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Objectives: Multiple sclerosis (MS) is a complex central nervous system (CNS)
demyelinating disease, the etiology of which involves the interplay between genetic and
environmental factors. We aimed to determine whether genetically predicted peripheral
immune cell counts may have a causal effect on MS.

Methods: We used genetic variants strongly associated with cell counts of circulating
leukocyte, lymphocyte, monocyte, neutrophil, eosinophil, and basophil, in addition to
some subpopulations of T and B lymphocyte, as instrumental variables (IVs) to perform
Mendelian randomization (MR) analyses. The effect of immune cell counts on MS risk was
measured using the summary statistics from the International Multiple Sclerosis Genetics
Consortium (IMSGC) genome-wide association studies (GWAS).

Results: Our findings indicated that higher leucocyte count [odds ratio (OR), 1.24; 95%
confidence interval (CI), 1.07 - 1.43; p = 0.0039] and lymphocyte count (OR, 1.17; 95%
CI, 1.01 – 1.35; p = 0.0317) were causally associated with MS susceptibility. In addition,
we also found that increase of genetically predicted natural killer T (NKT) cell count is also
associated with an increase MS risk (OR, 1.24; 95% CI, 1.06 - 1.45; p = 0.0082).

Conclusions: These findings show that the genetic predisposition to higher peripheral
immune cell counts can exert a causal effect on MS risk, which confirms the crucial role
played by peripheral immunity in MS. Particularly, the causal association between NKT cell
count and MS underscores the relevance of exploring the functional roles of NKT cells in
disease pathogenesis in future.

Keywords: multiple sclerosis, mendelian randomization (MR), genome wide association study (GWAS), peripheral
immune cell count, NKT cell
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INTRODUCTION

As a chronic demyelinating disorder of central nervous system
(CNS), multiple sclerosis (MS) is characterized by multiple
disseminated inflammatory lesions both temporally and
spatially (1). Although ultimately the patients will suffer from
irreversible disability, the course of disease development is highly
variable, featuring a wide range of focal neurological signs and
symptoms that affect mobility, sensation or cognition (2). MS
usually clusters within families but does not follow the
Mendelian inheritance pattern (3). Such familial recurrence
pattern indicates a polygenic risk model for MS, in which the
risk is likely conferred by an allele of moderate effect size and
several minor-effect alleles (4).

Notably, the genes implicated by these identified loci cluster
in key immunological pathways involving lymphocyte activation,
receptor signaling and cytokine production (5–7). In accordance,
among the approved disease-modifying therapies for relapsing-
remitting MS, many have immune modulatory effects, such as
directing immune cell trafficking, suppressing auto-reactive T
cells, inducing regulatory T cells (Tregs) and regulating B cell
activities (8–12). Although their efficacy is expected to diminish
with time, which possibly reflects the dwindling roles played by
inflammation as the disease develops, early treatment with drugs
that reshape the immune environment can indeed limit the rate
of evolving to the secondary progressive stage (13). Therefore,
the genetic architecture of MS susceptibility provides some solid
evidence supporting the view that MS is an immune-mediated
disease and highlights the prominent roles of immune
dysregulation in MS predisposition.

Since genetic variants are fixed and randomly allocated at
conception, Two-sample Mendelian randomization (MR) can
exploit these variants as unbiased proxies to approximate the
effect of an exposure on the outcome of interest while
minimizing the effects of confounding and reverse causation
(14, 15). Although both body mass index (BMI) and serum 25-
hydroxyvitamin D [25(OH)D] have been consistently shown
causally associated with MS via MR approach (16–18), few MR
study has addressed the causal relationship between circulating
immune cell counts and the disease. To further explore the causal
roles played by peripheral immunity on MS risk, we
implemented a two-sample MR analysis using recently
published data from the largest GWAS to date on blood cell
phenotypes (19) and a high-resolution immune cell profiling
GWAS (20).
METHODS

Exposure and Outcome Data Sources
Effect estimates for SNPs associated with peripheral blood cell
counts, which include total leukocyte, lymphocyte, monocyte,
neutrophil, eosinophil, and basophil, were obtained from the
Blood Cell Consortium (BCX) meta-analysis, which includes
data from 563,085 European ancestry individuals (19). For
cellular subpopulation analyses, which include absolute cell
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counts of T cells [naïve, central memory (CM), effector
memory (EM), terminally differentiated (TD), regulatory
(Treg) and natural killer (NKT)] and B cells (naïve,
unswitched memory, switched memory and transitional), we
used GWAS summary statistics from Orrù et al., which profiled
3,757 individuals by flow cytometry with the Sardinian founder
population (20).

Effect estimates of these SNPs on the risk of MS were
evaluated with GWAS summary statistics from the
International Multiple Sclerosis Genetics Consortium (IMSGC)
study, which involves 47,429 MS cases and 68,374 control
subjects of European ancestry (21). To limit potential bias for
MR analyses resulting from population stratification, the
summary statistics was derived from individuals of European
descent for both exposure and outcome datasets. Since the
present study uses only publicly available GWAS summery
statistics without attempting to identify individual-level data,
ethical approval was not sought for.

Instrumental Variable Selection
For the blood cell traits derived from the two GWAS datasets,
genetic variants achieving genome-wide significance were selected at
the p-value cutoff of 5 × 10-8. To guarantee that the variants used as
instrumental variables (IVs) are independent, we clumped the SNPs
(R2 < 0.001 with any other associated SNP within 10 kb window)
based on 1000 Genomes Project linkage disequilibrium (LD)
reference panel, with the SNP showing the lowest p value at each
locus retained. Given the modest scale of the second GWAS (20), a
more relaxed clumping threshold (R2 < 0.01) was used. The
association statistics of these genetic variants with MS were then
extracted. Because the IV exclusion restriction assumption is
unprovable in practice (22), we removed the variants showing
potential pleiotropic association with MS (association p value
lower than the genome-wide suggestive significance level of 10-5),
a conservative strategy allowing us to perform MR analysis with
more confidence (23). To prevent the effect estimates from aligning
with different allele, harmonization was performed to remove
ambiguous SNPs showing non-concordant alleles. The maximum
minor allele frequency (MAF) threshold for aligning palindromic
SNPs was set for 0.3. When an exposure-associated SNP was not
present in the outcome dataset, a proxy SNP highly correlated with
the variant of interest (r2 > 0.8) was selected instead. Since previous
MR studies have only confirmed that 25(OH)D and BMI are
causally associated with MS (16, 17, 24), and there is a lack of
evidence regarding other MS risk factors such as smoking and
exposure to Epstein-Barr virus (EBV) (18), to meet the
independence assumption of MR analysis, SNPs showing
suggestive association (P < 10-5) with 25(OH)D or BMI
were removed.

To quantitatively measure the strength of the selected SNPs,
proportion of variance explained (PVE) by each IV was
calculated with PVE = 2 × EAF × (1 − EAF) × b2 (EAF, effect
allele frequency; b, effect size on the exposure), and F statistic for
each IV was then calculated via [PVE × (n – 1 – k)]/[(1 – PVE) ×
k], where n represents the effective sample size in the exposure
GWAS, and k represents the number of variants included in the
IV model (25). Power estimation was performed using a web-
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tool (https://shiny.cnsgenomics.com/mRnd/) given a Type-I
error rate a of 0.05 and the estimated OR from the IVWmethod.

A flowchart summarizing our selection of IVs is displayed in
Figure 1. The summary information for IVs used for MR
analyses after clumping and data harmonization can be found
in Supplementary Tables 1–10.

Statistical Analyses
The inverse variance weighted (IVW) method, which meta-
analysed individual Wald-type ratios of IV under a multiplicative
random effects model, was selected as one of the principal two-
sampleMR analyses to estimate causal effects, with odd ratios (ORs)
described as per standard deviation (SD) increase in the levels of risk
factor (26). Heterogeneity of IVs was assessed via the Cochran’s Q
test. Because the IVW estimate is based on the no measurement
error (NOME) assumption, both weighted median approach and
MR pleiotropy residual sum and outlier (MR-PRESSO), which
adopt a more lenient majority-valid or InSIDE (instrument
strength independent of direct effect) assumption, were
incorporated into the analyses to account for the presence of
potential pleiotropy (27, 28). In addition, a recently described
sensitivity test, constrained maximum likelihood and model
averaging and Bayesian information criterion (cML-MA-BIC),
was used to address potential violation of IV assumptions (29).
The causal effect of an exposure onMS is considered indicative if the
effect estimate is nominally significant in the IVW method and no
contradictory results are found in the sensitivity analyses.
Bonferroni correction was used to adjust for multiple testing.
Potential directional pleiotropy was evaluated by MR-Egger
regression intercept (30). Leave-one-out (LOO), which
implements a sampling strategy, were used to detect IV outliers
substantially influencing causal effects (31). Finally, funnel plots and
scatter plots were evaluated as visual inspection of symmetry and
the effect estimates. To assess whether the exposure to MSmay have
causal impacts on the absolute counts of immune cells, bi-
Frontiers in Immunology | www.frontiersin.org 3
directional MR was conducted using the primary non-MHC
SNPs associated with MS (21).

The analyses were carried out using the TwoSampleMR
(version 0.5.6), MR-cML (version 0.0.0.9) and MR-PRESSO
(version 1.0) packages implemented in R (version 3.4). The
forest plots were drawn using Forestplot package (Version 2.0.1).
RESULTS

The causal estimates of immune cell count on MS risk are as
summarized graphically in Figure 2. We observed that higher
leucocyte count was robustly associated with increased MS
susceptibility using IVW method [odds ratio (OR), 1.24; 95%
confidence interval (CI), 1.07 – 1.43; p = 0.0039] after correcting
for multiple testing (p < 0.05/6 for the six immune cell traits).
Among the five major leucocyte subtypes, we also found
suggestive evidence that lymphocyte count was positively
associated with disease risk (OR, 1.17; 95% CI, 1.01 – 1.35; p =
0.0317). Sensitivity analyses provided consistent results and did
not suggest bias from genetic pleiotropy. LOO analysis did not
give evidence of SNPs disproportionally affecting the effect
estimates. No obvious directional pleiotropy can be detected by
visual inspection of funnel plots, and the MR-Egger regression
intercept was also insignificant. The results from heterogeneity
test, pleiotropy test and F-statistic is summarized in
Supplementary Table 11. Because significant heterogeneity
was detected by Cochran Q test in some cell types, the random
effect model was used to estimate the MR effect size (32). In
contrast, no significant association was observed for neutrophil,
basophil, eosinophil, or monocyte cell counts with MS, although
a trend of positive correlation can be observed.

We next extended our analyses by further measuring the
causal estimates of T cell and B cell on MS risk, the two major
FIGURE 1 | Schematic diagram for the Mendelian randomization analysis exploring effects of blood cell counts on multiple sclerosis. SNP, single nucleotide
polymorphism; Leu, leukocyte; Lym, lymphocyte; Mono, monocyte; Neutro, neutrophil; Eosino, Eosinophil; Baso, basophil; IMSGC, International Multiple
Sclerosis Genetics Consortium; IVW, Inverse variance weighted; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; cML-BIC,
constrained maximum likelihood- Bayesian information criterion.
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lymphocyte subpopulations implicated with the disease. T
lymphocytes were gated based on the expression of CD3+

(total), CD45RA+CCR7+ (naive), CCR7+CD45RA− (CM),
CD45RA−CCR7− (EM), CCR7−CD45RA+ (TD) and CD16/
CD56+ (NKT). Tregs (CD25hiCD127lo) were subdivided into
activated (CD25+++CD45RA−), resting (CD25++CD45RA+) and
secreting (CD25++CD45RA−). B lymphocytes were gated based
on the expression of CD19+ (total), CD24+CD38hi (transitional),
CD24−CD38−/dim (naive), CD27+IgD− (switched memory) and
CD27+IgD+ (unswitched memory). Due to the small GWAS
sample size, currently we were only able to assess six of these
lymphocyte subpopulations via MR methods, i.e., NKT, resting
Treg, secreting Treg, TD T cell, B cell and unswitched memory B
cell. Results of Wald ratio are presented instead of IVW in cases
where less than two IVs is available, and only IVW and cML-BIC
are shown when there are less than three IVs (Figure 3). The
IVW method revealed that an increase of NKT cell count was
associated with a higher risk of MS (OR, 1.24; 95% CI, 1.06 - 1.45;
p = 0.0082), which was supported by other MR methods. The
causal effects of the other cellular subtypes on MS risk were
attenuated to null. We further analyzed the two NKT subsets
(CD8br and CD8dim) for which qualifying IV(s) is available. The
results indicated that neither CD8br NKT (OR, 1.05; 95% CI,
0.83 - 1.33; p = 0.70) nor CD8dim NKT (OR, 1.05; 95% CI, 0.95 -
1.17; p = 0.34) subset was causally associated with MS. In
addition, genetic predisposition to MS as exposure did not
have causal impact on the absolute counts of leukocyte
(OR, 1.01; 95% CI, 0.99 - 1.03; p = 0.38), lymphocyte
(OR, 1.01; 95% CI, 0.98 - 1.04; p = 0.39) or NKT cell (OR,
1.00; 95% CI, 0.95 - 1.06; p = 0.88) in bi-directional MR analyses.
Frontiers in Immunology | www.frontiersin.org 4
DISCUSSION

Epidemiologic and genetic studies have implied correlation
between peripheral immunity and MS (3, 21, 33). Since most of
the GWAS variants identified are noncoding variants located in
the regulatory region of genes, elucidating their functional
consequences can be extremely challenging (34, 35). Moreover,
due to reverse causation and confounding, drawing causal
inferences is also difficult and liable to bias. In comparison, the
MR approach, which uses genetic variants robustly associated with
the exposure as IVs, can be used to infer causality while controlling
for various sources of confounder. In the present study, we first
found evidence that peripheral leucocyte and lymphocyte counts
were positively associated with the risk for MS using summary
statistics from a recent large scale GWAS analyzing blood cell
traits. This is in line with some recentMR studies, which indicate a
causal relation between circulating interleukins (ILs) and MS (36),
and that the association between BMI and MS is partly mediated
via IL-6 signaling (37). Considering that the regulatory effects of
variants are often dependent on cellular subtypes, it is to be
expected that deciphering their pathologic roles will require
analyzing the disease-relevant cell types (6, 38). We thus
hypothesize that MS might be caused by the dysfunction of a
relatively minor proportion of total lymphocytes, in which more
prominent effects can be found. We further analyzed several
subtypes of B cells and T cells, the two major cellular subtypes
within lymphocyte population known to influence MS
progression. We found that NKT cells were causally associated
with an increased risk for MS, although no significant association
was found by subdividing NKT cells based on CD8 expression.
FIGURE 3 | Mendelian randomization results for the relationship between cell
counts of lymphocyte subpopulation and multiple sclerosis. AC, absolute count.
FIGURE 2 | Mendelian randomization estimates of the association between
blood cell counts and risk of multiple sclerosis. OR, odds ratio; CI,
confidence interval.
May 2022 | Volume 13 | Article 867693
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NKT cells, which are innate-like T cells sharing features with
both adaptive and innate cells, can be activated rapidly in response
to self or foreign lipid antigens and adopt proinflammatory or
immunoregulatory phenotypes in mice and human (39). In keeping
with their modulatory functions, it has been noted that their levels
are lower in the peripheral blood of MS patients (40), which can be
restored during remission in patients undertaking IFN-b treatment
(41). However, whether the lower percentage of circulating NKT
cells indicates that they are protective in MS or whether it is only
reflective of disease progression remains controversial. Such
complexity can be partly explained by the heterogeneity of this
cell population. NKT cells can be broadly divided into two distinct
populations based on their expression of T cell receptor (TCR): the
classical type I NKT (or invariant NKT, iNKT) and the non-classical
type II NKT (42). Like CD4+ T cells, which can be categorized into
Th1, Th2 or Th17 based on their cytokine secretion profile when
activated, polarization towards distinctive functional subsets has
also been described for iNKT cells (43).

iNKT cells can be induced by lipid and glycolipid antigens
presented on the MHC Class I-related molecule CD1d, such as
alpha-galactosylceramide (a-GalCer), to modulate experimental
autoimmune encephalomyelitis (EAE) by secreting mixtures of
cytokines typically associated with either pro-inflammatory
[such as interferon gamma (IFN-g)] or anti-inflammatory
[such as interleukin 4 (IL-4)] responses (44). Of note, a
synthetic glycolipid (OCH), which can induce a predominant
production of IL-4 by iNKT cells, has been described, as it is
particularly efficient for suppressing EAE via eliciting a Th2-
biased cytokine production profile (45). Similarly, using
transcriptomic and functional analysis, Carrion et al. have
reported that the iNKT cells reactive to a human collagen type
II self-peptide (hCII707-721) may constitute a protective iNKT
cell subset, which is absent in primary and secondary progressive
MS patients (46). On the other hand, iNKT cells also play a
prominent role in B cell maturation and activation via CD40-
CD40L, CD1d-TCR interaction and IFN-g/IL-4 production (47).
Given the efficiency of selective B cell depletion therapies in
treating MS with anti-CD20 monoclonal antibodies (10, 11) and
the increasingly recognized roles played by B cells in MS
immunopathology (48), it is inconclusive whether iNKT cells
may have predominantly protective or detrimental effects in MS.

Unlike in mice, circulating iNKT cells normally constitute less
than 0.1% of total lymphocytes in human, which are
outnumbered by type II NKT cells (49). It has been shown that
type II NKT cells can react with sulfatide, a sulfated glycolipid
enriched in the myelin sheaths that insulate nerve fibers, and that
type II NKT cells, but not iNKT cells, accumulated in the CNS in
the EAE model (50). Consistently, these sulfatide-reactive T cells
were also more common in the peripheral blood of MS patients
than controls (51), which further support the possibility that type
II NKT cells contribute to MS pathogenesis. However, since type
II NKT cells are harder to identify in human samples due to a
lack of specific surface markers like a- GalCer/CD1d tetramers,
they are much less studied than iNKT cells, and their roles in
autoimmunity remain to be further validated (52).
Frontiers in Immunology | www.frontiersin.org 5
Our study is subject to several limitations. First, as noted
above, the NKT cells are a heterogenous population, whereas we
were unable to distinguish between Type I and Type II NKT cells
for our MR analyses, as the cells were gated as CD3+CD16+/
CD56+ in their original flow panel, and only CD8 expression
level was used to subdivide NKT population (20). In addition,
NKT cells are not the only populations that co-express these
molecules in blood, with Yd T cells also sharing this co-
expression (53). Therefore, it is necessary to refine cell
populations with panels focusing on NKT cells to solidify and
expand our findings. Second, given the relatively modest scale of
the lymphocyte phenotyping GWAS, our second part of the MR
analyses were limited by the availability of the variants that can
be effectively used as IVs. Granted, relaxing the association
threshold to a p value of < 10-5, as was adopted by Orrù et al.
in their MR analyses (20), would undoubtedly provide more IVs,
this would also compromise the first MR assumption (i.e., the
variant being robustly associated with the exposure of interest).
With the advent of larger scale phenotyping GWAS in future, we
expect more SNPs passing GWAS significance threshold that can
be reliably used as IVs for MR analysis. Third, although
Mediterranean Sardinian population has been widely used for
genetic studies to identify causal variants in complex diseases
such as MS (54), it is relatively isolated from the mainland
European population. Sardinia is colonized by the Neolithic
Early European Farmers (EEF) with minor contributions from
pre-Neolithic West European hunter-gatherers (WHG), two of
the three ancestral populations that contribute ancestry to the
present-day European populations (the other being the Ancient
North Eurasians, ANE), and thus Sardinian population shares
ancestral connection with part of Spanish and French
populations (55, 56). Given the indicative causal association
between NKT cell count and MS risk presented here, further
genetic profiling using diverse European population is
recommended. Finally, unlike the first MR assumption, the
other two assumptions are not fully testable in practice.
Because using variants that influence other traits outside the
pathway of interest or that have a direct effect on the target
outcome as IVs can potentially distort MR analysis and give
false-positive causal inference, we applied several sensitivity tests
to evaluate the robustness of the results, including MR-PRESSO
and cML-MA-BIC to detect and adjust for horizontal pleiotropic
outliers and violation of MR assumptions. By comparing results
from different MR methods, we were able to minimize the
potential bias resulting from pleiotropic effects, although
careful interpretation of the causal inference is still warranted.
CONCLUSIONS

This study provides evidence that higher circulating leucocyte
and lymphocyte counts increase the risk of MS. In addition, we
also found causal association between higher NKT cell count and
MS, which underscores the relevance of exploring the functional
roles of NKT cells in MS. Given that type II NKT cells are more
May 2022 | Volume 13 | Article 867693
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abundant and have a diverse immunoregulatory roles in human,
we have great expectation that progress in understanding this T
cell subset may hold promising immunotherapeutic potential.
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