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For �40 years, thinking about reasoning has been dominated by dual-process theories. This model, consisting of two distinct types

of human reasoning, one fast and effortless and the other slow and deliberate, has also been applied to medical diagnosis. Medical

experts are trained to diagnose patients based on their symptoms. When symptoms are prototypical for a certain diagnosis, practi-

tioners may rely on fast, recognition-based reasoning. However, if they are confronted with ambiguous clinical information slower,

analytical reasoning is required. To examine the neural underpinnings of these two hypothesized forms of reasoning, 16 highly

experienced clinical neurologists were asked to diagnose two types of medical cases, straightforward and ambiguous cases, while

functional magnetic resonance imaging was being recorded. Compared with reading control sentences, diagnosing cases resulted in

increased activation in brain areas typically found to be active during reasoning such as the caudate nucleus and frontal and par-

ietal cortical regions. In addition, we found vast increased activity in the cerebellum. Regarding the activation differences between

the two types of reasoning, no pronounced differences were observed in terms of regional activation. Notable differences were

observed, though, in functional connectivity: cases containing ambiguous information showed stronger connectivity between specif-

ic regions in the frontal, parietal and temporal cortex in addition to the cerebellum. Based on these results, we propose that the

higher demands in terms of controlled cognitive processing during analytical medical reasoning may be subserved by stronger com-

munication between key regions for detecting and resolving uncertainty.
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Introduction
The cognitive processes and underlying neural mecha-

nisms that shape reasoning are central to fast and accur-

ate decision-making. Medical diagnosis is a particularly

high stakes domain in which the accuracy of decision-

making is imperative. During medical problem solving,

experienced physicians are thought to rely primarily on

recognition-based reasoning, using the so-called ‘illness

scripts’ when diagnosing patients (Schmidt et al., 1990;

Schmidt and Rikers, 2007). These ‘illness scripts or sche-

mas’ involve the retrieval of diagnostic hypotheses upon

encountering typical symptoms of common diseases. For

common clinical cases, medical experts’ reasoning is

thought to be rapid, automated and heuristic (Type 1

processing). However, for less common cases, expert

physicians are able to override this default manner of

processing and revert to analytical processes (Type 2

processing) when encountering complex, ambiguous or

contradictory symptoms (Pelaccia et al., 2011). In these

situations, medical reasoning is more elaborate as indi-

cated by longer case response times, and better memory

for clinical case information (Mamede et al., 2010).

Numerous theories based on research in social cognition,

reasoning, judgement and decision-making exist that

make a clear distinction between fast, automatic and in-

tuitive reasoning (Type 1) and slow, effortful and

analytical reasoning (Type 2) (Evans, 2003, 2008; Evans

and Stanovich, 2013), the dual-process paradigm.

This distinction between these types of reasoning has

been a useful concept in behavioural psychology and

medical reasoning, but there is as of yet little empirical

insight into their neural underpinnings. To shed more

light on this, we conducted a functional MRI (fMRI)

study on the neural correlates of Type 1 and Type 2 rea-

soning in medical decision-making.

Diagnostic reasoning by both experts and novices (med-

ical students, junior doctors) is characterized by the same

processes of hypothesis generation and verification (Brush

et al., 2017). Early hypothesis generation is based on pat-

tern recognition, and the quality of this early hypothesis

(or limited number of hypotheses) depends on knowledge

gained through experience, which is highly personal.

Expertise depends on the ability to rapidly access this

highly personal body of knowledge, acquired in many

years of clinical practice. In unfamiliar, atypical or other-

wise complex cases, pattern recognition is insufficient and

experts will have to turn to analytical forms of reasoning,

using pathophysiological or conceptual knowledge.

Research on clinical reasoning has revealed that physi-

cians can be triggered into this more reflective mode of

reasoning (versus an automatic reasoning mode) when

encountering uncertainty when diagnosing clinical cases.

This reflective reasoning is exemplified by longer
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processing times, but not reduced diagnostic accuracy, as

the increase in processing time warrants optimal diagnos-

tic reasoning (Norman et al., 2017).

Here, this study thus addresses the question: is it pos-

sible to describe differences in neural correlates of differ-

ent diagnostic strategies employed by experts in a

circumscript field of expertise? Unlike in other studies in

this field (Durning et al., 2015; Hruska et al., 2016), we

were not interested in possible differences between neural

correlates of reasoning strategies between medical experts

and novices, or in novices (medical students) (Chang

et al., 2016), instead we focused on different reasoning

strategies of medical experts themselves.

Medical reasoning is also a prototypical and relevant

domain to empirically investigate the neural correlates of

reasoning in a real-life setting. First, it is a high stakes

domain: wrong decisions in a medical setting can have

catastrophic consequences and important decisions often

have to be made under time pressure. Moreover, task

environments (e.g. evolution of symptoms and signs in a

deteriorating patient) are dynamic and timely decisions

must be made under the conditions of limited informa-

tion, which may result in uncertainty about diagnosis and

treatment.

On a neural level, dual processing in social cognition

has been suggested to involve two distinct neural circuits:

the reflexive system composed of the amygdala, basal

ganglia and lateral temporal cortex and the controlled

system involving the anterior cingulate cortex, the pre-

frontal cortex and the medial temporal lobe (Lieberman,

2000).

An alternative theory suggests that these two types of

reasoning are actually executions of similar rules at dif-

ferent levels of automation, inferring activation of the

same brain circuits and areas, even though the first cases

are diagnosed faster than the latter (Kruglanski and

Gigerenzer, 2011). The latter view is more in line with

the current body of literature on the cognitive and neural

underpinnings of brain functioning. The brain constantly

makes predictions about future situations with as func-

tion to minimize the amount of information to be proc-

essed, an activity which is called predictive encoding

(Feldman and Friston, 2010). In the case that unexpected

information is encountered, a prediction error occurs. In

terms of medical reasoning, this could occur when case

information is ambiguous. For instance, a patient might

present one or more symptoms that are more or less

prototypical for a particular diagnosis. This information

is processed, and the medical examiner comes up with a

provisional, tentative diagnosis—the emergence of an ill-

ness script. These illness scripts can be described as the

narrative of the daily manifestation of the underlying dis-

ease (Schmidt and Rikers, 2007). Incoming information

from the patient is then matched to the illness script. Put

differently, when the medical expert is given information

about a case, the expert sets up an internal model of

what other information can be expected and subsequent

information (either directly present or searched for) is

evaluated whether it strengthens (or even confirms) or

weakens (even rejects) this model.

To study these processes in the human brain, we col-

lected blood oxygen level-dependent imaging fMRI while

16 medical experts (licenced neurologists, >10 years of

experience) processed and diagnosed both straightforward

and ambiguous clinical cases (Fig. 1). This is in line with

the daily practice of diagnosing patients by clinicians.

Many patients in the setting of an outpatient clinic are

‘straightforward cases’: they present symptoms and signs

more or less consistent with a well-known clinical pat-

tern. Difficulties arise when symptoms or signs are atyp-

ical or absent when expected. In the dual-process

paradigm, straightforward cases induce ‘automatic’ re-

trieval of a diagnostic hypothesis (i.e. Type 1 processing),

while ambiguous cases require deliberate, reflective proc-

essing (i.e. Type 2 processing). For this study, carefully

designed neurology cases were presented to the participat-

ing neurologists in two distinct versions, in both versions

ultimately leading to the same final diagnosis. Clinical

cases were 10 sentences long (Mwords ¼ 69; range¼ 60–

82) and led to a single correct diagnosis. Type 2 cases

were constructed by removing one to three sentences of

Type 1 cases and replacing them with distracting patient

information (noise), irrelevant to or conflicting with an

early, provisional diagnosis, all information together ul-

timately leading to the same final diagnosis. The number

of words for each Type 1 and corresponding Type 2 case

was equal. The distorting information, intended to induce

a shift from Type 1 reasoning into Type 2 reasoning, al-

ways followed three to four lines with identical informa-

tion in the two conditions, which enabled participants to

make an early hypothesis, a preliminary, tentative diagno-

sis. Although one cannot be sure that this manipulation

results in an actual shift from Type 1 reasoning into

Type 2 reasoning, it is reasonable to suppose that this

occurs if accompanied by an increase in reaction times.

Participants in the fMRI study read and diagnosed 21

clinical cases (10 or 11 Type 1 cases, and 10 or 11 Type

2 cases) and read a baseline text to separate brain

Figure 1 Trial sequence for the medical cases.

Neural mechanisms underlying medical reasoning BRAIN COMMUNICATIONS 2020: Page 3 of 12 | 3



activation related to reading. After finishing each case,

they vocalized the diagnosis in the scanner. Afterwards,

participants provided confidence and difficulty ratings

outside the scanner.

Materials and Methods
The study had two phases. The first phase was a pilot

study to validate the two different case types. The pilot

study resulted in 21 cases that were used in the fMRI ex-

periment during the second phase.

Case validation pilot study

Participants

Seventeen native Dutch neurologists (recruited from the

non-academic hospitals neighbouring Rotterdam) partici-

pated in the case validation pilot study (one woman,

Mage ¼ 53 years, range ¼ 46–65 years). All participants

had at least 10 years of working experience as a licenced

neurologist (Myears ¼ 20, range ¼ 11–31 years) and prac-

ticed the full field of clinical neurology full time in a

non-academic hospital. This latter requirement was a de-

liberate choice, as most neurologists in academic hospitals

work as super specialists in a limited field, whereas in

this study we focused on reasoning processes of experi-

enced general neurologists, with broad expertise covering

the entire field of clinical neurology. In the Netherlands,

specialist training in neurology consists of 6-year under-

graduate medical training followed by a 6-year residency

phase. All neurologists volunteered to participate in this

study without remuneration (other than a bottle of wine

or a museum ticket).

Stimuli, task, experimental design

The task of the participants was to diagnose 26 neuro-

logical cases presented on a laptop in E-prime (version

2.0). These clinical cases were constructed by two experi-

enced neurologists, and each case had both Type 1 and

Type 2 versions. Cases were constructed following

defined requirements (broad coverage of the field of neur-

ology; natural sequence of clinical information; cases had

to be solvable with the information provided; approxi-

mately equal number of words). Each case consisted of

10 short sentences (mean number of words ¼ 69; range

¼ 60–82 words). Type 1 cases were more or less proto-

typical, where most items were exemplary for and a least

consistent with the correct final diagnosis. Type 2 cases

were adapted by replacing one to three sentences with

ambiguous patient information (noise) to elicit slow, ana-

lytical reasoning. In the Type 2 cases, a similar tentative

diagnosis was possible within the first three to four items

without the need of overt reasoning. To provoke analyt-

ical reasoning, usually the fourth and/or fifth sentences

contained noise information; sometimes an additional

noise item was added in the latter part of the text.

Depending on the cases, care was taken to assure that,

although atypical, the Type 2 cases were solvable using

the information provided (for two case examples and a

list of case diagnoses, see the Supplementary material).

Following a practice case, participants diagnosed, self-

paced, 26 cases, ensuring that there was a balanced dis-

tribution of Type 1 (13) and Type 2 (13) cases. Each

case can be considered as an individual trial and con-

sisted of the presentation of five lines of white text on a

black background at the upper half of the screen. After

participants had read the five lines of text, they pressed a

button and the remaining five sentences were provided

below the first five lines. When participants reached a

diagnosis, they pressed a button to type this diagnosis in

the next screen. They also indicated (on a scale from 0

to 100) how confident they were with their diagnosis,

how much effort it took them and how difficult the case

was.

Diagnostic accuracy (0¼ incorrect diagnosis, 1¼ partially

correct diagnosis, 2¼ correct diagnosis), case processing

time (s) and subjective measures of confidence, effort and

complexity were analysed across participants to allow for

case validation. Diagnostic accuracy was determined by

J.W.S. and an independent fellow neurologist. The

Spearman correlation between the raters’ scores was 0.82.

Through discussion, agreement was reached on all rating

disagreements. A unified rating of diagnostic accuracy was

obtained that was also used in the final fMRI experiment.

The following case selection criteria were applied to deter-

mine cases for the fMRI experiment: (i) mean diagnostic

accuracy >1 and (ii) processing time Type 2> Type 1.

Finally, confidence, effort and difficulty were analysed to

further validate the distinction between Type 1 and Type

2 cases and check that effort and difficulty were higher

for Type 2 cases than for Type 1 cases and confidence

was lower for Type 2 cases than for Type 1 cases. These

criteria led to the removal of five cases, leading to a total

of 21 cases to be used in the fMRI experiment. For these

21 cases, processing times during the pilot study were on

average 41% longer in the Type 2 version than in the

Type 1 version (see Table 1).

fMRI experiment

Participants

Seventeen native Dutch neurologists were recruited for

the fMRI experiment. Participants were recruited by an

advertisement on a national neurological conference and

via email lists. One participant was excluded because he

had a metal implant of unknown material after a frac-

tured chin, which made MRI scanning impossible.

Therefore, 16 neurologists participated in the final experi-

ment (four women; Mage ¼ 51 years, range 46–57 years).

All participants had at least 10 years of working experi-

ence as a licenced neurologist (Mage ¼ 18 years, range ¼
10–28 years) and practiced general neurology on a

4 | BRAIN COMMUNICATIONS 2020: Page 4 of 12 B. van den Berg et al.

https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaa023#supplementary-data


full-time basis in a non-academic hospital. The study was

conducted in according to protocols approved by the

Medical Ethical Committee of the University Medical

Center Groningen. Prior to the start of the experiment,

participants gave informed consent in accordance with

the Declaration of Helsinki.

Stimuli, task and experimental
design

Each participant underwent an fMRI scan where two

runs were recorded, intermitted by an anatomical record-

ing. Participants were asked to diagnose 21 neurological

cases (Mword count¼ 69, range ¼ 60–82), selected through

the case validation pilot study. Participants each proc-

essed and verbally diagnosed 10 or 11 Type 1 cases, and

10 or 11 Type 2 cases (see Fig. 1 for an overview of the

trial sequence for a case to be diagnosed). Case distribu-

tion was counterbalanced across participants. Their diag-

nosis was transmitted by means of an in-bore

microphone and recorded using a digital dictaphone after

each case.

The experimental procedure was the same as the pilot

study, except that participants also read cloze probability

sentences belonging to a control condition (10 trials con-

sisting of 10 sentences each with seven or eight words),

which were randomly interspersed between cases. Cloze

probability sentences are lexically and semantically cor-

rect passive sentences (but the sentences did not form a

coherent story together). They were used as a reading

control condition as these sentences require minimal cog-

nitive processes (Kutas and Hillyard, 1984; Delong et al.,

2011). Finally, a screen showing only a red fixation cross

was presented 10 times, randomly intermixed between

the cases and reading trials, as a baseline condition (dur-

ation 15–25 s, timing randomly sampled from a uniform

distribution).

All stimuli were programmed and presented using E-

prime (version 2.0) and displayed using a Barco liquid

crystal display projector G300 (Barco, Kortrijk, Belgium)

on a translucent display at a resolution of 1024 � 768

pixels. The dimensions of the translucent display were

44 cm � 34 cm. This subtends a visual angle of 32� �
25.5� for the entire screen. Via a 45� tilted mirror, placed

on the top of the head coil, the participant was able to

see the entire presentation display. The distance from the

eyes to the screen (via the mirror) was 75 cm. After the

fMRI experiment was completed, the experimenter

brought the participant to another room and asked them

to rate the various cases using a 7-point scale on both

difficulty and confidence.

fMRI data acquisition

Scanning was performed using a 3.0-T MRI Scanner

(Philips, Best, The Netherlands) with a 32-channel SENSE

head coil. Functional recordings (echo planar images,

axial slices recorded in a descending manner) were made

using the following parameter settings: flip angle: 70�;

echo time: 30 ms; repetition time: 2000 ms, field of view:

224 mm � 136.5 mm � 224 mm; 39 slices were acquired

in descending order (slice thickness of 3.5 mm, in-plane

resolution of 3.5 mm). Two sessions were recorded with

variable number of volumes since the task was semi-self-

paced (all sessions were completed within 15 min).

Between the two sessions, a high-resolution anatomical

scan was recorded. The anatomical T1 was made with

an in-plane resolution of 1 mm � 1 mm, contained 160

slices and recorded transversal. Field of view was

232 mm � 170 mm � 256 mm.

fMRI data analysis

All analyses were performed in MATLAB (2015)

(MathWorks, Natick, MA, USA). Magnetic resonance

images were analysed using SPM12 (http://www.fil.ion.

ucl.ac.uk/spm/). Preprocessing consisted of slice time cor-

rection, realignment to correct for participants movement,

co-registration to align all functional data to the

Table 1 Mean (SD) case processing times, diagnostic accuracy, confidence, difficulty and effort ratings for the case

validation pilot study and the final fMRI study separated for Type 1 and Type 2 cases

Case pilot validation study fMRI study

Type 1 cases,

mean (SD)

Type 2 cases,

mean (SD)

Type 2 2 Type 1,

t-value (df 5 16)

Type 1 cases,

mean (SD)

Type 2 cases,

mean (SD)

Type 2 2 Type 1,

t-value (df 5 15)

Case processing time (s) 39 (14) 55 (17) 2.88a 21.6 (6.2) 26.3 (9.0) 4.74b

Diagnostic accuracy 1.87 (0.12) 1.64 (0.12) �5.05b 1.81 (0.16) 1.61 (0.26) �2.72a

Confidence 80 (7) 69 (9) �4.70b 81 (11) 70 (14) �2.81a

Difficulty 32 (15) 46 (15) 2.30a 26 (12) 40 (15) 4.74b

Effort 32 (13) 45 (14) 2.51a NAc NAc NAc

Notes: The data for the case pilot validation study include five cases that were not selected for the final fMRI study. Diagnostic accuracy was scored as 0 (incorrect diagnosis), 1 (par-

tially correct diagnosis) or 2 (correct diagnosis). Confidence and difficulty were provided on a Likert-type scale from 1 (not at all confident/difficult) to 7 (very confident/difficult) in

the fMRI experiment and transformed to a percentage for this table.
aDifference between Type 1 and Type 2 cases is significant at P < 0.05.
bDifference between Type 1 and Type 2 cases is significant at P < 0.001.
cNA: not available.
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participant’s anatomical T1, normalization to map all

images to Montreal Neurological Institute space and spa-

tial smoothing with a Gaussian kernel of 8 mm (full

width at half maximum). The images for each functional

session were high-pass filtered at 0.008 Hz. Onsets of

both case types and cloze probability sentence were con-

sequently used as regressors for the first-level analysis to-

gether with the processing time (i.e. the moment the

participant pressed the button to continue or give the

diagnosis). We did not exclude cases from the fMRI ana-

lysis based on their accuracy, which could also be partly

accurate.

Additional preprocessing steps for the connectivity ana-

lysis including denoising regressors in the design that cor-

respond to white matter, CSF and mean global signal to

remove related variance, these signals were derived from

the subject’s anatomical image using segmentation in

SPM12. In the CONN toolbox region of interest (ROI)-

to-ROI analyses, time courses of each voxel in each ROI

are averaged to create an ROI-level time course and then

each ROI time course is correlated Fisher’s transformed

bivariate coefficient representing the functional connectiv-

ity between each region. The CONN toolbox extracts

five temporal components from the segmented CSF and

white matter, which were entered as confound regressors

in the task generalized linear model inside CONN (fol-

lowing the ‘default’ strategy implemented in the CONN

toolbox and followed by others) (Damme et al., 2019;

Deverdun et al., 2019).

Statistical analysis

At the participant level of the fMRI analysis, contrasts

were calculated for Type 1 cases versus baseline, Type 2

cases versus baseline and reasoning (Type 1 and Type 2

cases together) versus reading. At the second level of the

fMRI analysis, a t-test of each of these contrasts were

performed and reported at P< 0.05, corrected for family-

wise error rate (FWER). Figures were made using

BrainNet viewer (Xia et al., 2013). To give a broader

overview of potentially relevant brain areas, we also

included differences in activation between Type 1 and

Type 2 cases that reach a statistical threshold of

P< 0.005 at the uncorrected level.

Finally, functional connectivity analysis was performed

based on parcellated brain regions using the CONN tool-

box (version 18.b—https://web.conn-toolbox.org). The

CONN toolbox is based on the CompCor method and

performs an ROI-to-ROI condition-dependent correlation

of the timeseries derived from the residuals of the blood

oxygen level-dependent imaging timeseries (Fair et al.,

2007; Whitfield-Gabrieli and Nieto-Castanon, 2012). The

ROI parcellation in Conn is based on the Harvard–

Oxford atlas areas and resulted in 132 predefined ROIs.

A second-level test on functional connectivity between

parcellated brain regions was performed for the contrast

of Type 2 versus Type 1 cases. Connections were

reported using P< 0.05, corrected for false discovery

rate.

For both the case validation pilot study and the fMRI

experiment, the mean case processing time, diagnostic ac-

curacy and the various ratings [confidence, difficulty and

effort (only for the case validation pilot study)] were

compared between Type 1 cases and Type 2 cases using

a paired two sample t-test and considered statistically sig-

nificant for P< 0.05.

Data availability

The behavioural data from the pilot study and fMRI

study are available through the first author (berry.van.

den.berg@rug.nl). The fMRI data are available through

the University Medical Center (j.b.c.marsman@umcg.nl).

Results

Behavioural results

Significant differences in case processing time (mean reac-

tion timeType 1 < mean reaction timeType 2, see Table 1

and Fig. 2), diagnostic accuracy and subjective difficulty

ratings between the Type 1 and Type 2 cases were found,

indicating typical behavioural differences between both

forms of reasoning. Case processing times were on aver-

age 18% shorter for the Type 1 version than for the

Type 2 version. Importantly, the processing time of the

Figure 2 Behavioural results. Bar graphs represent the

difference between the response time of diagnosing cases (Type 1

and Type 2) and reading cloze probability sentences. Error bar

reflects mean 6 SEM.
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Type 1 cases was not significantly different to the reading

time of the reading of cloze probability sentences [t(15)

¼ 0.45, P¼ n.s.], but Type 2 cases were processed slower

compared with reading [t(15) ¼ 3.48, P¼ 0.0033]. Even

though experts took less time to process clinical cases

while in the scanner compared with the pilot group out-

side the scanner, their performance in diagnostic accuracy

and ratings on difficulty or confidence were similar in

both Type 1 and Type 2 cases.

fMRI results

Our first analysis focused on the difference between read-

ing cloze probability sentences and diagnosing cases to

check whether the reasoning conditions (Type 1 and

Type 2 cases combined) resulted in the activation of

brain areas generally associated with reasoning (Table 2

and Fig. 3). Notably, this contrast revealed several brain

areas with increases in blood oxygen level-dependent

imaging signal. In particular, this pertained activation of

the left frontal and left parietal regions, caudate nucleus,

superior frontal gyrus and cerebellum.

Our next analysis focused on testing the hypothesis

that differential areas would be involved when processing

Type 1 versus Type 2 cases. We found no observable dif-

ference in the magnitude of the blood oxygen level-de-

pendent imaging response between these two different

types of cases. Lowering the significance threshold

(P< 0.005 uncorrected) revealed several areas with trend-

level differential activity between the different case types

(Table 3). Notably, for Type 1>Type 2, these areas

were slightly anterior to left cingulate gyrus, supplemen-

tary motor area and slightly anterior to right cingulate

gyrus. For Type 2>Type 1, these areas included the

right putamen, slightly inferior to right anterior cingulate,

slightly inferior to left anterior cingulate and various

regions in the (orbito) frontal cortex. Given the lack of

significance at FWE-corrected level (P< 0.05) activity, dif-

ferences should be interpreted with caution.

Connectivity results for reasoning versus reading

showed various connections that differed between both

conditions. Most prominent locations for reasoning were

regions residing in bilateral temporal gyrus and frontal

gyrus. For reading, these included regions in the frontal

and motor cortex (Fig. 4A).

Finally, we investigated connectivity differences in brain

activity during the diagnoses of Type 1 and Type 2 cases

(Fig. 4B). We found two connections stronger for Type 1

compared with Type 2: right posterior superior temporal

gyrus with right anterior inferior temporal gyrus and left

medial visual regions with left precentral gyrus (see also

Table 4). For Type 2 cases, we found stronger connec-

tions between inferior temporal gyrus and middle tem-

poral gyrus, superior temporal gyrus and frontoparietal

regions, i.e. posterior parietal cortex, vermis in the cere-

bellum and middle temporal gyrus (Fig. 4 and Table 4).

Discussion
The aim of the current study was to examine neural

underpinnings of reasoning in expert medical reasoning.

To do so, in this study, expert general neurologists

(>10 years of experience) diagnosed patient cases while

concurrently brain activity was being recorded (fMRI).

We focused on the reasoning processes underlying two

types of medical cases: one type that induced diagnostic

uncertainty (Type 2 cases) and compared neural activa-

tion and functional connectivity during reasoning to those

cases that were relatively straightforward (Type 1 cases).

Figure 3 Blood oxygen level-dependent imaging activity

differences. (A) Reasoning (Type 1 cases and Type 2 cases

together) showed activity in caudate nucleus, left prefrontal,

parietal and cerebellar regions. (B) Activity difference map between

Type 1 and Type 2 cases. No significant difference was found at

P< 0.05 (FWE corrected).
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Our study is novel in that we presented cases that, in all

likelihood, induced a shift in reasoning strategy without

instructing the participants to do so. Although the highly

artificial study situation inside an fMRI scanner of course

differs extremely from the real clinical situation in an

outpatient clinic, the mix of common and uncommon

clinical cases is natural to the clinician, who sees many

typical and untypical patients every week. In this respect,

our study differs from studies on cerebral activation dur-

ing the solving of clinical multiple-choice questions

(Durning et al., 2015; Chang et al., 2016; Hruska et al.,

2016). Our study also differs from these studies in that

our participants were all experts in their field, experi-

enced neurologists, who served as their own controls.

The neural correlates of the reasoning of experienced

neurologists were comparable to results from other

studies in participants with other backgrounds.

Specifically, during reasoning (versus reading cloze prob-

ability sentences), neurologists showed greater activity in

the caudate, left frontal and parietal brain regions. These

areas have been shown in previous studies to be active

during reasoning and medical reasoning (versus control)

(Rodriguez-Moreno and Hirsch, 2009; Chang et al.,

2016; Hruska et al., 2016). Combined with our results,

this suggests that the specific diagnostic processes and

brain areas used by neurologists during medical reasoning

resemble those found during other types of reasoning

(e.g. deductive reasoning). Perhaps surprisingly, we found

a large ensemble of cerebellar areas active during reason-

ing compared with reading. The cerebellum has long

been known to be involved in motor control and is

thought to serve a major role in working memory,

Table 2 Brain regions where significant differential activity was found between reasoning (both Type 1 and Type 2

cases) and reading

Contrast Region Peak voxel coordinates (x, y, z in MNI space) t-Value Cluster size (n voxels)

Reasoning > reading Cerebellum �4 �78 �32 16.94 5487

Left inf. and sup. frontal �48 6 30 13.98 1000

Left thalamus �8 �8 4 11.72 136

Brainstem 4 �34 �22 11.71 425

Right caudate 16 �6 22 10.82 208

Left hippocampus 36 �24 �8 10.45 20

Left parietal cortex �34 �76 38 10.30 243

Left frontal cortex �10 38 42 10.10 48

Right thalamus 14 �6 0 8.74 42

Left insula �30 22 �4 8.55 29

Reading > reasoning Right parietal lobule 68 �42 30 13.20 137

Right insula 389 �12 �2 8.41 13

Right anterior insula 40 4 4 7.69 13

Only cluster size >10 and P< 0.05 (FWER corrected) are reported.

FWER: family-wise error rate; MNI: Montreal Neurological Institute.

Table 3 Brain regions where differential activity (P< 0.005, not FWE corrected) was found between Type 1 and

Type 2

Contrast Region Peak voxel coordinates (x, y, z in MNI space) t-Value Cluster size (n voxels)

Type 1 > Type 2 Anterior to left cingulate gyrus 20 �44 22 4.71 54

Supp. motor area 8 �8 56 4.50 144

Anterior to right cingulate gyrus �4 �32 20 4.13 16

Right primary motor cortex 18 �26 64 3.56 28

Right temporal cortex 46 �34 �10 3.55 16

Cerebellum �16 �48 �28 3.48 13

Right insula 40 10 �8 3.43 11

Left parietal 30 �54 28 3.37 16

Right dorsal posterior cingulate �18 �52 36 3.26 10

Type 2 > Type 1 Right putamen 24 0 8 5.57 140

Inferior to left anterior cingulate 12 22 18 4.48 47

Inferior to right anterior cingulate �8 16 22 3.60 26

Left frontal cortex 38 2 40 3.58 34

Left frontal cortex 22 14 50 3.50 74

Right orbitofrontal cortex �36 40 0 3.46 18

Left frontal cortex 58 20 22 3.32 36

Left orbitofrontal cortex 46 36 �10 3.28 15

Only cluster size >10 and P< 0.005 (uncorrected) are reported.

MNI: Montreal Neurological Institute.
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Figure 4 Connectivity differences. (A) Connections between regions which are significantly more involved reasoning compared with

reading. (B) Connections between regions significantly involved in diagnosing the different types of cases.

Table 4 Connectivity results for reasoning versus reading and Type 1 versus Type 2

Region 1 Region 2 t-Value P-uncorrected P (FDR < 0.05)

Reasoning > reading

Posterior superior temporal gyrus left Anterior parahippocampal gyrus, left 5.25 <0.0001 0.008

Posterior superior temporal gyrus left Anterior parahippocampal gyrus, right 3.67 0.0011 0.0312

Posterior superior temporal gyrus left Anterior medial temporal gyrus 4.62 0.0002 0.0137

Posterior superior temporal gyrus left Occipital right inferior temporal gyrus 4.34 0.0003 0.0159

Posterior superior temporal gyrus left Temporal pole left 3.86 0.0008 0.0312

Inferior frontal gyrus Occipital right medial temporal gyrus 4.76 0.0001 0.0206

Reading > reasoning

Rostral prefrontal cortex Precuneus 5.19 0.0001 0.009

Frontoparietal cortex Posterior superior temporal gyrus 4.37 0.0003 0.0446

Inferior frontal gyrus Parietal operculum 4.38 0.0003 0.0445

Type 1 > Type 2

Posterior superior temporal gyrus Anterior inferior temporal gyrus 4.41 0.0003 0.0416

Medial visual region Precentral gyrus left 4.32 0.0003 0.0499

Type 2 > Type 1

Inferior frontal gyrus right Pre-central gyrus right 5.38 <0.0001 0.0063

Right lateral parietal Vermis region 3 5.17 0.0001 0.0093

Left lateral parietal Vermis region 7 5.06 0.0001 0.0116

FDR: false discovery rate.
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cognitive control and executive functioning (Durisko and

Fiez, 2010; Schmahmann, 2019).

Regarding differences between the reasoning conditions:

on a behavioural level, participants responded slower and

rated Type 2 cases (as compared with Type 1) as more

difficult. Interestingly, Type 1 cases had similar process-

ing time as compared with reading cloze probability sen-

tences. From a conceptual level, the time spent on

diagnosing cases consists of both reading the textual sen-

tences and the diagnostic process. The observation that

participants had slower processing time for Type 2 cases

(versus both reading and Type 1 cases) suggests that the

Type 2 cases did evoke additional thinking processes. On

a neural level, we did not observe strong regional activa-

tion differences of brain areas. Thus, there may be con-

siderable overlap in neural substrates subserving any kind

of diagnostic inference. Of note, we did find trend-level

differences in the magnitude of brain activation, in par-

ticular in posterior (greater for Type 1) and frontal

(greater for Type 2) regions. More specifically, the poster-

ior involvement might be related to response preparation

for straightforward cases and the frontal involvement

might be related to the processing of uncertainty for am-

biguous cases. Clearly, this needs further investigation, as

these results are tentative given the low statistical power.

The reasoning task used here was specifically designed

for a group of highly trained medical experts. On one

hand, this allowed for a high degree of ecological validity

regarding the reasoning processes evoked by the various

cases. On the other hand, a limitation of the study is

that the selection of this specialized group resulted in

relatively low statistical power due to the limited number

of participants and female participants that we could in-

clude. In addition, in the scanner, our group of experi-

enced neurologists responded much faster compared with

the neurologists in the case validation pilot study.

However, the relative difference in processing time be-

tween Type 1 and Type 2 (�20%) was similar.

Connectivity results between the two types of cases

(Fig. 4B) did support the hypothesis of differential net-

work involvement in diagnostic processing of Type 1 and

Type 2 cases. More specifically, whereas Type 1 cases

evoked stronger connectivity within the temporal lobe

and between occipital and parietal areas, Type 2 cases

evoked stronger connectivity between frontal, temporal

and parietal areas in addition to a connection between

posterior parietal cortex and the cerebellum. The tem-

poral and parietal regions may be part of networks sub-

serving memory and attention, respectively, which are

relevant for both types of processing, albeit in different

ways.

On the other hand, Type 2 cases clearly involved stron-

ger connectivity for brain regions that have been identi-

fied as key nodes in brain networks for executive

functioning. This may involve cognitive effort and conflict

processing (Kutas and Federmeier, 2011; Kalisch and

Gerlicher, 2014). Of note, the cerebellum has been shown

to be involved in cognitive functioning (Schmahmann

et al., 2019), including executive functions such as cogni-

tive control. Interestingly, a recent study found involve-

ment of connectivity of cerebellum and parietal cortex

during repeated behavioural information uptake inform-

ing about personality traits of different persons (Van

Overwalle et al., 2017), which could be considered to be

similar to processing diagnostic information about

patients.

On a conceptual level, during the collection of informa-

tion about a clinical case, one or more hypotheses or

predictions about the most likely—but as yet provision-

al—diagnosis are constructed early in the diagnostic pro-

cess, based on the information that has been received

thus far (Schmidt and Rikers, 2007). If the next encoun-

tered information is in conflict or does not support the

current hypothesis, this conflict is detected and the initial

hypothesis has to be revised and updated based on the

new information. As such, we interpret the role of pre-

frontal areas as key in the detection of ambiguous infor-

mation (Mohr et al., 2015), which may extend to the

process of generating a provisional diagnosis. The main

difference in neural activity between Type 1 and Type 2

cases was found to concern increased connectivity be-

tween the frontal and parietal cortex, anterior and poster-

ior temporal cortex and parietal–cerebellum connection.

This connectivity finding fits well into a wider body of

literature regarding the detection, processing and reso-

lution of uncertainty (Yoshida and Ishii, 2006; Go~ni

et al., 2011; FeldmanHall et al., 2019). The lateral pre-

frontal cortex has been shown to be active in redecision

processing (revisiting one’s initial decisions) and to be

scaled with decision uncertainty reduction and correlated

with individual accuracy changes in a rule-based decision-

making task (Qiu et al., 2018).

Based on the connectivity differences between Type 1

and Type 2 cases, we propose that the main difference

in neural mechanisms between the reasoning strategies

during solving these distinct types of cases is the regula-

tion of information flow. We speculate that following

the detection of ambiguity in Type 2 cases, the areas

that are key in executive functioning (e.g. lateral pre-

frontal cortex) regulate attentional control and the types

of (ambiguous) information that are important to attend

to. We propose that subsequent differential communica-

tion between the frontal, parietal and temporal regions

(important for memory retrieval of expert knowledge)

that are involved in more fundamental cognitive mecha-

nisms gives rise to the overarching differences in reason-

ing processes.

We propose a more integrative dynamic view of med-

ical reasoning. Instead of grounding this view into cat-

egorically different types of reasoning (i.e. dual

processes), a better description can be based on the (old,

but not obsolete) information-processing psychology

concept of ‘schematic anticipation’ as described by Otto

Selz in the early 20th century (de Groot, 1965), and the

10 | BRAIN COMMUNICATIONS 2020: Page 10 of 12 B. van den Berg et al.



more recent neuroscience predictive encoding theories.

According to Selz, when setting a concrete goal (i.e.

establishing a correct diagnosis), a ‘schematic anticipa-

tion’ of the consequence(s) of reaching this goal is al-

ways implied. This schematic anticipation of the

solution is the starting point for further reasoning proc-

esses. The ease and speed of these reasoning processes

are determined by the force (completeness) of the miss-

ing data necessary to close the gap between the antici-

pated and final solution.

Future research should investigate the possible underly-

ing neural mechanisms in more detail. For example, a

modern neuroscience counterpart of the concept of sche-

matic anticipation is the neural predictive encoding theory

(Friston, 2010, 2018; Clark, 2013), where a hypothesis is

generated by the brain that may need to be adapted in

the face of new information.

In summary, in this study, we found that the differen-

ces between processing straightforward (Type 1) and am-

biguous (Type 2) cases were processing time, diagnostic

accuracy and neural connectivity between areas that may

subserve a higher degree of controlled cognitive process-

ing (i.e. executive functions). The differences between

Type 2 and Type 1 may not primarily lie in discrete acti-

vation levels of isolated brain regions, but rather in the

communication or connectivity between key nodes in rele-

vant networks. These may underlie the detection of un-

certainty, generation of hypotheses and subsequent

revisions of a provisional diagnosis. In clinical settings,

this means that the clinician anticipates a final diagnosis

by first creating an early provisional diagnosis. When

subsequent case information is inconsistent or inconclu-

sive with this provisional diagnosis, the brain engages in

more elaborate controlled processing to compare and in-

tegrate externally presented information to knowledge

from memory. Thus, in our opinion, a cornerstone of ex-

pert reasoning lies in enhanced neural communication,

necessary to dynamically revise a provisional diagnosis

during the collection of ambiguous, and possibly conflict-

ing clinical information.
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