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Abstract: Syncope is a medical condition resulting in the spontaneous transient loss of consciousness
and postural tone with spontaneous recovery. The diagnosis of syncope is a challenging task, as similar
types of symptoms are observed in seizures, vertigo, stroke, coma, etc. The advent of Healthcare 4.0,
which facilitates the usage of artificial intelligence and big data, has been widely used for diagnosing
various diseases based on past historical data. In this paper, classification-based machine learning
is used to diagnose syncope based on data collected through a head-up tilt test carried out in a
purely clinical setting. This work is concerned with the use of classification techniques for diagnosing
neurally mediated syncope triggered by a number of neurocardiogenic or cardiac-related factors.
Experimental results show the effectiveness of using classification-based machine learning techniques
for an early diagnosis and proactive treatment of neurally mediated syncope.

Keywords: neuro mediated syncope; classification; machine learning; head-up tilt (HUT) test

1. Introduction

Syncope is a medical condition resulting in the transient loss of consciousness (LOC)
or postural tone with spontaneous recovery. Characterized by certain precipitating factors,
warning signs and specific manifestations during the unconscious episode, syncope is a
common leading complaint encountered in the emergency department of hospitals [1–3].
The most fundamental to the occurrence of syncopal episodes is the short-lived interruption
of oxygen supply to the brain that happens primarily due to the transient cessation of blood
flow, which is always triggered by the momentarily reversible drop in systemic arterial
blood pressure to a level below that needed to sustain cerebral perfusion [4,5].

Syncope is mainly classified into three important categories, viz. reflex, cardiovascular
and orthostatic hypotension. These groups are further classified into various subgroups
depending on the underlying conditions leading to cerebral hypoperfusion. Though numer-
ous possible situations leading to syncope are highlighted in the literature, some cases still
exist where even after a thorough assessment it was not possible to assign a single cause of
fainting. Reflex or neurally mediated syncope is the most common form of syncope found
across all age groups [6]. Usually benign in nature, this syncope is not life-threatening;
however, leaving it untreated can be a threat to the quality of life. Orthostatic hypotension
(OH) and cardiovascular forms of syncope, on the other hand, are more prevalent among
older age groups. In most cases, the severity of OH syncope is mild to moderate. However,
the severity of cardiovascular syncope may be life-threatening in nature and requires
serious medical attention [7].

The work reported in this paper is restricted to the study and classifications of neurally
mediated syncope, where the transient LOC or fainting occurs as a result of an inadequate
cerebral blood flow. The defining characteristic of this syncope is the fall in systemic blood
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pressure (BP) that leads to the reduction in the global cerebral blood flow and, consequently,
global cerebral hypoperfusion. The systemic blood pressure is evaluated as the product
of the cardiac output (CO) and the total peripheral resistance (TPR). A significant decline
in any of the two has the potential to create cessation in cerebral blood flow. However, it
has been found that during the induction of syncope, both mechanisms work together in a
varying fashion [4].

The diagnosis of syncope in itself is a challenging task. This is due to the fact that
various other states of altered consciousness such as seizures, vertigo, stroke, coma, etc., also
pose the same symptoms as syncope [7]. Additionally, in the diagnostics process, it is crucial
to exclude cases of syncope caused by an underlying cardiac disease, as subjects having
manifestations of such syncope are at a high risk of severe cardiac-related abnormalities [8].
Thus, evaluating patients with LOC or near LOC and establishing a true syncope is a crucial
step in the diagnostic process. The use of high-end computing solutions at this crucial
stage of diagnosis is anticipated to add great benefits for resource-constrained healthcare
organizations [9]. The advent of Healthcare 4.0 by the usage of artificial intelligence and
big data is facilitating a refined diagnostic and treatment procedure [10]. It enables a
vast amount of data to be captured and put to work in applications facilitated by machine
learning models and, thus, provides a significant gain in the cost and efficiency of healthcare
services [11].

The objective of this paper is to diagnose neurally mediated syncope using real-life
physiological data collected through the head-up tilt (HUT) test [2]. Classification-based
machine learning techniques have been widely and successfully used for diagnoses based
on healthcare data [12–15]. In this regard, a syncope classification model is proposed for
classifying syncope and non-syncope events. This work draws its origin from [16], where
it was established that syncope classification can be performed using a Support Vector
Machine (SVM)-based machine learning algorithm. However, there are many other machine
learning algorithms that need to be evaluated for the purpose of syncope classification
for an effective and efficient syncope detection. This work uses the dataset used in [16] to
present an exhaustive exploration and comparison of some very relevant machine learning
classification techniques, including the SVM, for syncope classification. The aim of the
study is to further analyze the performance of the SVM with other machine learning peers
in this context to explore their suitability in syncope classification.

The remaining paper is organized as follows: Section 2 presents the syncope classi-
fication model. Section 3 presents the experimental results, followed by a discussion in
Section 4. Section 5 presents the conclusion and future directions.

2. Syncope Classification Model

In this paper, classification techniques, viz. the Decision Tree (DT), Gaussian Naïve
Bayes (GNB), k-Nearest Neighbor (k-NN), Multinomial Naïve Bayes (MNB), Support
Vector Machine (SVM) and Logistic Regression (LR) were applied to patients’ physiological
data. The data utilized for this research were collected from a total of 687 patients, who
underwent a HUT test in a purely clinical setting at the Medical University of Graz,
Auenbruggerplatz-2, A-8036 Graz. The raw data recorded in the test were preprocessed
using statistical methods. The above-mentioned classification algorithms were applied
to the preprocessed data. Thereafter, comparisons of these classification algorithms were
carried out on five performance measures, viz. the accuracy, precision, recall, F1-score and
AUC-ROC curve.

The proposed model, referred to as the syncope classification model (SCM), primarily
depends on two central hypotheses. First, the etiology of syncope can be derived by
continuous electrocardiographic signals along with beat-to-beat statistics of blood pressure.
Second, mathematical modeling and machine learning algorithms can provide a near-
accurate diagnosis of autonomic dysfunctional syncope. A flow diagram representing the
working of the model is shown in Figure 1.
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Figure 1. Flow diagram of SCM.

2.1. Data Collection

The data utilized for this research were obtained from patients who routinely under-
went tilt table testing at the Syncope Clinic, General Hospital (LKH), Knittelfeld, Austria.
This is a referral center for the assessment of syncopal episodes. The data were collected
from a total of 687 patients in a purely clinical setting. All these patients had histories of
syncope or dizziness upon standing up. Accordingly, patients having a history of at least
a single episode of syncope were included in the study. Informed written consent was
obtained from all subjects involved in the study.

The patients, on arrival to the hospital, were instrumented with blood pressure and
electrocardiographic sensors. Specifically, hemodynamic responses, such as the heart rate
(HR) and mean arterial pressure responses at baseline and at the development of orthostatic
intolerance during tilt table testing, were measured. The inclusion and exclusion criteria
for patients undergoing tilt table testing were strictly followed. Further, in this exploratory
study, continuous and non-invasive beat to beat HR and BP measurements were recorded.
Data recorded through sensors were saved digitally with the help of analog to digital
converters called the Task Force Monitor (CNSystems, Graz, Austria).

2.1.1. HUT Test

A HUT test is a stimulating test induced to evaluate a patients’ susceptibility to
neurally mediated or vasovagal syncope. The test is simply based on an orthostatic stimulus
that causes blood to be drained down in lower extremities and, subsequently, vasovagal
syncope being ensued to the susceptible individuals. It has been established that the
systemic BP of 50–60 mmHg at the heart level or 30–45 mmHg at the brain level in the
upright position for 30–45 min can potentially trigger the cessation of cerebral blood flow
and, thus, loss of consciousness (LOC) [4,6]. Central hypovolemia, because of blood pooling
in lower extremities, is believed to be the triggering mechanism behind the influx of this
syncope. The mechanism has extensively been covered in literature by [17,18].

Numerous methodologies are being adopted for HUT table testing. Primarily, it is
performed in two stages: first, as a drug-free HUT of an elongated duration, followed by
a provocative pharmaceutical agent-administered HUT of a shorter duration. A tilt table
is, basically, a flat top bedding surface containing footplates and safety straps mounted
over it. The tables are fitted with a manual or automatic tilting mechanism that supports
calibrated tilt angles of 60◦ to 80◦ in a quick span of time. Initially, patients were directed
to lie supine on the table before it was started to be tilted upward. The rationale behind the
whole action is that a sudden change in posture sometimes induces the neurally mediated
syncope that is characterized by a sudden drop in heart rate and blood pressure. The tests
are usually supervised by a physician or technician having expertise in the management
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of the test and its potential complications. A standard tilt test protocol was used for this
study. Following a baseline of 20 min, the participants were tilted for 20 min. If no syncopal
signs or symptoms developed after 20 min, the tilt test was negative. However, if the signs
or symptoms of syncope developed at any time, the tilt table was immediately returned
back to the supine position and the tilt test was classified as positive. No pharmacological
interventions were provided in this study. The test ended after the induction of presyncope
or syncope related to intolerable hypotension [19–21]. The test for this study found three
main underlying mechanisms responsible for the triggering of the induction of syncope, viz.
a sudden drop in blood pressure, drop in heart rate resulting in a drop in blood pressure
and a continual drop in blood pressure as reported in [16].

2.1.2. Physiological Indicators

The HUT test concluded with the findings that, out of 687 patients, only 96 patients
were recognized to have the induction of syncope, while the remaining 592 patients were
able to keep control of their BP and HR. A total of 48 different physiological indicators
against each individual were recorded in a proper format as reported in [16]. These in-
dicators were majorly grouped under five subgroups, viz. BeatStats, Cardiac BeatStats,
HRV Stats, dBPV Stats and sBPV Stats. The subgroups, BeatStats and Cardiac BeatStat,
respectively, were a collection of 11 and 13 indicators, whereas each of the HRV Stats, dBPV
Stats and sBPV Stats contained 8 indicators.

A complete description of all physiological indicators was beyond the scope of this
research. However, a brief introduction of each indicator along with their assessment was
presented in Appendix A for putting things in perspective.

2.2. Data Preprocessing

The physiological dataset, discussed above, had missing values for indicators for some
patients. The missing values were replaced by the average value of the respective indicator
of all patients. Further, since the values for different indicators were in different scales
for the patient instances, the values for each of the indicators were normalized using the
min–max normalization technique to lie between 0 and 1. Furthermore, out of the total of
687 patient instances, 96 instances belonged to the syncope class and 591 instances belonged
to the non-syncope class. Thus, the dataset exhibited a class imbalance, which in turn could
lead to poor performance of the classification model. There exist several oversampling
techniques to address this class imbalance problem, and one amongst them, the Synthetic
Minority Oversampling Technique (SMOTE) [22], was used to address the class imbalance
problem in the physiological dataset used in the SCM. SMOTE over-sampled the minority
class by creating a synthetic example of an instance instead of replacing it. It randomly
selected a sample instance in the minority class and computed its k-nearest neighbors. It,
then, generated a line segment between the selected instance and computed the k-nearest
neighbors and chose synthetic instances falling within these lines and added them to the
dataset. This process continued until the required additional samples were added to the
dataset. The resultant dataset hereafter in this paper was referred to as the syncope dataset.

2.3. Data Classification

Six supervised machine learning algorithms, viz. Decision Tree, Multinomial Naïve
Bayes, Gaussian Naïve Bayes, k-Nearest Neighbor, Support Vector Machine and Logistic
Regression, were applied over the normalized balanced physiological syncope dataset
in order to classify it into syncope events or non-syncope events. The aforementioned
classification algorithms were briefly discussed in Appendix B.

The K-fold cross-validation technique was used for training and testing the employed
classification models. In this validation technique, the input dataset was divided into k
subsets or folds of disjoint sets. Classification models were trained with data in k-1 folds
and an evaluation was carried out using the data in the remaining one-fold. The whole
process iteratively ran k times gave each fold at least one and at most one chance to be
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used for testing. In this process, the syncope dataset was divided into ten disjoint sets of
data, shown in the form of dotted and crisscross bars. Dotted bars represent the subsets
of data that were iteratively employed for training the model, while the crisscross bar
represents the dataset that was used for testing it. The process ran ten times for different
sets of training and testing data.

2.4. Performance Metrics

The performance of the classification models was based on the elements of matrix
imported from information retrieval, i.e., confusion matrix, which was a 2 × 2 matrix of
four elements, viz. True Positive (TP), False Positive (FP), False Negative (FN) and True
Negative (TN), as shown in Table 1. It was used for the binary classification problem, where
positive and negative implied a syncope event and non-syncope event, respectively.

Table 1. Confusion matrix.

Actual Value

Predicted Value

Positive Negative

Positive TP FP

Negative FN TN
The four elements of the matrix are described as: true positive (TP): the predicted syncope event classified correctly.
True negative (TN): the predicted non-syncope event classified correctly. False positive (FP): the predicted syncope
event classified incorrectly. This is also called a type 1 error. False negative (FN): the predicted non-syncope event
classified incorrectly. This is also called a type 2 error.

The algorithms used for the syncope classification models in this work were compared
based on five performance measures, viz. accuracy, precision, recall, F1-score and AUC-
ROC [23,24], which were computed using the elements of the above-mentioned confusion
matrix. These were standard performance measures used to evaluate machine learning
models, which were briefly discussed in Appendix C.

3. Experimental Results

Experiments were carried out to ascertain the benefits of using machine learning
models and compare them on various performance parameters. The hardware, software
and API specifications used in the experimental set-up were listed in Appendix D. Fur-
ther, the model-related parameter values considered for experimentation were presented
in Appendix E.

The syncope dataset, as discussed in Section 3, was used for experimentation. Since
these data had many missing values, they were normalized using min–max normalization
as discussed in Section 2.2. Further, in order to balance the dataset, the SMOTE over-
sampling technique, as discussed in Section 2.2, was used. Next, stratified 10-fold cross-
validation was used for training and testing the syncope dataset using the classification-
based machine learning models discussed in Appendix B. For each of these machine
learning models, various performance matrices, such as the accuracy, precision, recall, F1-
Score and AUC-ROC curve as discussed in Appendix C, were computed and are given in
Tables 2–6, respectively. To provide a comprehensive view, minimal values (Min), maximal
values (Max), mean values (Mean) and standard deviation (SD) were computed, as given
in these five Tables, while considering each fold for testing at least and at most once across
10 executions.
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Table 2. Accuracy.

Classifiers Min Max Mean SD

Decision Tree 0.956521 1.00 0.978197 0.012331
Gaussian Naïve Bayes 0.927536 0.985507 0.959292 0.019032
k-Nearest Neighbors 0.855073 0.970588 0.914258 0.036931

Multinomial Naïve Bayes 0.397059 0.985507 0.575234 0.156069
Support Vector Machine 0.955882 1.00 0.975256 0.013813

Logistic Regression 0.970588 1.00 0.989812 0.013814

In the case of the mean accuracy, LR, the SVM and DT performed comparatively better
than the other models, with LR performing the best amongst them. However, the mean
accuracy of MNB was significantly low. Further, it can be noted that LR, the SVM and DT
had a lower SD value and achieved the maximum accuracy value of 1. Furthermore, the
minimum accuracy value achieved by these models was also comparatively higher than
other models. Thus, it can be inferred that if accuracy was the key parameter, then LR, the
SVM and DT could be used for syncope classification.

Table 3. Precision.

Classifiers Min Max Mean SD

Decision Tree 0.833333 1.00 0.953081 0.065427
Gaussian Naïve Bayes 0.60 1.00 0.792345 0.114308
k-Nearest Neighbors 0.875 1.00 0.959230 0.054528

Multinomial Naïve Bayes 0.333333 1.00 0.525029 0.183290
Support Vector Machine 0.75 1.00 0.899626 0.087672

Logistic Regression 0.75 1.00 0.922723 0.094551

In the case of the mean precision, k-NN, DT and LR performed comparatively better
than the other models, with k-NN performing the best amongst them. However, the mean
precision of MNB was significantly low. Further, it can be noted that though the maximum
precision value achieved by all the models was one, they varied in their minimum precision
value and SD value with DT, k-NN and LR having a comparatively lower SD value. Thus,
it can be inferred that if precision was the key parameter, then DT, k-NN and LR could be
used for syncope classification.

Table 4. Recall.

Classifiers Min Max Mean SD

Decision Tree 0.60 1.00 0.866866 0.130834
Gaussian Naïve Bayes 0.80 1.00 0.939061 0.064175
k-Nearest Neighbors 0.20 0.70 0.431945 0.174117

Multinomial Naïve Bayes 0.80 1.00 0.977658 0.062855
Support Vector Machine 0.80 1.00 0.909733 0.077714

Logistic Regression 0.80 1.00 0.976079 0.063083

In the case of the mean recall, MNB, LR and GNB performed comparatively better
than the other models, with MNB performing the best amongst them. However, the mean
recall of k-NN was significantly low. Further, it can be noted that the maximum recall
value achieved by all the models, except k-NN, was one. However, the minimum and
maximum recall value of k-NN was significantly low and had the maximum SD amongst
all the models. Furthermore, MNB, LR and GNB had a comparatively lower SD value.
Thus, it can be inferred that if recall was the key parameter, then MNB, LR and GNB could
be used for syncope classification.
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Table 5. F1-score.

Classifiers Min Max Mean SD

Decision Tree 0.75 1.00 0.900775 0.076146
Gaussian Naïve Bayes 0.727273 0.96 0.858069 0.072367
k-Nearest Neighbors 0.333333 0.823529 0.574271 0.176757

Multinomial Naïve Bayes 0.235294 0.888889 0.434743 0.175213
Support Vector Machine 0.80 1.00 0.902410 0.062612

Logistic Regression 0.80 1.00 0.949312 0.070388

In the case of the mean F1-score, LR, the SVM and DT performed comparatively better
than the other models, with LR performing the best amongst them. Further, it can be noted
that the maximum F1-score value achieved by these models was 1. However, the Min,
Max and Mean F1-score value of MNB and k-NN was significantly low. Furthermore, LR,
the SVM and DT had a comparatively lower SD value. Thus, it can be inferred that if
F1-score was the key performance parameter, then LR, the SVM and DT could be used for
syncope classification.

While comparing the machine learning on the above-mentioned performance parame-
ters, it was observed that LR performed comparatively better in terms of accuracy, precision
and F1-score and was comparatively as good as the best performing model k-NN in terms
of recall. Further, in order to ascertain the performance of LR on different thresholds, in
comparison to other models, area under the ROC curve (AUC-ROC) value was computed
and is given in Table 6.

Table 6. AUC-ROC.

Classifiers Min Max Mean SD

Decision Tree 0.80 1.00 0.928496 0.062632
Gaussian Naïve Bayes 0.884375 0.982142 0.948923 0.028553
k-Nearest Neighbors 0.60 0.85 0.712434 0.086574

Multinomial Naïve Bayes 0.627119 0.90 0.710141 0.076134
Support Vector Machine 0.891379 1.00 0.949001 0.038459

Logistic Regression 0.892188 1.00 0.983263 0.032924

In case of the mean AUC-ROC value, LR performed comparatively better than the
other models. Further, it can be noted that though the maximum AUC-ROC value achieved
by LR, DT and the SVM was one, the mean AUC-ROC value and SD value of LR was
comparatively better than DT and the SVM. Thus, it can be inferred that the overall
performance of LR was comparatively better than the other models and, thus, could be
used effectively for syncope classifications.

4. Discussion

Classifying syncope and non-syncope events, based on true physiological data, have
rarely been dealt with by researchers. However, with the recent advent of huge computing
capabilities, data-based analytics and the diagnosis of cardiac-related abnormalities have
become a major domain of research across healthcare organizations.

A model for vasovagal syncope classification using the Support Vector Machine
(SVM)-based classification was presented in [16]. However, the work was limited to the
use of the SVM in classification and lacked the exploration of other supervised machine
learning models which could result in a better classification. The research work [25] focused
on the multi-class classification and clustering of syncope based on the heart rate (HR)
and the blood pressure (BP) data collected using the HUT test. The classifications were
performed by random forest classifier, whereas the K-medoid [26] technique was used
for clustering purposes. The result shown in the work was promising and facilitated a
clear viewpoint of the autonomic system, while analyzing pathophysiological indicators.
However, the result presented in the work was derived by a single classifier and was based
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on time series measurements of only HR and BP data. Some common forms of syncope
were classified for diagnosis and treatment by [27–29]. Since these classifications were
derived from the laboratory findings and observation of an individual physician, they were
phenomenological and lacked consistency in terminology.

A work, based on the random forest algorithm for the differentiation between syncope
and other common causes of transient LOC, was presented by [30]. However, its results
were not based on the physiological indicators; instead, they were based on the dataset
generated by the outcomes of response to detailed questionnaires about transient LOC.

Another work aiming for the early prediction of syncope during the HUT test was
reported by [31]. This work predicted the outcome of the HUT test based on data generated
in the first 15 min of the test. However, the results were exclusively based on the dynamic
interaction between the RR interval and the amplitude of systolic blood pressure.

A Natural Language Processing algorithm to identify syncope from the emergency
department (ED) electronic medical records (EMRs) was reported in [32]. Here, the models
claimed an impressive outcome towards the automatic identification of syncope for large
populations, providing a 96% reduction in analysis time as compared to the manual reviews
of EMRs. However, the results were based only on the EMRs of the patients visiting the
emergency department.

The work carried out in this paper offered a near accurate mechanism for the diagnosis
of neurally mediated syncope based on patient’s data collected through a full-scale HUT
test in a purely clinical setting, as mentioned in Section 2.1. This work focused on the
application of widely used classification-based machine learning algorithms, DT, GNB,
k-NN, MNB, the SVM and LR, on a syncope dataset comprising 48 physiological indicators.

Table 7 summarizes the performance of classifiers for each performance metric based
on the results presented in Section 3. The columns Max (min), Max (max), Max (mean) and
Min (SD) denote the name of the classifiers, amongst all classifiers, which best evaluated
the results against each of the performance metrics.

Table 7. Classifiers that evaluate desirable outputs across the K-folds.

Measures Max (Min) Max (Max) Max (Mean) Min (SD)

Accuracy LR DT, SVM, LR LR DT
Precision k-NN DT, GNB, k-NN, MNB, SVM, LR k-NN k-NN

Recall k-NN DT, GNB, MNB, SVM, LR MNB, LR MNB
F1-score SVM, LR DT, SVM, LR LR SVM

AUC-ROC SVM, LR DT, SVM, LR LR GNB

It can be inferred from Table 7 that LR performed comparatively better in terms
of accuracy, recall, F1-score and AUC-ROC, and performed reasonably well in terms of
precision. Further, the performance of LR across multiple thresholds, computed using
AUC-ROC, was comparatively better than the other models. Thus, it can be stated that the
overall performance of LR was the best and it could be used for the diagnosis of neurally
mediated syncope.

This work can be improved by ascertaining the indicators and their combinations that
are relevant for classifying neurally mediated syncope. Different medical conditions [33],
including polypharmacy, should be considered for future studies, particularly associated
with older persons [34–37], as there are dissimilar cardiovascular patterns in healthy par-
ticipants [38]. Further, the generalizability of data considering the effect of sex [39–41],
seasons [42] or across races on reproducibility can be assessed while considering the inter-
individual differences in hemodynamic responses and time to collapse [43]. Furthermore,
a detailed analysis of HR and BP features could be performed to evaluate whether they can
have a predictive value on their own or not.
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5. Conclusions

The work carried out in this paper emphasized the benefits of using classification-
based machine learning models for the diagnosis of neurally mediated syncope. Amongst
all the classification models, the LR-based classification model performed the best and
could appropriately be used for classifying neurally mediated syncope.
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Appendix A

A summary of physiological indicators along with their measuring units are presented
in Table A1 [16].

Table A1. Physiological indicators of subjects collected in HUT test.

BeatStats

Acronym Definition Units

HR Heart Rate Beats/min
SV Stroke Volume Liter/beat
CO Cardiac Output Liter/min
CI Cardiac Index Liter/min/m2

SI Stroke Index Ml/beat/m2

RRI RR Interval Seconds
TPR Total Peripheral Resistance Pa·sec/m3

TPRI Total Peripheral Resistance Index Pa·sec/m5

dBP Diastolic Blood Pressure mmHg
mBp Mean Blood Pressure mmHg
sBP Systolic Blood Pressure mmHg

Cardiac BeatStats

ACI Acceleration Index m/s2

CI Cardiac Index Liter/min/m2

EDI End-Diastolic Index
HR Heart Rate Beats/min
IC Index of Contractility Seconds
LVET Left Ventricular Primitive Ejection Time Milliseconds
LVWI Left Ventricular Stroke Work Index Pa.ml/beat/m2

SI Stroke Index Ml/beat/m2

TFC Thoracic Fluid Content Liter
TPRI Total Peripheral Resistance Index Pa·sec/m5
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Table A1. Cont.

BeatStats

Cardiac BeatStats

dBP Diastolic Blood Pressure mmHg
mBp Mean Blood Pressure mmHg
sBP Systolic Blood Pressure mmHg

HRV Stats

HF_RRI High-Frequency RR Interval Hz
HFnu_RRI Normalized High-Frequency RR Interval
LF_HF Difference Between Low and High Frequency of RR Interval Hz
LF_HF_RRI The ratio of Low and High Frequency of RR Interval
LF_RRI Low-Frequency RR Interval Hz
LFnu_RRI Normalized Low-Frequency RR Interval
PSD_RRI Power Spectral Density of RR Interval W/Hz
VLF_RRI Very Low Frequency of RR Interval Hz

dBPV Stats

HF_dBP High-Frequency dBP Hz
HFnu_dBP Normalized High-Frequency dBP
LF_HF Difference Between Low and High Frequency of dBP Hz
LF_HF_dBP Ratio of Low and High Frequency of dBP
LF_dBP Low-Frequency dBP Hz
LFnu_dBP Normalized Low-Frequency dBP
PSD_dBP Power Spectral Density of dBP W/Hz
VLF_dBP Very Low Frequency of dBP Hz

sBPV Stats

HF_sBP High-Frequency sBP Hz
HFnu_sBP Normalized High-Frequency sBP
LF_HF Difference Between Low and High Frequency of sBP Hz
LF_HF_sBP Ratio of Low and High Frequency of sBP
LF_sBP Low-Frequency sBP Hz
LFnu_sBP Normalized Low-Frequency sBP
PSD_sBP Power Spectral Density of sBP W/Hz
VLF_sBP Very Low Frequency of sBP Hz

The description of physiological indicators along with their measuring units is given below:
Heart Rate (HR[bpm]): It is the speed of the heartbeat measured as the number of

contractions of the heart per minute.
Stroke Volume (SV[l/beat]): It is the amount of blood ejected by the left ventricle in

one beat.
Cardiac Output (CO[l/min]): It is the volume of blood being pumped by the left or right

ventricle of the heart in a unit of time. It is measured as the product of stroke volume and
heart rate.

CO[l/min] = SV[l/beat] × HR[bpm]

Cardiac Index (CI[l/min/m
2

]): It is a hemodynamic parameter that relates the cardiac
output (CO) from the left ventricle in one minute to body surface area (BSA); thus, relating
heart performance to the size of the individual. The unit of measurement is in liters per
minute per square meter (L/min/m2). Cardiac index is measured as given below:

CI[l/min/m
2

] = CO[l/min]/BSA[m
2

]

where Body Surface Area (BSA[m
2

]) is the surface area of a human body empirically
calculated in terms of height and weight of the body.

BSA[m
2

] = Weight[kg] [x] × Height[cm][y] × [z]
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x, y and z are empirically derived parameters.
Stroke Index (SI[ml/beat/m

2
]): It is the normalized stroke volume corresponding to each

unit of body surface area.

SI[ml/beat/m
2

] = SV[l/beat]/BSA[m
2

] × 1000

RR Interval (RRI[s]): It is the time elapsed between two consecutive R waves of the
QRS signal on the electrocardiogram. It is a function of the intrinsic properties of the sinus
node as well as autonomic influences.

Total Peripheral Resistance (TPR [Pa·s·m
−3

]): It is a measure of the total resistance ob-
served in the blood flow produced by the entire vascular system. In general, this equates
to the force applied by the heart in order to pump the blood.

Total Peripheral Resistance Index (TPRI [Pa·s·m
−5

]): It is the measure of TPR corresponding
to each part of the body surface area.

TPRI [Pa·s·m
−5

] = TPR [Pa·s·m
−3

]/ BSA[m
2

]

Diastolic Blood Pressure (dBP[mmHg]): It is the pressure in the arteries between two
consecutive heartbeats.

Systolic Blood Pressure (sBP[mmHg]): It is the pressure in the arteries during the contrac-
tion of the heart muscle.

Mean Blood Pressure (mBP[mmHg]): It is the average blood pressure in an individual
during a single cardiac cycle. It has the same unit as dBP or sBP and is evaluated as:

mBP[mmHg = (2/3) × dBP[mmHg] + (1/3) × sBP[mmHg]

Acceleration Index (ACI[ms
−2

]): It is the highest acceleration of blood flows in the aorta.
End-Diastolic Index (EDI[ml/m

2
]): End-diastolic volume (EDV) is the volume of blood

in the right and/or left ventricle just before systole. EDV is often used synonymously with
preload that refers to the length of the sarcomeres in cardiac muscle prior to its contraction.
The amount of EDV corresponding to each unit of body surface area is defined as an
end-diastolic index (EDI). It increases the preload on the heart and, thus, increases the
stroke volume. It is evaluated automatically using cardiac magnetic resonance imaging
(MRI) software.

Index of Contractility (IC[s]): It is the assessment of myocardial contractile forces depend-
ing upon the pressure P in the left ventricular and its first derivative dP/dt between the
time from onset of contraction to the time td when it attains dP/dtmax, on the isovolumic
pressure curve.

Left Ventricular Ejection Time (LVET[ms]): It is the time duration between the opening
and closing of the aortic valve, which in turn is evaluated by the pressure difference across
the valve.

Left Ventricular Stroke Work Index (LVWI): It describes the function of the left ventricular
in a numeric form. LVWI highlights the increment of a workload on the left ventricle in
aortic stenosis.

LVWI = SI[ml/beat/m
2

] × (LVSP[mmHg] − LVEDP[mmHg]).

where, (LVSP) and (LVEDP) are the left ventricular mean systolic pressure and left ventric-
ular end-diastolic pressure, respectively.

Thoracic Fluid Content (TFC[l]): It is a non-invasively assessed parameter by thoracic
electrical bio-impedance. TFC indicates the total volume of chest fluid, particularly in the
lungs. Pulmonary perfusion can directly be estimated from TFC in the case of any lack of
pleural or pericardial effusion.

Table A1 contains subgroups having physiological indicators from heart rate variables
(HRV Stats) and blood pressure variables (both dBPV Stats and sBP Stats). The spectral
analysis of heart rate and blood pressure on a beat-to-beat basis presents the sensitive
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assessment of cardiovascular functions that provides clinical diagnostic and prognostics
markers [44]. The TFM employed for the measurement of cardiovascular parameters in
this work automatically calculated the power spectral analysis of HRV Stats and BPV Stats
accordingly. Short recordings of HRV and BPV were primarily observed in three separate
frequency bands of oscillations, namely, very low frequency (VLF), low frequency (LF)
and high frequency (HF). The separation considered for each frequency band was 0.01 to
0.20 Hz for VLF, 0.20 to 0.75 Hz for LF and from 0.75 to 250 Hz for HF. In short-duration
autonomic regulations, VLF was considered to be insignificant, as it hardly played any
major role in the final result. Thus, LF and HF were the only significant measures used to
quantify the parasympathetic and sympathetic regulations [45]. Moreover, further studies
suggest that for the precise derivation of outcomes from HRV and BPV statistics, the only
measures of LF and HF were not adequate. Therefore, in addition to the absolute value of
LF and HF, their normalized form LFnu and HFnu were also computed by the TFM.

LFnu = LF/(HF + LF + VLF) and

HFnu = HF/(HF +LF + VLF)

Since VLF was also considered in the quantification of LFnu and HFnu, thus,

LFnu + HFnu < 1.

The alterations in the spectra by cardiovascular disturbances in the autonomic circula-
tory regulation affected the proportion of frequency in the total spectrum power. Therefore,
the power spectral density (PSD) was also considered as a quantitative indicator for auto-
nomic regulation. Furthermore, the ratio between LF and HF was also computed by the
TFM as a direct proportionality drawn between a normalized value of either of the spectral
bands and LF/HF ratios.

As discussed above, a total of eight indicators, viz. VLF, LF, HF, LF/HF, LF-HF, LFnu,
HFnu and PSD, were computed by the TFM for a spectral analysis of HRV and BPV. These
indicators were separately computed for each of the three subgroups HRV Stats, sBPV Stats
and dBPV Stats.

The HUT test process records data of every individual on 48 physiological indicators
discussed above. All these measurements were recorded over a dedicated task force monitor
(TFM), which facilitates continuous and reproducible measurements of HR and BP.

Appendix B

Machine learning models used for classifying syncope and non-syncope are given below:
Decision Tree [46]: It is a tree-structured supervised learning method used both for

solving the classification and regression problems. Based on the top-down greedy approach,
it breaks the dataset into small subsets and, simultaneously, develops an incremental
decision tree. A decision tree (DT) consists of three components, viz. the internal node,
leaf nodes and branch, where internal nodes represent the feature, leaf node signifies the
outcome and branch dictates the decision rules. The selection of best attributes for root
nodes and internal nodes depends on the measures of decrease in impurity or randomness
in the dataset. For predicting the class for the input syncope data, the decision tree, for
the given syncope dataset, is traversed from the root node to the leaf node based on the
condition met by the input data. The input data is classified as a syncope and non-syncope
based the label of the leaf node.

Multinomial Naïve Bayes [47]: The multivariate event model of Naïve Bayes, referred
to as Multinomial Naive Bayes (MNB), is a probabilistic learning method, based on Bayes
Theorem, where the adjective Naïve is used because of the assumption that the features are
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independent of each other. In case of the syncope dataset, MNB can be used to evaluate the
probability of the occurrence of syncope to a patient, s, amongst the class of patients, c, as:

P(c s) ∝ ∏
1≤k≤ns

P(x k|c)

here P(x k|c) represents the conditional probability of feature xk occurring in a dataset of
the class of patient c. P(x k|c) measures the contribution of feature xk in finding the correct
class c. P(c) is the prior probability of the occurrence of syncope in class c. When features
show no clear evidence about one class versus another, the class having higher prior
probability is chosen. ns represents the number of features considered for classifications.
This algorithm performs better when the features take discrete values and the features are
independent of each other.

Gaussian Naïve Bayes [48]: The classification model based on the extension of the
Naive Bayes model to real-valued attributes using Gaussian distribution is referred to
as the Gaussian Naïve Bayes (GNB) model. It assumes that data described by Gaussian
distribution have no co-variance between dimensions. This model can be used to compute
the mean and standard deviation of all indicators into the syncope dataset and find the
Gaussian probability density function of indicators xi for a new patient x as:

p(xi) =
1

σ×
√

2π
e
−1
2 (

xi−µ
σ )

2

where µ and σ are the mean and standard deviation, respectively.
The probable class C of patient x is finally computed by the highest value of posterior

probability (P) as:
P(C k|x) = max(p(x|C k))

where k is the number of possible classes and p(x|C k) is the probability density of patient
x corresponding to Ck.

k-Nearest Neighbor [49]: This is a supervised learning algorithm that classifies data
to a class that have data in a close proximity or neighborhood. The distance between the
input data point and data points in the dataset are used to decide the k-nearest neighbor
(k-NN). In the case of the syncope problem, k-NN can be used to classify patients into the
syncope or non-syncope class depending on which of these classes obtains the majority of
votes from the data instances comprising the k-nearest neighbors.

Support Vector Machine [50]: It is a linear classifier that performs the classification
task by creating a hyperplane in a higher dimensional space that, optimally, splits the data
into two groups. The support vector machine (SVM) tries to find an optimal hyper plane
corresponding to m given training samples{(x1, y1), . . . (xm, ym) }, where xi∈ RN and ym∈
{−1, 1}, for the linear decision function f (x) = w· x + b, by evaluating weight w and bias b. In
the case of the syncope dataset, the SVM can be used to classify a patient by choosing the
hyperplane having the largest margin, which is evaluated as the closest distance from the
data points to the decision boundary.

Logistic Regression [51]: It is a supervised learning technique that considers a logistic
function or the sigmoid function to map the predictions to probabilities. Logistic regression
(LR) uses a logistic function defined as:

f (xi) =
1

1 + e−(xi)

where xi are indicators in the dataset.
The function, when plotted on a graph, is an S-shaped curve between 0 and 1. For the

classification of patients into the syncope or non-syncope class, the input data features are
passed through the sigmoid function that computes its probability ranging between 0 and
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1. The algorithm works with a threshold value which is used to classify patients based on
the output of the probabilistic function given as:

log(
f (x)

1− f (x)
) = b0+b1 × x1+b2 × x2 + . . . bn × xn +ε

where b0 is the intercept on the y axis, b1, b2, . . . bn are the linear coefficients corresponding
to each one of the indicators and ε is the random error.

Appendix C

Performance metrics for comparing syncope classification models are given below:
Accuracy: It is defined as the correct fraction of total predictions computed by the

model. For a binary classification problem, accuracy is evaluated as:

Accuracy =
TP + TN

TP + TN + FP + FN

Recall: It is defined as the ratio of correct positive predictions to the actual positive
samples. It is also called the true positive rate (TPR) or sensitivity. The higher value of
recall indicates the better performance of the model.

Recall/Sensitivity/TPR =
TP

TP + FN

Precision: It is defined as the ratio of correct positive predictions to the total positive
predictions determined by the classifier. The higher the value of precision, the better is the
performance of the model.

Precision =
TP

TP + FP

F1–score: It is the harmonic mean of recall and precision. Ranging from zero to one, a
higher value of F1-score indicates a better performance. This measure is widely used for
the evaluation when models generate a high recall and low precision or vice versa.

F1− Score =
2

1
Recall + 1

Precision
=

2 × Recall × Precision
Recall + Precision

False Positive Rate: It is defined as the ratio of incorrect positive predictions to the
actual negative samples.

FPR =
FP

FP + TN

Area Under the ROC Curve (AUC-ROC): A receiver operating characteristics (ROC)
curve is a graph that depicts the performance of a classification model for all classification
thresholds. The curve is plotted between TPR on the y-axis and the FPR on the x-axis.
The area under the ROC curve (AUC-ROC) is the performance metric for measuring the
capability of binary classifiers. A higher AUC-ROC signifies the better performance of the
classifier.

Appendix D

Hardware, software and API specifications used for experimentation are given in
Table A2.
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Table A2. System specifications.

Hardware Specifications Software Specifications

Processor Core i5 Windows 64-bit Windows 10
Processor Clock Speed 1.8 GHz Scikit learn 0.20.3

Number of Cores 4 Pandas 0.23.4
RAM 8 GB NumPy 1.14.3

Cache Memory 6 MB Matplotlib 3.0.2
Processor Architecture 64 bit Seaborn 0.11.1

Processor Variant 8265U imblearn 0.00

Appendix E

Parameters used by syncope classification model are given in Table A3.

Table A3. Parameter values considered by classification models.

SVM Parameters

Parameter Value Parameter Value Parameter Value Parameter Value

C 2 kernal Linear degree 3 gamma Auto

coef0 0.0 shrinking True probability False tol 0.001

cache_
size 200 class_

weight None verbose False max_iter −1

decision_
function_

shape
ovr break_ties False random_

state None

LR Parameters

Parameter Value Parameter Value Parameter Value Parameter Value

penalty l2 tol 0.0001 C 1.0 fit_intercept True

dual False intercept_
scaling 1 class_weight None solver Liblinear

max_iter 100 multi_class Auto verbose 0 random_
state None

KNN Parameters

Parameter Value Parameter Value Parameter Value Parameter Value

n_neighbor 5 weight Uniform algorithm Auto leaf_
size 30

p 2 metric Minkowski metric_
param None n_jobs None

MNB Parameter

Parameter Value Parameter Value Parameter Value Parameter Value

alpha 1.0 fit_prior True class_prior None alpha 1.0

GNB Parameter

Parameter Value Parameter Value Parameter Value Parameter Value

priors None var_smoothing 1 × 10−9 priors None var_smoothing 1 × 10−9

DT Parameter

Parameter Value Parameter Value Parameter Value Parameter Value

max_depth 8 max_features None max_leaf_node None min_sample_leaf 10

min_sample_split 2 random_state 11 splitter Best
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