [24]

Cherry shrimp
Neocaridina denticulate Malacostraca Decapoda Not available [25]

Marbled crayfish
Procambarus fallax f. virginalis Malacostraca Decapoda GSD (no male has reported) [26]

Mud crab
Scylla paramamosain Malacostraca Decapoda GSD with ZZ/ZW [27] [28]

Wood louse
Armadillidium vulgare Malacostraca Isopoda GSD with ZZ/ZW [9,10] [29]

Parhyale hawaiensis Malacostraca Amphipoda Not available [30]
Gammarus duebeni Malacostraca Amphipoda ESD [31] Not available

Water flea
Daphnia pulex Branchiopoda Cladocera ESD [32,33] [34,35]

Water flea
Daphnia magna Branchiopoda Cladocera ESD [36,37] [38]

Clam shrimp
Eulimnadia texana Branchiopoda Spinicaudata GSD with androdioecious

(male and hermaphrodite) [39] [40]

GSD and ESD indicate genotypic and environmental sex determination, respectively.

Sexual differences arise during embryogenesis, even though the genomic content differs
little between females and males. Thus, differences in gene regulation are generally consid-
ered to underlie most of the sex-specific differentiation, and many researchers have therefore,
sought to identify regulatory mechanisms that govern sex-specific gene expressions.

The molecular cascades leading to distinct sexual phenotypes are triggered by a wide
variety of genetic or environmental factors, however, most of them tend to converge on
a common set of transcriptional regulators. Such transcriptional factors are doublesex
(dsx) and male-abnormal-3 (DM) domain-containing genes [41,42]. The first identified
DM domain-containing gene was the dsx from the fruit fly Drosophila melanogaster, named
for its importance in both female and male development [43]. In insect species, dsx genes
play a pivotal role in sexual differentiation, and are involved in the formation of sexually
dimorphic traits through the expression of sex-specific isoforms [41,42]. Likewise, the DM
domain-containing genes have been implicated in the determination and/or maintenance
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of gonadal sex across a broad range of vertebrate species, such as the Y-chromosome-linked
DMY gene in the medaka fish [44], the W-chromosome-associated DM-W gene in the
African clawed frog Xenopus laevis [45], and Z-chromosome-linked DMRT1 gene in the
chicken Gallus gallus domesticus [46]. Unlike in insect species, the dsx function is known
to be regulated via sex-biased expression (with the majority of cases in males) rather than
alternative sex-specific splicing in non-insect arthropods such as the crustacea (details in
following sections) and chelicerata (including the common house spider) [47]. Moreover,
in addition to dsx genes, the invertebrate Y-chromosome-linked iDMY genes have recently
been identified as a masculinization factor during embryogenesis in the Eastern spiny
lobster Sagmariasus verreauxi [48] and in the ornate spiny lobster Panulirus ornatus [49].
High-throughput next generation sequencing techniques have successfully enabled the
decoding of draft genomes in many Malacostracans (Table 1). Especially genome infor-
mation of following species: the marbled crayfish Procambarus fallax f. virginalis [26], the
Pacific white shrimp Litopenaeus vannamei [22], the giant freshwater prawn Macrobrachium
rosenbergii [24], and the terrestrial isopod Armadillidium vulgare [29], will accelerate sex
determination and differentiation studies, since they have been used in the studies of
endocrinology and sex differentiation as experimental animals (details in following sec-
tions). Moreover, several transcriptome studies have revealed the existence of female- or
male-biased genes in various decapods, shedding light on the understanding of molecular
mechanisms underlying sex determination, sexual differentiation, and sexual matura-
tion [48–53]. Improving the sequencing depth and algorithm for de novo assembly will help
to identify the loci of sex-determining genes on sex chromosomes. In terms of ESD, a broad
range of abiotic and biotic environmental factors (for example, photoperiod, temperature,
social interaction, and parasites) can trigger, both female or male sexual differentiation from
a single genotype. A striking example of the ESD system in crustaceans is the Branchiopoda
cladoceran water flea Daphnia (reviewed in following Section 5) (Figure 2).

As a topic of growing concern over environmental contamination by human activity,
the impacts of chemical pollution on living organisms are no longer negligible. Although
we will describe this in more detail in the following Section 6, it is already known that
sex determination and/or sexual differentiation processes in various crustacean orders
can be disrupted by endocrine disrupting chemicals (EDCs) such as in human sewage
(e.g., detergents and medicines), pesticide residues, and heavy metals [54].

3. Androgenic Gland Factors

The integrated signaling cascades responsible for sexual differentiation are almost as
diverse, ranging from cell-nonautonomous gonad-dependent endocrine control (mainly by
sex steroids such as estrogens and androgens) of sexual traits in mammals and other verte-
brates to cell-autonomous sex determination in invertebrates such as insects [41]. However,
exceptionally, only Malacostracan crustaceans have a cell-nonautonomous sexual differen-
tiation manner and, unlike gonad-dependent endocrine regulation in vertebrates, have a
male-specific endocrine gland known as the androgenic gland (AG), which is located on
the terminal section of the vas deferens [55]. The AG has not been described in cladocer-
ans [56]. Briefly, the physiological function of the AG has historically been demonstrated
to play a pivotal role in male sex differentiation by AG ablation and implantation in the
Malacostracan amphipod Orchestia gammarella [55,57]. Later, AG studies have been con-
ducted using the Malacostracan isopod woodlouse A. vulgare by AG implantation [58],
AG ablation [59], and injections of AG extracts [60]. Thereafter, the androgenic gland
hormone (AGH) has been purified, and its peptide structure reported [61,62]. As with
the amphipods and isopods, physiological roles of AGH have further been demonstrated
in Malacostracan decapod species using, for instances, AG implantation in the red claw
crayfish Cherax quadricarinatus, and the marbled crayfish P. fallax f. virginalis [63], while
AG removal from males resulted in feminization in C. quadricarinatus [64] and in the fresh-
water prawn, M. rosenbergii [23]. Substantial intrinsic AGH in decapod species has been
identified from C. quadricarinatus. Further study has demonstrated that the AG hormone
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structure is very similar to the insulin-like family, and this hormone was termed the IAG [8].
In terms of regulatory mechanisms of IAG expression, some studies have found that eye-
stalk ablation in males caused hypertrophy and hyperplasia of the AG [65,66] as well as
over-expression of the IAG gene [67]. Based on those findings, it has been suggested that
there is a unique developmental axis known as the X-organ–sinus-gland neuroendocrine
complex (XO-SG)-AG-testis axis has been suggested where, some XO-SG-derived neu-
ropeptides act as upstream regulators of IAG hormone gene expression [68]. Although the
fine details are in dispute, it has been demonstrated that IAG interacts with its binding
protein and receptor to activate downstream pathways [69–71]. Additionally, recent studies
have demonstrated that the dsx gene is involved in the regulation of IAG expression. In the
Chinese shrimp Fenneropenaeus chinensis, the Fcdsx gene dominantly expresses in the testis,
and the mRNA level is gradually increased with larval development. Knockdown of the
Fcdsx gene resulted in suppression of IAG gene expression, suggesting that Fcdsx regulates
male sexual differentiation via IAG signaling [72]. On the other hand, in the red claw
crayfish C. quadricarinatus, the Cqdsx gene mainly expresses in the gonad (two times higher
in the ovary than in the testis), and its knockdown increased IAG expression, meaning
that Cqdsx is involved in female sexual differentiation [73]. Both Fcdsx and Cqdsx have
no sex-specific splicing form and, therefore, there is male- or female-biased expression to
promote sexual differentiation pathways.

A wide range of aspects of IAG has been previously comprehensively overviewed [20,74].
Here, we focus on the relation between the structure and biological activity of IAGs.
Although a lot of studies have demonstrated that the silencing of IAG genes by RNA
interference promotes morphological feminization [75–78], there is no direct evidence for
the function of IAG. The deduced amino acid sequences of IAGs share highly conserved
structural features including a signal peptide, B chain, C peptides, and A chain with the
mature active peptide formed after removal of the C peptides [79]. As an active form,
both A and B chains form a heterodimer with disulfide bonds. Total organic chemical
synthesis of IAG has revealed potentially two types of IAG: one is similar to the vertebrate
insulin-type, and the other is not an insulin-type (Figure 3). In the isopod A. vulgare, our
group has found that there are four disulfide bonds and their arrangement is different from
that in the vertebrate insulin-type (named as androgenic gland hormone: AGH-type) but
it is thermodynamically unstable [80]. Moreover, in vivo biological assays demonstrated
the AGH-type has the ability to promote masculinization, but the insulin-type does not
(Figure 3). As compared with isopods, decapod IAGs lack the two cystein residues found
in the isopod AGH, indicating that the decapod IAGs are more related molecularly to
the vertebrate insulin [81], although there some exceptions (eight cystein residues as well
as isopod species) such as in the Indian bait prawn Palaemon pacificus [82,83] and in the
freshwater prawn M. rosenbergii [77,84]. Moreover, we synthesized both AGH-type and
insulin-type IAGs of the kuruma prawn Marsupenaeus japonicus by total chemical synthesis
and demonstrated that the insulin-type showed a significant biological activity in vitro,
whereas the AGH-type did not [81] (Figure 3). This has strongly suggested that the insulin-
type IAG is the innate form in the decapod species. In the near future, it will be necessary
to prove the in vivo functional differences between the insulin-type and AGH-type.
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4. Crustacean Female Sex Hormone (CFSH)

The CFSH was found to be a responsible factor for regulating the development
of female reproductive characteristics in the blue crab Callinectes sapidus and the green
crab Carcinus maenas [7]. Callinectes CFSH, synthesized in the X-organ and then stored
in/secreted from the sinus gland, was purified from eyestalk tissues. This discovery of
CFSH has resulted in a major research trend for exploring its homologs from other decapod
species. To date, eyestalk transcriptome and peptidome approaches have successfully
identified CFSH orthologs in several other brachyuran crabs, such as the swimming crab
Portunus trituberculatus [85], the Chinese mitten crab Eriocheir sinensis [86], the green shore
crab C. maenas [87], and the mud crab Scylla paramamosain [88–90], as well as in the kuruma
prawn M. japonicus [91], the Pacific white shrimp L. vannamei [86], the banana shrimp
Fenneropenaeus merguiensis [92], the Antarctic shrimp Chorismus antarcticus [93], the Eastern
rock lobster S. verreauxi [94], the giant freshwater prawn M. rosenbergii [86,95,96], the red
swamp crayfish P. clarkii [85], and the Australian crayfish C. quadricarinatus [97]. Despite
the growing amount of CFSH sequence information, little is known about its physiological
functions. Knockdown of CFSH impaired the development of reproductive traits such as
the ovigerous setae, gonopores and extended parental brood care in C. sapidus [7], and the
formation of gonopores in juvenile stages in the mud crab [89], indicating that CFSH acts as
an endocrine factor for establishing female-specific morphological characteristics. However,
a few reports have demonstrated that CFSH expression can be detected in both females
and males in, for example, the kuruma prawn [98]. Moreover, two distinct CFSH subtypes
have been identified from eyestalk and ovary tissues [98]. Based on immunohistochemistry
and in situ hybridization analyses of CFSH, the ovary-type is predominantly expressed in
oogonia and previtellogenic oocytes during vitellogenesis, indicating that it may take part
in reproductive processes. Besides, in the Australian crayfish, CFSH expression has been
detected in the central nervous system, antennal gland, and gut [97].
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Some recent studies have demonstrated the crosstalk of CFSH with IAG to facilitate
sexual differentiation processes. In fact, CFSH has been detected in the eyestalk of both
sexes of several crab species [7,88,89]. In the mud crab S. paramamosain, a previous study
demonstrated that CFSH promotes the formation of female-specific reproductive traits
such as gonopores in females, and inhibits the expression of IAG in AG in vitro [88].
Moreover, the machinery of transcriptional regulation of CFSH on IAG expression has been
investigated with regard to the involvement of signal transducers and activators of the
transcription (STAT)-binding site [89]. Notably, the CFSH receptor has not been identified
so far in decapod species. Further studies on the CFSH receptor and its downstream
signaling pathways are necessary to understand the mechanisms underlying endocrine
crosstalk between CFSH and IAG, and its involvement in sex determination/differentiation
in Malacostracans.

5. Juvenile Hormone as a Male Sex-Determinant in Cladocerans

Juvenile hormone (JH) is well known as one of the important endocrine factors regu-
lating molting and metamorphosis in insect species. It also shows pleiotropic functions to
control various phenomena such as ovarian development, reproductive behavior [99], and
various types of phenotypic plasticity such as caste determination in the social insects [100],
weapon traits development in the stag beetles [101], and the switching of reproductive
modes in the pea aphid [102]. It is currently accepted that the JH system is conserved
among Arthropod species [103,104]. In 1987, methyl farnesoate (MF), which is structurally
related to insect JHs, was identified as an endogenous JH molecule in the spider crab,
Libinia emarginata [105]. So far, it has generally been accepted that MF is a major JH in
Malacostracan crustaceans [106–108]. To date, physiological functions of MF have been
demonstrated as stimulation of protein synthesis, promotion of molting cycle, reproduction,
and larval development in Malacostracan crustaceans (e.g., crabs and shrimps) given their
importance in aquaculture [108–110], however, no report is available showing involvement
of MF in sex determination and/or sexual differentiation in Malacostracans.

Within Crustacea, cladocerans belong to the class of Branchiopoda (Figure 1). Clado-
ceran species, commonly called water fleas, are one of the dominant organisms in fresh-
water zooplankton communities [111]. The genus Daphnia in general employs cyclical
parthenogenesis, in which parthenogenesis and sexual reproduction can be altered in
response to environmental cues such as day-length, water temperature, nutrition, over-
crowding, and their combinations [36,37,112,113]. Under favorable growing conditions,
Daphnia parthenogenetically produce offspring that build up a population consisting of
only females, resulting in exponential growth of clonal populations. On the other hand,
under unfavorable conditions, males are produced by parthenogenesis (ESD) and the re-
productive mode changed to sexual reproduction; this means that both females and males
share the same genome information. Sexually produced eggs, commonly called resting
or ephippial eggs, are then formed, which can tolerate extreme conditions (e.g., drying
and freezing). These resting eggs can hatch out and develop as females when favorable
conditions are restored. In this way, daphnids take advantage of cyclical parthenogen-
esis depending on changing environmental conditions in their habitat; parthenogenesis
allows rapid propagation during favorable growing seasons, whereas sexual reproduction
contributes to an increase in genetic variation and survival rate [114].

In terms of sex determination, several studies have demonstrated that various envi-
ronmental cues such as photoperiod, temperature, nutrition, and crowding, trigger the
production of male offspring in Daphnia [36,37,112,113]. Despite great efforts in studies on
male induction, reproducible experimental conditions for the production of male offspring
have not been established yet. However, JHs and their agonists such as methoprene and
fenoxycarb have been demonstrated to induce a dose-dependent increase in male offspring
in the water flea Daphnia magna [115–121] and other cladoceran species such as Ceriodaph-
nia, Moina, Bosmina, Oxyurella, Leberis, Leydigia, and Disparalona [117,122–124]. JHs and
their agonists activities can be estimated in vitro by luciferase assays using Daphnia JH
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receptor complex (methoprene-tolerant and steroid receptor coactivator) [125–127], and
in silico by molecular docking simulations between the protein structure of the Daphnia
methoprene-tolerant and chemicals (e.g., JHs and their agonists) [128]. So far, no one has
succeeded in quantifying innate MF levels in extracts from daphnid species. In the near
future, quantification of endogenous MF levels during the sex determination period will be
indispensable for understanding its physiological role as a male sex determinant. Although
JH-induced male production has enabled further studies regarding understanding the
molecular mechanisms underlying masculinization processes in daphnids [33,129], the
factors responsible for male sexual development are still not well-understood. Recently, our
group has identified the doublesex1 (dsx1) gene, which exhibits male-specific expression pat-
terns from early embryonic to adult stages; knockdown of dsx1 in male embryos and ectopic
expression of dsx1 in female embryos resulted in sex reversed phenotypes, in D. manga [130]
and in other cladocerans [124] (Figure 2). Recently, components of gene cascade connecting
JH signaling to dsx1 have been identified as bZIP transcription factor, Vrille [131] and the
doublesex1 alpha promoter-associated long noncoding RNA (DAPALR) [132].

Our group has recently found a useful D. pulex strain (WTN6 strain) that can produce
male and female offspring in response to day-length differences: a mother produces
female progeny reared under the long-day condition (14 h light, 10 h dark), whereas
male progeny emerge under the short-day condition (10 h light, 14 h dark) [33]. This is
a suitable experimental tool that enables the evaluation of factors involved with the MF
signaling pathway governing ESD in daphnids. Taking advantage of the WTN6 strain, we
have successfully identified the male-sex determining factors by transcriptome analysis:
ionotropic glutamate receptors, especially N-methyl-D-aspartic acid (NMDA) receptor
subtypes, and protein kinase C (PKC) act as upstream regulator of MF signaling and are
involved in signaling pathways inducing male offspring [133,134]. Although it has been
reported that PKC can recruit NMDA receptors to the cell surface in Xenopus oocytes and
then increase their channel-opening rates [135], the causal relation between NMDA and
PKC pathways for MF signaling in daphnids remains unclear. Likewise, metabolome
analysis found that pantothenate (generally known as a vitamin B5) is highly accumulated
in individual mothers at the onset of the sex-determining period, when reared under
male-producing conditions [136]. Pantothenate is ubiquitously present in living organisms
and is known as a precursor of co-enzyme A (CoA). Interestingly, treatment of mother
individuals with pantothenate demonstrated that the male induction ratio was significantly
increased, suggesting that it may act as a male-sex determinant. So far, however, the role of
pantothenate in the activation of MF signaling is largely unknown. One possible hypothesis
is that pantothenate can be supplied as a primary source for the MF synthesis pathway,
because MF is a member of the sesquiterpenoids that are initially synthesized from acetyl-
CoA through the mevalonate pathway. More detailed analyses will be necessary for
elucidation of the pantothenate involvement in MF biosynthesis in daphnids.

To support those findings about MF signaling driving male sex determination in the
WTN6 strain more robustly, our group recently found two D. magna strains (LRV13.2 and
LRV13.5-1 strains) in which the proportion of the female or male offspring can be altered
depending on photoperiod: The LRV13.2 strain produces female or male offspring when
reared under long-day or short-day conditions, respectively (in a similar manner to the
D. pulex WTN6 strain), whereas the LRV13.5-1 strain conversely produces female or male
offspring reared under short-day or long-day conditions, respectively [137]. Moreover, we
clearly confirmed that signaling pathways underlying male sex determination processes
are regulated by MF signaling via ionotropic glutamate receptors and PKC pathways in the
both the LRV13.2 and LRV13.5-1 strains as well as the WTN6 strain, whereas pantothenate
did not show male inducibility, suggesting that male sex determining processes may be
diverged between D. magna and D. pulex [138] (Figure 4).
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6. Vertebrate-Type Steroid Hormones

In crustaceans and other arthropod species, ecdysteroids are the only known steroid
hormone family known to plays a pivotal role in molting and other developmental pro-
cesses [139]. In Malacostracans, ecdysteroids are synthesized and secreted from the Y-organ
which is regulated by sinus gland-derived neuropeptides, such as a molt-inhibiting hor-
mone (MIH) [140–142]. However, it has been demonstrated that vertebrate-type sex steroids
are involved not only in reproduction [88,143,144], but also in partial disruption of sex
differentiation in decapods. In fact, enzyme immunoassays have successfully detected the
vertebrate-type steroids, including 17β-estradiol (E2), estriol, progesterone, testosterone,
and 11-ketotestosterone, in the hemolymph of kuruma prawn M. japonicus [145]. Treatment
of female individuals with testosterone resulted in the masculinization of the ovary in the
ghost crab Ocypoda platytarsis [146]. An apparent bias towards female occurred the freshwa-
ter amphipod Gammarus pulex [147] and to the pacific white shrimp L. vannamei [148] after
treatment with E2. Furthermore, transcriptome analysis revealed that E2 may promote
female differentiation in the mud crab S. paramamosain [149].

As in the Branchiopoda cladoceran water flea, D. magna, it is known that the ecdys-
teroids are the only steroid family in the Malacostracans as well, and the gut has been iden-
tified as a candidate organ for ecdysteroidgenesis [150,151]. Several studies have demon-
strated that vertebrate-type steroids (e.g., estrogens, testosterones, and progesterone) and
their agonists (e.g., diethylstilbestrol, nonylphenol, and bisphenol A as estrogen agonists,
and R-1881 as an androgen agonist) can affect the growth rate, fecundity and entire sex ratio
of a population [152–157]. However, there are some inconsistencies in these results caused
by different experimental procedures. It will be necessary to re-survey the in vivo effects of
these vertebrate-type steroids on Daphnia using widely-accepted validated procedures such
as the OECD Test Guideline 211 ANNEX7, “Daphnia magna Reproduction Test” [158]. In ad-
dition, we have successfully constructed a two-hybrid system using the D. magna ecdysone
receptor and its heterodimeric partner ultraspiracle complex (EcR/USP) [159], allowing the
observation of dose-dependent activation of the EcR/USP when transfectants are exposed
to ecdysteroids and other chemicals known to have ecdysteroid-like activities in vitro.
Although it will be necessary to check the cross-reactivity of vertebrate-type steroids to
D. magna EcR/USP, this system can be a useful tool for rapid screening, instead of in vivo
assays. Moreover, recent progress in big data-driven computational (in silico) analysis has
enabled the prediction of the interaction of D. magna EcR/USP with chemicals [139,160].
This structure-based in silico approach is very compatible with de novo transcriptomics to
build comprehensive gene models even in non-model species, and can be easily applied in
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various organisms as an efficient and cost-effective tool for screening large inventories of
chemicals for their potential to cause endocrine disruption.

7. Conclusions and Future Directions

This review serves as an outline reference for endocrine-driven sex determination
and/or sexual differentiation systems in Malacostraca and Branchiopoda crustaceans. Al-
though the transcriptional regulatory mechanisms between IAG and Dmrt genes have been
investigated by gene knockdown approaches [161,162], the eyestalk (XO-SG complex)-
derived neuropeptides that regulate IAG expression and those molecular networks are still
largely unknown. Moreover, even among Malacostraca species, previous findings have so
far demonstrated that endocrine systems vary in certain respects such as heterodimeric
disulfide bond patterns of IAG. Recent advances in OMICS technologies and genetic ma-
nipulation techniques have paved the way for a new generation of research organisms,
including crustaceans. Indeed, as fast-growing model crustaceans, the Branchiopoda Daph-
nia (D. pulex and D. magna) and the Malacostraca amphipod Parhyale hawaiensis are useful
because these species are easy to rear and offer large broods of embryos amenable to dissec-
tion and live imaging, and complete embryonic developmental staging [163,164]. In addi-
tion, genome sequences are available [30,34,35]. Microinjection-based genetic manipulation
using genome editing combined with draft genome and transcriptome archives have en-
abled further studies of evolution and development in arthropods [163,165–167]. However,
the decapod species have no established and widely-accepted model species, despite
their importance for fisheries and aquaculture. Although the cherry shrimp N. denticulate
and the parthenogenetic marbled crayfish P. fallax f. virginalis are available for develop-
mental and physiological studies with genome sequences and offer useful experimental
advantages [25,26,168,169], genomic manipulation methods have not been established so
far. As more researchers continue to adopt decapods (and other crustaceans) into their
laboratories and study their endocrinology and continue to develop genomic manipu-
lation methods, it will be exciting to see the new research horizons of not only sexual
development, but also unexpected phenomena with this unique emerging research system.
In summary, for future sex determination/differentiation studies in crustaceans, establish-
ment of useful model crustacean (especially decapod) species and reverse genetics methods
will be essential.
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