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Abstract
Curation of literature in life sciences is a growing challenge. The continued increase in the rate of publication, coupled with the relatively fixed 
number of curators worldwide, presents a major challenge to developers of biomedical knowledgebases. Very few knowledgebases have 
resources to scale to the whole relevant literature and all have to prioritize their efforts.
In this work, we take a first step to alleviating the lack of curator time in RNA science by generating summaries of literature for noncoding 
RNAs using large language models (LLMs). We demonstrate that high-quality, factually accurate summaries with accurate references can be 
automatically generated from the literature using a commercial LLM and a chain of prompts and checks. Manual assessment was carried out 
for a subset of summaries, with the majority being rated extremely high quality.
We apply our tool to a selection of >4600 ncRNAs and make the generated summaries available via the RNAcentral resource. We conclude that 
automated literature summarization is feasible with the current generation of LLMs, provided that careful prompting and automated checking 
are applied.
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Introduction
Curation in life sciences is the process by which facts about 
a biological entity or process are extracted from the sci-
entific literature, collated, and organized into a structured 
form for storage in a database. This knowledge can then be 
more easily understood, compared, and computed. The cura-
tion task is a time-consuming and often challenging one in 
which subject matter experts triage literature, select curatable 
papers, and review them for the rich information they provide 
about a given biological entity [1]. Researchers search curated 
databases (knowledgebases) for information about the entities 
they are studying and incorporate curated facts into the design 
of their next study, which may in turn be curated. This virtu-
ous circle is fundamental to the functioning of research in life 
sciences.

One of the most basic requirements for a researcher is 
a broad understanding of the molecule of interest. A broad 
overview is most easily gained from a short summary of the 
literature. Such summaries are often produced as part of the 
curation process, for example, UniProt [2] gives an overview 
of a protein’s function on its protein entry pages. Similarly, 
some model organism databases have curator-written descrip-
tions of the genes they contain (e.g. Saccharomyces Genome 
Database [3] and FlyBase [4]). Summaries are time-consuming 
to produce because there may be a large amount of dis-
parate information to synthesize; because of the difficulty, 

many databases still do not yet have summaries for all the 
entities they contain, e.g. the RNAcentral database does not 
contain summaries for ncRNAs. In addition, human-written 
summaries are prone to become outdated due to the lack of 
available curator time.

There are a limited number of curators in the world and 
the rate of publication and the complexity of the research 
papers continues to increase. The mismatch between the effort 
that is required and that which can be applied has led many 
to use computational techniques at all stages of curation. 
Natural processing (NLP) has been applied for many years, 
with cutting-edge techniques being used as they become avail-
able. However, to date these approaches have had limited 
success. Recently, language models, and in particular LLMs, 
have attained sufficient quality to be applicable to curation. 
Recent efforts have used LLMs to summarize gene sets [5], 
mine knowledge from synthetic biology literature [6], and 
other tasks previously done by NLP methods [7]. In most 
cases, LLMs are able to perform remarkably well with little 
or no fine-tuning training data, opening the potential for their 
application in resource-limited fields.

One field in which the lack of curation effort is particularly 
acute is ncRNA science. ncRNAs are any RNA transcribed in 
the cell that does not encode a protein. ncRNAs are critical 
to the functioning of the cell by forming the core of the ribo-
some, splicing pre-mRNAs in the spliceosome, and regulating 
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gene expression through microRNAs (miRNAs), long ncR-
NAs (lncRNAs), small nucleolar RNAs (snoRNAs) and many 
other RNA types. However, as a field, ncRNA has very little 
curation resource compared to the field of proteins. Rfam [8] 
and RNAcentral [9] are two of the primary databases in RNA 
science. Rfam is a database containing over 4100 RNA fam-
ilies, while RNAcentral is the ncRNA equivalent of UniProt 
containing over 30 million sequences at the time of writing. 
Rfam includes curated descriptions of each RNA family. These 
descriptions are quite general as they describe the function 
across all organisms in which the family is found. RNAcen-
tral imports data from other resources and as of release 22, it 
contains data from 52 other resources, of which 12 provide 
curated data. RNAcentral has previously made efforts to con-
nect users with the relevant literature with the development of 
the LitScan tool (described in detail in the Sentence acquisition 
section below) to explore the EuropePMC API and extract 
citations and relevant sentences from the literature. However, 
LitScan still lacks a way to provide a coherent and compre-
hensive overview of an RNA. As a comprehensive source of 
information on ncRNA, the RNAcentral database is a natural 
location for the development of tools to more easily connect 
users with the ncRNA literature.

In this work, we apply a tool based on GPT4, developed 
by OpenAI, to produce automated summaries for a large num-
ber of ncRNA genes. Summaries are generated from sentences 
mentioning ncRNAs extracted from the literature and dis-
played on the RNAcentral website. We detail our approach 
to sentence acquisition by exploring the EuropePMC API to 
allow the extraction of relevant passages. These snippets are 
then passed through a pipeline of selection, summarization, 
automated checking, and automated refinement when neces-
sary, which we named LitSumm. The output of this is 4618 
summaries detailing the literature relating to ∼28 700 tran-
scripts. A randomly selected subset of 50 summaries represen-
tative of RNA type and context size are manually evaluated 
by four expert raters.

Materials and methods
RNA selection
To keep costs and computation size within reasonable lim-
its, we focus on a subset of RNAs of broad interest to the 
community. We include RNAs contributed by the HUGO 
Gene Nomenclature Committee (HGNC) [10], miRBase [11], 
mirGeneDB [12], and snoDB [13] databases. Within these, 
we identify primary identifiers and aliases as supplied by the 
source database.

A large fraction of the RNAs we consider are miRNAs that 
are associated with a large corpus of scientific literature. Many 
of these are referred to by identifiers that are not organism 
specific such as ‘mir-21’. Having nonspecific identifiers leads 
to a very large number of papers that must be summarized 
across a diverse range of organisms; this can lead to confus-
ing or inaccurate statements about the function of an miRNA 
in a given organism when the function was actually observed 
elsewhere. More recently, identifiers including an indication 
of the species have become more common, in this case for 
example ‘hsa-mir-21’ for the human-specific miRNA. The dif-
ference in the number of papers discussing these identifiers is 
enormous. To ensure the specificity of summaries, we restrict 
the IDs used to generate summaries of miRNAs to only those 

specific to a species. The exception to this rule is for human 
miRNAs coming from HGNC, which often have identifiers 
like ‘MIR944’ and are included in the set of ncRNAs we 
summarize.

Large language models
LLMs are a class of machine learning models that have very 
large numbers of parameters, hundreds of billions is common, 
and are adept at predicting the most probable next token given 
an input sequence. LLMs are built on the transformer archi-
tecture [14]. This architecture imposes several limits: first, it 
is expensive in terms of memory and computation to operate 
on large amounts of text. This imposes a limit on the amount 
of text, called a context length. Secondly, LLMs do not oper-
ate on words, but instead on tokens. This means that context 
lengths are always given as the number of tokens that can 
be fed into a model; a helpful rule of thumb is that a token 
is ∼0.75 words, so a 4096 token context would be ∼3000 
words [15].

In this work, GPT4-turbo (https://platform.openai.com/
docs/models/gpt-4-and-gpt-4-turbo), an LLM provided by 
OpenAI, is used. Specifically, we use the gpt-4-1106-preview 
model through the OpenAI API. The primary parameter con-
trolling the text generation is temperature, T, which alters the 
sampling distribution of the next token; T = 0 would make the 
model only choose the most likely next token, while higher 
values allow the model to explore the distribution of the next 
token. We use a relatively low T = 0.1 (default T = 1), a bal-
ance between determinism and flexibility to rewrite parts of 
the context into a coherent summary. Low T also reduces 
the likelihood of model ‘hallucinations’, a common problem 
where the LLM will invent facts [16].

Two other parameters used to control the generation of 
the model are the presence and frequency penalties. These 
alter the sampling distribution by adding a penalty to tokens 
already present in the text to reduce repetition. They can 
also be used to encourage reuse by giving negative values. 
We use a presence penalty of −2 in the initial summary gen-
eration call to ensure the model restates tokens from the 
context in the summary, but with a frequency penalty of 
1 to avoid repetition. All operations involving the LLM 
are abstracted using the LangChain python library (https://
github.com/hwchase17/langchain).

Sentence acquisition
To gather what is being said about an RNA in the literature, 
we explore the EuropePMC API using a query designed to 
find articles discussing ncRNA while minimizing false posi-
tives. The query used is ‘query=(“<RNA ID>” AND (“rna” 
OR “mrna” OR “ncrna” OR “lncrna” OR “rrna” OR 
“sncrna”) AND IN_EPMC:Y AND OPEN_ACCESS:Y AND 
NOT SRC:PPR)’, with the collection of terms in parentheses 
aiming to filter out false positives that mention the ID but not 
a type of ncRNA; the query also explicitly requires open access 
and excludes preprints. We restrict this search to the open-
access subset at EuropePMC such that we can access and reuse 
the full text, aside from this no other restrictions are placed 
on the articles we retrieve or use. RNAcentral’s comprehensive 
and regularly updated collection of cross-references between 
RNA resources enables us to identify papers that refer to the 
same RNA using different names or identifiers.

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
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Once articles about an RNA have been identified, the full 
text is retrieved and searched to (I) validate that the ID is men-
tioned in the article and (II) extract sentences that mention 
the ID. The identified article PMCIDs and contained sen-
tences are stored in a database at RNAcentral. The results of 
this can be seen on RNAcentral, where the tool is referred 
to as LitScan (https://rnacentral.org/help/litscan) and has an 
interface allowing users to explore the results (e.g. https://
rnacentral.org/rna/URS000075D66B/9606?tab=pub). In this 
work, we use LitScan as a source of statements about RNAs, 
which can be used to provide an overview of the literature 
about them.

Sentence selection
Not all ncRNAs are studied equally. For many, we know 
about their existence only because they have been sequenced 
and deposited in sequence archives such as the European 
Nucleotide Archive [17]; for these RNAs, we have no papers 
to summarize. A significant subset of RNAs appear in only 
a few articles where their existence is established, and occa-
sionally, some aspect of function, localization, or other infor-
mation is determined. To ensure a reasonable amount of 
information for the LLM to summarize, we restrict the lower 
bound of sentence counts to five. These five sentences could 
come from a single paper, which allows summarization of sin-
gle papers that present the only source of information about 
an RNA.

Above this threshold, there are two factors driving the 
selection of sentences from which to summarize: context 
length and information coverage. For LitSumm, we restrict 
ourselves to a 4096 token context and impose a limit of 2560 
tokens (∼1920 words) in the context to allow for prompting 
and revisions. We limited ourselves to a 4096 token context 
for two reasons: feasibility of downstream finetuning of an 
open LLM and cost—using the full 128k token window of 
GPT4 would be prohibitively expensive, since API calls are 
charged per token. The limit of 2560 is arrived at by consid-
ering the length of output summaries (∼255 tokens), prompts 
(60–140 tokens), and the number of tokens required to send a 
summary for revision (∼1150) for a random subset of RNAs. 
For the majority of ncRNAs, the total available sentences fall 
within this context limit, so no selection is applied beyond the 
five-sentence lower limit.

For some ncRNAs such as well-studied miRNAs (e.g. 
hsa-mir-191) and snoRNAs (e.g. SNORD35A) among oth-
ers, totalling 1704 RNAs, we find too many sentences to 
use them all, meaning that a selection step is necessary. To 
select sentences, we apply a topic modelling approach [18]. 
We used the SentenceTransformers package [19], with the 
pretrained ‘all-MiniLM-L6-v2’ model, which embeds each 
sentence into a 384-dimensional vector, the dimensionality 
of its output layer. Then, the Uniform Manifold Approx-
imation and Projection dimensionality reduction technique 
[20] is applied to reduce the vector dimension to 20, and 
the HDBSCAN clustering algorithm [21] produces clusters of 
similar sentences. While 384 is not a particularly high dimen-
sionality, it has been shown that reducing dimensionality 
significantly improves clustering performance across a variety 
of tasks [22]; we choose a dimensionality of 20 such that we 
can use the fast_hdbscan python library (https://github.com/
TutteInstitute/fast_hdbscan), for which 20D is the maximum 
recommended dimensionality. Cluster exemplars were sam-
pled in a round-robin fashion until the context was filled to 

ensure a broad coverage of topics. In the case where all exem-
plars did not fill the context, sentences were sampled from the 
clusters themselves in the same round-robin way.

An important minority of ncRNAs are very heavily stud-
ied. These include ncRNAs like XIST, MALAT1, and NEAT1, 
each of which appears in thousands of articles. In these cases, 
our selection technique still results in too many tokens, so we 
apply a greedy selection algorithm to the cluster exemplars. 
An exemplar is selected in the largest cluster, then the vector 
embedding is used to calculate the similarity to all exemplars 
in other clusters. The exemplar least similar to the selected 
exemplar is selected, and the process continues by evaluating 
the distance from all selected exemplars. The process repeats 
until the context is filled.

For some RNAs, there were too many sentences to use all, 
but not enough to apply the topic modelling approach. In this 
case, the sentences were sorted in descending order of tok-
enized length, and the first k-sentences were taken such that 
the context was filled.

In all cases, no criteria are applied to the selection of sen-
tences to use in building the summary beyond them having a 
direct mention of the RNA being summarized.

Prompts
One of the most critical criteria for a scientific summary is 
that it contains only factual information. Additionally, trac-
ing the provenance of statements in the summary is important 
for verifiability. We have designed a chain of prompts through 
iterative refinement on a subset of examples with these objec-
tives in mind. The first prompt generates the summary, and if 
there are problems, subsequent prompts attempt to guide the 
LLM into rectifying them.

The first prompt is shown in Fig. 1a. 
Here, the model is instructed several times to use refer-

ences, and the style of reference desired, with an example. The 
LLM is further instructed not to use ‘external sources’; this 
aims to stop the LLM inserting any facts that are not present 
in the context. While these facts could be accurate, there is 
no way of finding out where they come from, and they risk 
being inaccurate, which we try to avoid at all costs. These 
instructions, combined with the sampling parameters, reduce 
the likelihood of the model inserting facts not present in the
context.

After the summary is returned from the model, references 
are evaluated. This consists of five checks, any one of which 
can trigger a regeneration of the summary. The five checks are 
as follows:

1. Adequacy of references: are there enough references for 
the number of sentences in the summary? We require at 
least 0.5 references per sentence.

2. Formatting of references: We require the model to cite 
sentences by using PubMed Central identifiers (format-
ted like PMCXXXXXX).

3. Realness of references: Are all the references in the sum-
mary present in the context? This should catch cases 
where the model has invented a PMCID.

4. Location of references: references should be at the end 
of sentences usually. This is intended to stop the model 
from putting all references at the end of the summary 
and not indicating which statement comes from which 
reference.

https://rnacentral.org/help/litscan
https://rnacentral.org/rna/URS000075D66B/9606?tab=pub
https://rnacentral.org/rna/URS000075D66B/9606?tab=pub
https://github.com/TutteInstitute/fast_hdbscan
https://github.com/TutteInstitute/fast_hdbscan
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Figure 1. (a) The initial prompt used to generate a first-pass summary from the generated context. Variables are enclosed in {} and are replaced with their 
values before sending the prompt to the LLM. (b) Prompts used for the self-consistency checking stage including inaccurate statement detection and 
revision. All prompts are reproduced as plain text in Appendix A in the Supplementary material.

5. Number of references per instance: this check catches 
the model putting many PMCIDs into a single pair 
of brackets, which is undesirable for the purposes of 
provenance checking. We require no >50% of the total 
number of references in any given citation.

Each check has a specific ‘rescue’ prompt that is applied 
when the summary makes a particular mistake. There are four 
of these, shown in Fig. A1 in the Supplementary material. To 
keep costs and computation time within four hundred dollars 
and a total run-time of 1 day, a maximum of four attempts 
are given to produce a summary. If the summary is still not 
produced after these attempts, it is flagged as potentially prob-
lematic. However, if the summary passes the check within 
the70 limit of four attempts, it continues to the next stage.

Once all reference-based checks have passed, the accuracy 
of the summary is evaluated. To do this, the summary is 
broken into a bulleted list and provided alongside the orig-
inal context. The model is instructed to state whether each 
bullet is true or false based on the context and to find the 
support in the context. Importantly, we not only ask for a 
true/false but also ask for an explanation of why. When a sum-
mary contains a misleading or false statement, the output of 

this step, along with the summary, is fed back to the model 
which is instructed to amend the summary accordingly. These 
two steps combine approaches to LLM self-fact-checking [23] 
and chain-of-thought prompting [24]. In combination, these 
improve summaries. The prompts used in these stages are 
shown in Fig. 1b.

Once this stage is complete, the summary is given a final 
reference check, and if successful the summary is considered 
finished. An overview figure of the whole LitSumm tool is 
shown in Fig. 2.

Human and automated assessment
To evaluate the quality of the output, a subset of the sum-
maries was assessed in parallel by four reviewers. These 
reviewers were chosen from the coauthors and were specif-
ically selected to represent diverse academic backgrounds, 
including expertise in data curation, RNA biology, and 
machine learning. A subset of 50 summaries was randomly 
selected, stratified by context length, and loaded into a web 
platform to provide feedback. Figure B1 in the Supplemen-
tary material shows a screenshot of the web platform used. 
The distribution of summaries over RNA types is shown in 
Table 1. 
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Figure 2. A flow diagram of the whole LitSumm tool. Information from the EuropePMC API flows from the left to the right, through a sentence selection 
step before several rounds of self-checking and refinement. Finished summaries are written to disk before being uploaded to the RNAcentral database 
enmasse.

Table 1. Distribution of RNA types for the 50 summaries reviewed

RNA type Count

lncRNA 23
pre_miRNA 11
miRNA 10
snoRNA 4
Other 2

Since we primarily sampled according to the total number of tokens avail-
able for each RNA, without considering the type, this distribution broadly 
follows the distribution of RNA types in the whole dataset.

Summaries were presented alongside the context from 
which they were generated to allow the raters to evaluate 
the claims made in the summary. The ratings were given on 
a 1–5 scale based on the rubric shown in Table B1 in the 
Supplementary material. Briefly, a rating of 1 would indicate 
multiple serious problems with a summary (fake references, 
inaccurate statements, etc.); a rating of 2 indicates at most 
two misleading/incorrect statements or one serious error; a 
rating of 3 indicates an acceptable summary with at most one 
minor misleading/incorrect statement; a rating of 4 indicates 
a summary with no incorrect/misleading statements but with 
other problems such as poor flow; and a rating of 5 would 
indicate an excellent summary (all statements referenced and 
true, good flow, etc.). All summaries rated 3 and above must 
have correct, adequate references. Raters were asked to score 
a summary based only on the information in the context, 
not using any extra information from the linked articles, or 
their own knowledge. We also provided a series of tickboxes 
designed to identify particular failure modes, these are also 
shown in Table B2 of the Supplementary material.

Raters 0–2 were involved in the design of the rubric and 
had the same training with the tool. Experience in RNA sci-
ence differed between the raters, with Raters 0 and 1 being 
more experienced than Rater 2, and Rater 0 being a profes-
sional curator. Rater 3 was not involved in the development 
of the summarization or assessment tools and received writ-
ten training to use the rubric before completing their rating 
session.

Results
We focused on RNAs from authoritative databases including 
HGNC, miRBase, mirGeneDB, and snoDB, with particular 
attention to unambiguous identifiers to ensure accurate func-
tional attribution. From these databases, an initial set of 
4618 RNA identifiers were selected for summarization. Our 
pipeline extracted relevant sentences from open-access papers 
in EuropePMC using RNA-specific search queries. Repre-
sentative sentences were selected using topic modelling and 
sampling to maintain information diversity. These selected 
sentences were then processed through GPT-4-turbo using a 
prompt chain that enforces factual accuracy and proper cita-
tion. Each generated summary underwent multiple rounds 
of self-consistency checking and refinement, validating both 
reference formatting and factual accuracy against the source 
material. A subset of the final summaries was evaluated by 
a panel of experts across multiple domains, including RNA 
biology, data curation, and machine learning.

The 4618 RNA identifiers selected for summarization rep-
resent a coverage of ∼28 700 transcripts and 4605 unique 
RNA sequences in RNAcentral, and ∼177 500 papers con-
taining the identifiers. The distribution of RNA types is shown 
in Fig. 3. 

The majority of RNAs come from the RNA-type-specific 
databases miRBase, mirGeneDB, and snoDB, which provide 
miRNAs and snoRNAs; all lncRNAs come from HGNC and 
are therefore only those found in humans. The small number 
of ‘other’-type RNAs is from HGNC, including, for exam-
ple, rRNAs, RNAses, and some RNAs with imprecise-type 
labels such as the generic ncRNA. As expected from the cho-
sen databases, the majority of the RNAs selected are human, 
with nonhuman RNAs coming primarily from miRBase and 
mirGeneDB.

The full generation process for each summary, includ-
ing the automated checking, consistency checking, and all 
revisions, took on average 29 s and cost $0.05. These 
values are estimated from the total time to generate all 
4618 summaries, and the total cost across the genera-
tion period as recorded by OpenAI for billing. An exam-
ple summary is shown in Fig. 4, and all summaries 
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Figure 3. The distribution of RNA types selected for summarization.

Figure 4. Example summary generated by the tool. This example is an 
lncRNA, examples for other RNA types can be found in Appendix C of 
the Supplementary material.

can be browsed by going to the RNAcentral website 
and searching ‘has_litsumm:“True”’ (https://rnacentral.org/
search?q=has_litsumm:%22True%22). We also make the 
entire dataset of contexts and their summaries available online 
at https://huggingface.co/datasets/RNAcentral/litsumm-v1.5. 

Automated checking, primarily of reference adequacy and 
accuracy, identified problems in 2.1% of summaries, which 
were adequately rectified within the four allowed revisions 
in 76% of cases, meaning that overall 99.5% of summaries 
passed our automated checks. The self-consistency check iden-
tified problems in 17.3% of summaries, which were rectified 
in 51% of cases giving an overall pass rate of 91.5%. The pass 
rates at each stage are shown in Table 2. 

Table 2. Pass rates of the automated checking and self-consistency 
checking stages in the LitSumm pipeline

Failure mode Pass rate (%)
Number of passing 
summaries

References—first pass 97.9 4519
References—after revision 99.5 4594
Self-consistency—no 
problems found

82.7 3820

Self-consistency—no 
problems after revision

91.5 4226

The table shows the percentage and number of summaries that pass each 
stage, including revision stages.

An example of the type of error identified and rectified by 
the consistency check is shown in Fig. 5. 

Human evaluation was carried out for a subset of ran-
domly sampled RNAs. These RNAs cover the full range of 
context sizes and ncRNA types. The subset consists of 50 
RNAs in total, for which three raters assessed quality. Of these 
50 RNAs, 21 (covering only miRNA) were also scored by an 
expert in miRNA (Rater 3). The human rating, on a scale of 
1–5 with 5 being excellent and 1 indicating the presence of 
some serious failure, is shown for all raters in Fig. 6. 

From the human ratings, 94% of summaries were rated 
good or excellent. In the majority of cases where a summary 
was rated inadequate (score of 2 or less), the problem iden-
tified by the raters had to do with poor synthesis of facts 
from multiple sources not caught by the automated consis-
tency check, or reference misattribution, where a reference 
for a given sentence does not match the information content 
or is irrelevant. Reference errors are penalized strongly in the 
marking rubric, as they are misleading statements. LLMs are 
known to struggle to accurately combine facts across different 
documents [25]. This has been observed in previous studies 
of multi-document summarizations and may be connected to 
input construction. A summary of the failures identified is 

https://rnacentral.org/search?q=has_litsumm:%2522True%2522
https://rnacentral.org/search?q=has_litsumm:%2522True%2522
https://huggingface.co/datasets/RNAcentral/litsumm-v1.5
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Figure 5. Example output of the veracity checker. In this case, CTBP1-DT 
presents two sentences validated as TRUE and two FALSE sentences. 
The offending sentences have been removed by the model in the final 
summary.

Figure 6. The average rating per summary across all raters. Note that 
Rater 3 gave scores only for a subset of 21 miRNAs.

Table 3. Reasons given for poor rating in those cases where a rating <3 
was given

Rater
Total (out of 50 
summaries)

Reference 
formatting

Hallucination/
false info Other

Rater 0 9 4 9 1
Rater 1 5 0 3 2
Rater 2 7 3 3 3
Rater 3 3/21 0 1/21 4/21

shown in Table 3, and the best- and worst-rated summaries 
per RNA type are shown in Appendix C in the Supplementary 
material. 

Summaries rated inadequate by human inspection are 
retained, but not displayed on RNAcentral. Similarly, where 
problems were identified by automated checks, e.g. failing 

to insert correct references, or automatically detected self-
consistency errors, the summaries are retained but not dis-
played. This means that from a total of 4605 unique RNA 
sequences, 4602 have a displayed summary on the RNAcen-
tral website.

Additionally, we observed instances of reference misattri-
bution, where unrelated or incorrect references were added 
to sentences, undermining the ease of verification of the sum-
maries. Furthermore, the model exhibited a tendency to over-
infer and make unwarranted connections, often overstating 
the significance of findings, such as prematurely identifying 
biomarkers. We also noted cases of unsupported expansions, 
where the model introduced information that was not sup-
ported by the original text, for example, expanding DFU as 
‘Diabetic Foot Ulcer’ when the provided context made no 
mention of diabetes, feet, or ulcers. Finally, issues with flow 
and coherence were evident, including the inclusion of inter-
nal instructions and inappropriate recommendations. These 
findings highlight the need for continued refinement and eval-
uation of LLMs in generating accurate and reliable summaries 
of scientific literature.

Summaries are available on RNAcentral by exploring 
results of the search ‘has_litsumm:“True”’ (https://rnacentral.
org/search?q=has_litsumm:%22True%22) or by exploring 
the ‘Literature Integration’ facet and selecting ‘AI generated 
summaries’. We also make the entire dataset of contexts 
and their summaries available online at https://huggingface.
co/datasets/RNAcentral/litsumm-v1.5. Summaries will be 
updated with each RNAcentral release by rerunning the Lit-
Summ pipeline, including rerunning LitScan to identify new 
literature; future releases may move to the use of a local 
model. Previous versions of the summaries will be versioned 
and made available, including metadata on the generation, 
such as the LLM model and sentence selection techniques 
used. Future work will include moving to a fine-tuned local 
model, which will allow expansion to more ncRNAs and a 
more even taxonomic coverage without significant additional 
cost.

Discussion
In this work, we present an application of LLMs to per-
form literature curation for ncRNA. We show that a pipeline 
with a series of automated checks and carefully designed 
prompts can produce high-quality literature summaries. We 
also demonstrate techniques to minimize untrue information 
and ensure high-quality referencing in the summary.

Human ratings of a representative subset of the summaries 
generated have been collected and show that the majority of 
summaries are of high or very high quality, with a small num-
ber of common failure modes. The identified failure modes 
primarily fall into two categories: relating to referencing 
and relating to information synthesis/inference from multiple 
sources.

The size of the fully annotated set is small, at only 50 
summaries, but thorough, with three of the raters rating all 
50 summaries. This is in line with the sizes of other multi-
rated summarization datasets [26], but with a greater overlap 
(100% vs. 20% in Wang et al.). Collecting multiple rat-
ings for each summary improves our sensitivity to nuanced 
errors at the cost of coverage. The failure modes we identi-
fied were consistent across instances and were picked up by 
all raters; however, more nuanced errors were identified in 

https://rnacentral.org/search?q=has_litsumm:%2522True%2522
https://rnacentral.org/search?q=has_litsumm:%2522True%2522
https://huggingface.co/datasets/RNAcentral/litsumm-v1.5
https://huggingface.co/datasets/RNAcentral/litsumm-v1.5
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context-specific cases and were not picked up by all raters. 
We are confident that our ratings identified the nuanced errors 
made by the LLM, but given the small coverage, identifying a 
clear pattern to these errors is difficult. It may be preferable 
to allocate rating time differently to maximize coverage with 
some minimal overlap to assess consistency.

In this work, the human ratings have been performed by 
four of the coauthors of the paper for all summaries. Hav-
ing authors’ rate summaries introduces a conflict of interest 
in that the authors have a vested interest in the ratings being 
‘good’. To mitigate the potential for bias, we employed a grad-
ing rubric and multiple rating for all summaries and further 
asked an external expert to rate summaries in their own field 
of expertise (also a coauthor). We believe the bias is mini-
mal, evidenced by the low ratings for poor-quality summaries 
given by all raters. In future, it would be preferable to have 
additional independent ratings.

Summarization is a task that has been approached by lan-
guage models previously, such as the T5 architecture [27]. 
While these models do perform well on summarization and 
other tasks, they are not as general purpose as modern, 
instruction-tuned LLMs, which are often equally adept at 
summarization. As such, basing the LitSumm architecture on 
a single driving model simplifies the tool. LLM-driven sum-
marization has been done in several other fields. For example, 
Joachimiak et al. developed a similar tool, SPINDOCTOR, 
which is used to generate a summary from gene descriptions; 
the summary is then used in a gene enrichment analysis [5]. 
Joachimiak et al. evaluate the results of their gene enrich-
ment against standard tools and find that their method is 
comparable, although it misses some important terms. SPIN-
DOCTOR differs from LitSumm in that the input is a set of 
genes known to be enriched in an experiment, and the out-
put is a summary of their commonalities, whereas LitSumm 
produces a broad overview summary of a single RNA from 
many literature-derived statements. SPINDOCTOR also does 
not need to assess the consistency of their summary with the 
context from which it is generated, and does not give the 
provenance of statements, since their input is human-derived.

One field in which similar considerations have to be made 
is medicine, where the accuracy and provenance of statements 
are paramount. Shaib et al. evaluate GPT 3 for the summa-
rization and synthesis of many randomized controlled trial 
reports. They find that while the LLM produces coherent sum-
maries, it often fails to synthesize information from multiple 
sources adequately and may be over-confident in its conclu-
sions [28]. In our evaluation, we find similar failure modes, 
where the model misunderstands statements where it tries to 
synthesize information from more than one source.

A key aspect of our pipeline is the use of self-consistency 
checking and revision using chain-of-thought prompting. 
These two concepts have been applied in other contexts, such 
as question answering over documents [29], but have yet to 
be applied to literature curation. Despite our best efforts to 
reduce hallucinations and ensure wholly factual summaries, 
∼17% of cases still have some problems, indicating the need 
for consistency checking. Feeding the output of the self-
checking back into the model reduces this to 8.5%, which 
is encouraging, but also indicates the need for human inter-
vention in this complex field where LLMs still struggle to 
fully comprehend scientific literature. In particular, the con-
sistency check developed here is not effective at identifying 

inferences made by the LLM that are incorrect, because there 
is ‘indirect’ support in the context. There is also the possibility 
of ‘feedback hallucination’ in which the generated instruc-
tions to rescue a summary contain a hallucination, which if 
not checked will be inserted by the LLM as it follows its 
own instructions. As LLMs become stronger and have more 
advanced reasoning capabilities, this will become an increas-
ingly problematic failure mode; the detection of errors of this 
sort is an area of active research in the NLP field generally.

We investigated the observed errors in the produced sum-
maries, finding that the majority of poorly rated summaries 
share several common problems. Namely, we observe incor-
rect reference attribution, the inclusion of irrelevant details 
while missing important information, and statements unsup-
ported by the context as the most common problems. More 
details of this error analysis can be found in Table B2 and 
Appendix C in the Supplementary material.

Another limitation relates to the literature itself and here 
is primarily seen with miRNAs. Many gene names or iden-
tifiers are ambiguous in that they can be used to refer to 
multiple organisms or may conflate the mature product and 
precursor hairpin. We have restricted ourselves to species-
specific IDs (e.g. hsa-mir-126), meaning that the generated 
summaries should be consistent and limited to a single organ-
ism, but a significant fraction of the literature does not use 
these IDs. Thus, we are missing information. We could use 
a broader set of identifiers, but then we must be able to 
distinguish which species is being discussed in each paper. 
There are ways this could be addressed—for example, using 
the ORGANISMS database [30] to identify which organism 
a given article is about and then using this information to 
produce organism-specific summaries, despite the usage of 
nonspecific terms. However, the accuracy of such resources is 
questionable, meaning that we do not know which organism 
a paper discusses at present. We leave this problem as future 
work.

Other automated assessment methods have been developed 
that use another LLM to give a rating to the output of an 
LLM. This can be done with very little guidance as in sin-
gle answer grading, described by Zheng et al. [31], where 
GPT4 is simply asked to grade output, or in a much more 
guided and structured way as in Prometheus [32], where a 
gold standard answer and marking rubric are provided to the 
model. While LLM rating approaches have not been applied 
here, such a tool would be valuable to ensure the quality of 
summaries without extensive human curation. However, the 
development of a suitable rubric is not straightforward; we 
plan to approach this problem in future work.

One limitation that will be difficult to address is the open-
ness of literature. Our sentences come from the open-access 
subset of EuropePMC. While this data source is growing as 
more authors publish open access, it still does not allow access 
to the majority of knowledge, particularly that from earlier 
decades. Many knowledgebases make extensive use of closed-
access literature in their curation; their primary concern is the 
quality of the information being curated, not the availabil-
ity of the information; therefore, the open-access status of a 
paper is not an impediment to its being curated. However, 
the inability of this tool, and those which will doubtless come 
after it, to use closed-access literature does highlight the need 
for authors, institutions, and funders to push for open-access 
publication with a permissive licence for reuse.
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Often there is too much literature available to feed all of 
it into an LLM to generate a summary. Recently, LLMs have 
been getting considerably larger context sizes, for example, 
GPT4 can now accept up to 128k tokens. However, this is 
unlikely to be a solution in itself; LLMs do not attend to their 
entire context equally [33], and having a larger context and 
expecting the LLM to use it all are unlikely to work, although 
some recent work has shown that this may be soluble [34]. 
In this work, topic modelling is used to reduce the amount of 
text to be summarized. This introduces problems related to the 
context construction that lead to inaccurate sentences being 
generated by the LLM. Worse, the automated fact-checking is 
blind to this type of failure, due to there being ‘evidence’ in the 
context which supports the inaccurate sentence. Therefore, we 
would recommend against the use of topic modelling alone to 
generate input context for an LLM, since it likely introduces 
more problems than alternative approaches such as vector 
store-based retrieval augmented generation (RAG). A better 
approach may be to decompose the summary into sections 
and apply a RAG [35] approach to each in turn by apply-
ing semantic search for only passages about, for example, 
expression.

The field of LLM research is moving extremely rapidly 
and we expect that significant improvements will be possible 
in our pipeline simply by adopting newer LLM technology. 
Our current work is based on GPT4, having originally been 
developed with GPT3.5; this allows us to see the improve-
ment in LLM technology, which we show in Appendix D 
in Supplementary material with a brief A/B preference test 
between GPT3.5 and GPT4, and examination of pass rates 
through our pipeline. Moving to openly available models 
could enable future work on fine-tuning the LLM for the 
biological summarization task.

Conclusion
In conclusion, we have demonstrated that LLMs are a pow-
erful tool for the summarization of scientific literature and, 
with appropriate prompting and self-checking, can produce 
summaries of high quality with adequate references. Using the 
tool developed here, 4618 high-quality summaries have been 
provided for RNAcentral, providing natural language sum-
maries for these RNAs where none previously existed. This is 
the first step to automating the summarization of literature in 
ncRNAs and providing helpful overviews to researchers.

Supplementary data
Supplementary data is available at Database online.
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