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ABSTRACT

Transcription factor (TF) and microRNA (miRNA) are
two crucial trans-regulatory factors that coordinately
control gene expression. Understanding the impacts
of these two factors on the rate of protein sequence
evolution is of great importance in evolutionary
biology. While many biological factors associated
with evolutionary rate variations have been studied,
evolutionary analysis of simultaneously accounting
for TF and miRNA regulations across metazoans is
still uninvestigated. Here, we provide a series of stat-
istical analyses to assess the influences of TF and
miRNA regulations on evolutionary rates across
metazoans (human, mouse and fruit fly). Our results
reveal that the negative correlations between trans-
regulation and evolutionary rates hold well across
metazoans, but the strength of TF regulation as a
rate indicator becomes weak when the other con-
founding factors that may affect evolutionary rates
are controlled. We show that miRNA regulation
tends to be a more essential indicator of evolutionary
rates than TF regulation, and the combination of TF
and miRNA regulations has a significant dependent
effect on protein evolutionary rates. We also show
that trans-regulation (especially miRNA regulation)
is much more important in human/mouse than in
fruit fly in determining protein evolutionary rates,
suggesting a considerable variation in rate determin-
ants between vertebrates and invertebrates.

INTRODUCTION

Gene expression is largely controlled by actions of various
trans-regulatory factors. Undoubtedly, transcription
factor (TF) and microRNA (miRNA) are the most con-
spicuous classes of trans-regulatory factors and are

regarded as primary gene regulators in metazoans. TFs
are proteins that facilitate or repress the transcription of
their target genes through binding to specific DNA se-
quences, the so-called TF-binding sites (TFBSs), in the
gene promoter regions (1). On the other hand, miRNAs
are �22 nucleotide noncoding RNAs, which target
mRNAs and reduce stability and/or translation activity
of mRNA to regulate gene expression at the posttranscrip-
tional level (2). TFs and miRNAs may work together and
form a complex regulatory network that generally consists
of intricate feedback and feed-forward loops (3–5). The
coordinated regulation of TFs and miRNAs may play im-
portant roles in a wider diversity of biological processes
(6). A previous study reported that genes with more
TFBSs tend to be targeted by miRNAs and have more
miRNA-binding sites, suggesting a positive correlation
between these two trans-regulatory factors (7). Although
the mechanism of how miRNAs cooperate with TFs in the
regulatory network remains largely unknown (8),
accumulating evidence indicates its biological significance.
Thus, it is of interest to investigate the relationship
between these two trans-regulatory factors.
In terms of molecular evolution, it was shown that

genes regulated by more different TFs (NTF) tend to
evolve more slowly in yeast (9,10). Similarly, genes
targeted by more distinct miRNAs (NmiR) were suggested
to experience more functional constraints and thereby
evolve more slowly in human and mouse (11,12). These
observations revealed that trans-regulation complexity is
an important indicator of evolutionary rates, regardless of
TF regulation at the transcriptional level or miRNA regu-
lation at the posttranscriptional level. However, compara-
tive studies of trans-regulatory factors have been
hampered by the paucity or incompleteness of TF and
miRNA information. To our knowledge, there is currently
no systematic evolutionary analysis available that simul-
taneously accounts for these two trans-regulatory factors
across metazoans. Whether the negative correlation
between the number of trans-regulators that regulate a
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gene (i.e. NTF and NmiR) and evolutionary rates is main-
tained across metazoans, whether NTF and NmiR have a
dependent effect on evolutionary rates, and which of these
two factors has a greater effect on metazoan protein evo-
lution still await investigation.
In addition to trans-regulation, many other biological

factors associated with and potentially underlying evolu-
tionary rates of proteins have been reported. These factors
include protein connectivity in protein–protein interaction
(PPI) networks (9,10,13–19), expression level (or expres-
sion abundance) (9,11,13,14,17–30), tissue specificity (or
expression breadth) (13,21,23,25,26,31–34), length of un-
translated regions (UTRs) (12,21,26), intron length
(13,21,26,35), intron number (23,26), solvent accessibility
(36–39) and disorder content (11,40–42). Some of these
factors were also shown to be correlated with NTF or
NmiR (9,11,12,43,44). We classified these 10 factors into
five categories: trans-regulation (NTF and NmiR), protein
connectivity, gene expression (expression level and tissue
specificity), gene compactness (UTR length, intron length
and intron number) and protein structure (solvent acces-
sibility and disorder content). It is worth exploring
whether the last four categories of confounding factors
contribute to the strength of NTF and NmiR as indicators
of evolutionary rates.
To address these issues, we widely collect TF- and

miRNA-binding data from human (Homo sapiens),
mouse (Mus musculus) and fruit fly (Drosophila
melanogaster) and then systematically examine the correl-
ations between these two trans-regulatory factors (NTF

and NmiR) and evolutionary rates: nonsynonymous substi-
tution rate (dN), synonymous substitution rate (dS) and
dN/dS ratio. We show that genes regulated by more differ-
ent TFs/miRNAs evolve more slowly is generally main-
tained in human, mouse and fruit fly. By controlling for
the other confounding factors (i.e. protein connectivity,
gene expression, gene compactness and protein structure),
the partial correlations between NmiR and evolutionary
rates still hold well, whereas the strength of NTF as a
rate indicator is greatly decreased in human/mouse and
even disappears in fruit fly. We further find two trends:
miRNA regulation tends to be much stronger than TF
regulation in determining the rate of protein sequence evo-
lution, and TF and miRNA regulations have a dependent
effect on evolutionary rates, both of which are generally
maintained across metazoans (human, mouse and fruit
fly). We also observe that trans-regulation seems to play
a much greater role in human/mouse than in fruit fly in
causing variation in protein evolutionary rates. This result
reveals that the relative impact of trans-regulation on the
evolutionary rates appears to be different between verte-
brates and invertebrates.

MATERIALS AND METHODS

Data retrieval and extraction

The protein-coding genes in human and mouse, orthology
assignments and human–mouse and mouse–human evolu-
tionary rates (dN, dS and dN/dS) were downloaded from the
Ensembl genome browser at http://www.ensembl.org/

(release 69) (45). For an alternatively spliced gene, only
its longest isoform was selected. To avoid the confounding
factor of gene duplication, only 1:1 orthologs between
human and mouse genes were considered. Meanwhile,
fruit fly protein-coding genes were downloaded from
Flybase (release 4.3) (46). Fruit fly genes with single-copy
orthologs across five other Drosophila species (i.e.
D.melanogaster, Drosophila simulans, Drosophila yakuba,
Drosophila erecta, Drosophila sechellia and Drosophila
ananassae) and the evolutionary rates were obtained from
Larracuente et al.’s study (23). Here, dS values=0 and
dN/dS values� 2 were not considered. Additionally, the
human and mouse genes on chromosome Y were
excluded for reducing the possibility of irregular evolution-
ary rates in the short single-copy sex chromosome.
Chromatin immunoprecipitation (ChIP) data including
162 human TF ChIP-seq datasets and 59 mouse TF
ChIP-chip and ChIP-seq datasets were downloaded from
ENCODE project (47) and hmChIP (48), respectively. The
promoter of each human gene was defined as the intergenic
region of 8 kb upstream to 2kb downstream of the gene
start position (4 kb upstream to 1kb downstream for each
mouse gene). Also, we defined that a TF regulates a gene if
at least one ChIP-seq peak of the TF lies within the
promoter region of the gene. The nonredundant associ-
ations for 149 fruit fly TFs and their target genes were
obtained from DroID (May 2011) (49), which integrates
TF-gene associations from modENCODE (50) and
REDfly (51). For extraction of predicted human TFBS
data, 843 human position frequency matrices were down-
loaded from TRANSFAC� free trial (December 2011) (52).
The position weight matrix (PWM) of each position fre-
quency matrix and the cutoffs were obtained by using
PATSER (53). This study considered the potential
binding motifs whose P-values were smaller than or equal
to the minimum of the default cutoff and 10�3. We further
considered the general-binding preference (GBP) score (54)
to obtain more reliable predictions. Only the binding sites
with GBP scores >0.2, as Ernst et al. (54) suggested, were
retained. A TF was defined to regulate a gene if at least one
potential binding motif of the TF locates within the
promoter region of the gene. Human, mouse and fruit fly
miRNA target prediction data were downloaded from
TargetScan release 6.2 (including TargetScanHuman,
TargetScanMouse and TargetScanFly) (55,56). For
accuracy, this study considered all human, mouse and
fruit fly miRNA families whose target sites were conserved.
The site conservation is defined by conserved branch length
as determined in TargetScan (56). The used human,
mouse and fruit fly genes and the related information are
available at http://bits.iis.sinica.edu.tw/TransRegEvoRate/
index.html.

Protein connectivity

The connectivity of a protein was defined by the total
number of distinct proteins interacting with the protein.
The PPI datasets of human, mouse and fruit fly were
downloaded from STRING 9.0 (57), which retrieved
known and predicted PPIs from literature.
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Gene expression

Normalized expression datasets of 78 nonpathogenic
human tissues and 77 nonpathogenic mouse tissues were
downloaded from BioGPS (58), and a normalized expres-
sion dataset of 27 fruit fly nonpathogenic tissues was
downloaded from FlyAtlas (59). If multiple probe sets
refer to the same gene, the signals from different probe
sets of the same gene were averaged. Here, expression was
analyzed in terms of expression level and tissue specificity
(�). The expression level of a gene was defined as the
average signal intensity across all examined tissues. The
tissue specificity of a gene is defined by

� ¼

Pn
j¼1 1� logSð jÞ

logSmax

� �

n� 1

in which n denotes the number of the examined tissues,
S(j) denotes the signal intensity and Smax denotes the
highest signal across all examined tissues (60). A large �
value represents high tissue specificity. Of note, to
minimize potential noise that might be caused by low
signal intensities, we set the signal to 100 if it is <100
(21,61,62).

Gene compactness and protein structural features

Gene compactness was measured by the intron number
and the average lengths of UTRs and introns of a gene.
Regarding protein structure, it was analyzed in terms of
solvent accessibility and disorder content. The solvent ac-
cessibility of a protein was calculated by the maximum
number of exposed residues that interact with solvent mol-
ecules over the length of the protein, in which the exposed
residues were predicted by ACCPro release 4.1 with the
default threshold of 25% (63). We only considered the pro-
teins of lengths <8000 amino acids owing to the limitation
of ACCPro. The disorder content of a protein, defined by
the percentage of intrinsically disordered region, was
estimated by the number of disordered residues over the
length of the protein. The disordered residues were pre-
dicted by DISOPRED2 version 2.4 with the default 5%
false-positive threshold (64). To ensure a lower standard
error, we only considered the proteins of length longer
than 100 amino acids.

Calculation of the relative contribution to variability
explained

The relative contribution to variability explained (RCVE)
is used to measure the relative importance of each tested
factor, which is calculated as follows:

RCVE ¼
R2

full � R2
reduced

R2
full

where R2
full and R2

reduced denotes the R2 value of the full
model (including all of the factors examined) and that of
the reduced model (excluding the factor of interest), re-
spectively. A larger RCVE indicates a more important
contribution of the factor of interest to the regression
model (65).

RESULTS AND DISCUSSION

miRNA regulation is much more important than
TF regulation in determining the evolutionary
rates of metazoans

Previous studies have shown that the number of regula-
tory TFs that regulate a gene (NTF) is negatively
correlated with dN/dS in a yeast transcriptional regulatory
network (9,10), leading to that genes with more regulatory
TFs tend to evolve more slowly. We are then interested to
know whether the trend is maintained in multicellular or-
ganisms. We first extract experimentally determined TFBS
data (i.e. TF ChIP-binding datasets) from human, mouse
and fruit fly (‘Materials and Methods’ section; Table 1)
and estimate the Spearman’s rank correlation (�) between
NTF and evolutionary rates (i.e. dN, dS and dN/dS). In
general, we find that evolutionary rates are negatively
correlated with NTF in the three species examined
(Table 2). In terms of miRNA regulation, we extract
human, mouse and fruit fly miRNA target data
(Table 1) and also show negative correlations between
NmiR and evolutionary rates in the three species
examined (Table 2). These observations reveal a
common trend that genes regulated by more TFs or
miRNAs evolve more slowly at both the protein and
RNA levels in metazoans.
The above results, however, should be treated carefully

because many confounding factors that may affect evolu-
tionary rates of protein-coding genes have not been
controlled. As stated above (see ‘Introduction’ section),
the confounding factors include protein connectivity,
gene expression [expression level and tissue specificity (or
expression breadth)], gene compactness (UTR length,
intron length and intron number), protein structure
(solvent accessibility and disorder content) and so on.
Some of these confounding factors have also been
reported to be correlated with NTF or NmiR. For
example, NTF was reported to be positively correlated
with mRNA expression (9) and UTR length (44).
Meanwhile, NmiR was shown to be positively correlated
with protein connectivity (11,43), expression breadth (43),
30UTR length (12) and disorder content (11). Thus, we
reevaluate the correlations between trans-regulation (NTF

and NmiR) and evolutionary rates by using partial correl-
ation analyses (66) to simultaneously control for these
confounding factors. As shown in Table 2, NTF is still
negatively correlated with evolutionary rates in human
and mouse after controlling for NmiR and the other eight
potential confounding factors. However, the partial cor-
relations between NTF and evolutionary rates are substan-
tially reduced in human/mouse and even disappear in fruit
fly (Table 2). This result suggests that the evolutionary
effect of NTF is considerably affected by these confound-
ing factors. On the other hand, the negative correlations
between NmiR and evolutionary rates remains strong in all
three species examined after controlling for NTF and the
other confounding factors (Table 2). These observations
reveal that NTF and NmiR tend to have different effects on
evolutionary rates. We find that the partial correlation
between NmiR and evolutionary rates is remarkably
stronger than that between NTF and evolutionary rates
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when the other confounding factors are controlled, sug-
gesting that NmiR is much more important than NTF in
affecting dN, dS and dN/dS (Table 2). This trend is main-
tained across metazoans.

Dependent effects of TF and miRNA regulations on
protein evolutionary rates in metazoans

It is known that TF and miRNA would cooperate with
each other in gene regulation (3–5). In addition, genes
with more TFBSs have a higher probability to be
targeted by miRNAs and tend to have more miRNA-
binding sites in human (7). Also, highly connected TFs
in human regulatory network tend to regulate more
miRNAs and to be more regulated by miRNAs (67).
Accordingly, we speculate that there is a positive correl-
ation between NTF and NmiR. To address this, we examine
the Pearson’s coefficient of correlation (r) between these
two trans-regulatory factors for human, mouse and fruit
fly. Figure 1 shows that NTF is indeed positively correlated
with NmiR and such a trend holds in these three species
examined (all P< 0.001).
To further investigate the relationship between TF and

miRNA regulations in evolution, we then ask whether
these two trans-regulatory factors have an interaction
impact on evolutionary rate. To address this question,
we respectively divide the human, mouse and fly protein-
coding genes into three groups: (i) genes regulated by TFs
but not by any miRNAs collected in this study (denoted as

‘GTF’); (ii) genes regulated by miRNAs but not by any TFs
examined in this study (denoted as ‘GmiR’); and (iii) genes
regulated by both two trans-regulatory factors (denoted as
‘GBoth’). In general, we observe that the median dN/dS
values are significantly lower in GBoth than in GTF/GmiR,
regardless of examinations in human, mouse and fruit fly
(all P< 0.001 by the two-tailed Wilcoxon rank sum test;
Figure 2). Our result suggests that genes simultaneously
regulated by these two types of trans-regulatory factors
tend to evolve more slowly than those regulated by only
one type of trans-regulatory factors, suggesting that com-
bination of TF and miRNA regulations has a dependent
effect on protein evolutionary rates in metazoans. We
further conduct a stepwise multiple regression analysis
including NTF, NmiR and the other eight confounding
factors to explore the interaction effects on dN/dS
between any two of these 10 factors. According to the
stepwise model selection, the trend that the coefficients
of the NTF–NmiR interaction term (b1,2) significantly
deviate from zero holds in all three species examined
(Supplementary Table S1), further supporting the depend-
ence between NTF and NmiR in affecting dN/dS.

Trans-regulation is much more important in mammals
than in fruit fly in determining protein evolutionary rates

We have shown that trans-regulation (NTF and NmiR) is an
important indicator of evolutionary rates in metazoans
(Table 2). Considering the other biological factors

Table 2. Spearman’s rank coefficient of correlation (�) between evolutionary rates (dN, dS and dN/dS) and experimentally determined NTF (or

NmiR) before and after controlling for NmiR (or experimentally determined NTF) and the other eight confounding factors: protein connectivity,

expression level, tissue specificity (�), UTR length, intron length, intron number, solvent accessibility and disorder content

Indicator and species Before control After control

dN dS dN/dS dN dS dN/dS

Evolutionary rate versus NTF

Humana �0.1852*** �0.1641*** �0.1388*** �0.1099*** �0.1076*** �0.0763***
Mouseb �0.1499*** �0.1087*** �0.1213*** �0.0832*** �0.0501*** �0.0683***
Fruit flyc �0.0759** �0.1081*** �0.0460 0.0006 0.0092 0.0049

Evolutionary rate versus NmiR

Humana �0.3769*** �0.2941*** �0.2916*** �0.3343*** �0.2068*** �0.2686***
Mouseb �0.3165*** �0.2710*** �0.2369*** �0.3004*** �0.1990*** �0.2405***
Fruit flyc �0.1172*** �0.2027*** �0.0406 �0.0931*** �0.0522* �0.0745**

aThe analysis was based on 6870 human genes and their mouse orthologs.
bThe analysis was based on 4903 mouse genes and their human orthologs.
cThe analysis was based on 1768 fruit fly genes. The dN, dS and dN/dS values were estimated in single-copy orthologs within the six Drosophila group
species (23).
Significance: *P< 0.05, **P< 0.01, and ***P< 0.001.

Table 1. The numbers of TFs and miRNAs used in this study

Species TF miRNA

Data source Number of TFs Data source Number of miRNAs

Human ENCODE (hg19) 162 TargetScanHuman (release 6.2) 1267
Mouse hmChIP (mm8) 59 TargetScanMouse (release 6.2) 663
Fruit fly DroID (May 2011) 149 TargetScanFly (release 6.2) 121
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associated with evolutionary rates of proteins [protein
connectivity, gene expression (expression level and tissue
specificity), gene compactness (UTR length, intron length
and intron number) and protein structure (solvent acces-
sibility and disorder content)], we then ask which biolo-
gical factor(s) is/are the dominant determinant(s) of
evolutionary rates. To this end, we measure the relative
effect of each individual factor in determining the evolu-
tionary rates by calculating the RCVE (see ‘Materials
and Methods’ section). As shown in Figure 3 and
Supplementary Figure S1A, the most dominant determin-
ants of dN and dN/dS common to human and mouse are
trans-regulation (NTF and NmiR) and protein structure
(solvent accessibility and disorder content), whereas only
protein structure is shown as a dominant determinant in
fruit fly. Regarding dS, trans-regulation also exhibits influ-
ential determinants in human and mouse; however, the
trend is not observed in fruit fly (Supplementary Figure
S1B). Our results suggest that the effect of trans-regulation
(especially miRNA regulation) on protein evolutionary
rates is much stronger in mammals than in insects, in con-
sistent with our above finding that the correlations
between trans-regulation and evolutionary rates are rela-
tively less significant in fruit fly than in human/mouse
(Table 2). The results reveal that trans-regulation seems
to be much more important in human/mouse than in fly in
determining the rate of protein sequence evolution.

The above results thus suggest that the relative impacts
of trans-regulation on evolutionary rates are different
between vertebrates and invertebrates. In view of the re-
lationship between regulatory complexity and organismal
complexity, there are two possible reasons. First, for TF
regulations, previous studies have indicated that organis-
mal complexity might arise from progressively more elab-
orate gene regulation and the number of TFs per gene is
positively correlated with the size of the genome (68–70).
Second, in terms of miRNAs, a recent study showed
an exponential correlation between the 30UTR length
and morphological complexity (71). The median 30UTR
length is much longer in human than in fruit fly, leading to

the conclusion that human genes generally have longer
potential miRNA-targeted regions and more complex
miRNA regulations (71). Several studies also
demonstrated that miRNAs regulate 20�30% of verte-
brate genes (72–75) but only 15% of Drosophila genes
(75). These notions imply that regulatory complexity
might increase with the increase of organismal complexity
and trans-regulations tend to play a much greater role in
mammals than in insects, leading to a higher correlation
between trans-regulation and evolutionary rates in
mammals.

Potential caveats

Although the trends that miRNA regulation is much
stronger than TF regulation in determining the rate of
protein sequence evolution, and TF and miRNA regula-
tions have a dependent effect on evolutionary rates gener-
ally hold in metazoans (human, mouse and fruit fly), the
limited experimental data (i.e. ChIP-supported TFs and
TFBSs) probably cause bias in our results. To address
this possibility, we retrieve 843 TRANSFAC human TFs
with known PWMs, filter out potentially false-positive
TFBSs using the GBP scores (see ‘Materials and
Methods’ section) and then conduct the same analyses.
Obviously, the number of the TRANSFAC human TFs
is much larger than that of the ChIP-supported TFs used
above (843 versus 162; Table 1). On the basis of
TRANSFAC-based NTF (or predicted NTF), we find
that the abovementioned trends still hold well (Table 3,
Supplementary Figures S2A and S3A and Supplementary
Table S1). Although highly accurate TFBS predictions
(which are currently more comprehensive than experimen-
tal data) remain challenging (76–78), the predicted TFBS
data used here were generated by integrating multiple
evidence sources (including sequence conservation, cis-
feature, transcriptional information, epigenetic informa-
tion, and so on) with motif information (54), which were
shown to be highly predictive of true locations of TF
binding (54,79–81). It is worthwhile to apply our evolu-
tionary analyses to other species (or newly generated data)
as the dramatic increase of publicly available trans-
regulation data. Because the probability of observing the
same trends from two biased datasets appears to be small,
our results are likely unbiased.
Moreover, because rodents have a faster molecular

clock than primates (82,83), it is possible to yield different
tendencies between comparison of human–mouse
orthologs and that of two species with similar molecular
clocks. We therefore ask whether our results may be
biased toward different molecular clocks. To address
this question, we conduct the same statistical analyses
for mouse–rat orthologs, which have similar molecular
clocks, and show the same tendencies as above (Table 4,
Supplementary Figures S2B and S3B and Supplementary
Table S1). These results indicate that these observed
trends are not affected by species selection or different
molecular clocks. Therefore, our results can be regarded,
in a broad view, as exploring the impacts of trans-
regulation on evolutionary rates.

Figure 1. Pearson’s coefficient of correlations (r) between NTF and
NmiR in human, mouse and fruit fly. The analyses were based on
genes with TFBSs, miRNA targets and the other eight confounding
factors (6870 human genes, 4903 mouse genes and 1768 fruit fly
genes). Significance: ***P< 0.001.
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Concluding remarks

This study analyzes the impacts of two trans-regulatory
factors (NTF and NmiR) on the evolutionary rates in the
metazoan protein-coding genes. Our results indicate that
(i) both NTF and NmiR are negatively correlated with evo-
lutionary rates (dN, dS and dN/dS) in metazoans, but the
strength of NTF becomes weak in human/mouse and even
disappears in fruit fly if the other confounding factors are
controlled for; (ii) evolutionary rates tend to more

strongly correlated with NmiR than with NTF; (iii) genes
simultaneously regulated by TFs and miRNAs are subject
to stronger selection pressure than those regulated by only
TFs or miRNAs, and the stepwise multiple regression
analysis also reveals that the coefficients of the NTF–
NmiR interaction term (b1,2) significantly deviate from
zero, both of which suggest the dependence between NTF

and NmiR in affecting dN/dS; and (iv) compared with other
biological factors, trans-regulation exhibits an influential

Figure 2. The distributions of relative impact of single-factor and dual-factor regulations on evolutionary rates: (A) dN, (B) dS and (C) dN/dS. The
three vertical bars separately represent a set of genes regulated by miRNAs alone (denoted as ‘GmiR’), by both of TFs and miRNAs (denoted as
‘GBoth’) and by TFs alone (denoted as ‘GTF’). Statistical significance is estimated using the two-tailed Wilcoxon rank sum test: ***P< 0.001.
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Figure 3. The RCVE of the ten factors: NTF, NmiR, protein connectivity (PPI), expression level (ExpLvl), tissue specificity (�), UTR length
(UTRLeng), intron length (InLeng), intron number (InNum), solvent accessibility (SolAcc) and disorder content (DisCont) on dN/dS in human,
mouse and fruit fly. The analyses were based on 6870 human genes, 4903 mouse genes and 1768 fruit fly genes.
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determinants in determining dN and dN/dS in vertebrates,
whereas the effect of trans-regulation on protein evolu-
tionary rates is relatively weaker in invertebrates. The
first and fourth trends show a great variation in rate de-
terminants between vertebrates and invertebrates, also
echoing the previous notion that the rules governing evo-
lutionary rates may not be the same for all species (21).
Because the currently available trans-regulatory data may
only partially represent the reality, we compare the
impacts of TFs and miRNAs across species and evaluated
the impacts of them by controlling for potential confound-
ing factors. It is found that the second and third trends
hold well in diverse species including vertebrates and in-
vertebrate. We therefore suggest that these two observa-
tions should be generally maintained in metazoans,
although the roles of various rate determinants might be
different between species (21) (also see the first and fourth
trends). In addition, our result shows remarkable depend-
ent effects of TF and miRNA regulations on protein evo-
lutionary rates. We thus demonstrate the intricate
relationships between gene regulations and the actions of
natural selection in metazoan protein evolution.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figures 1–3.
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