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Systematic analysis of gene 
expression patterns associated 
with postmortem interval in human 
tissues
Yizhang Zhu1,2, Likun Wang1, Yuxin Yin1,2 & Ence Yang1,3

Postmortem mRNA degradation is considered to be the major concern in gene expression research 
utilizing human postmortem tissues. A key factor in this process is the postmortem interval (PMI), 
which is defined as the interval between death and sample collection. However, global patterns of 
postmortem mRNA degradation at individual gene levels across diverse human tissues remain largely 
unknown. In this study, we performed a systematic analysis of alteration of gene expression associated 
with PMI in human tissues. From the Genotype-Tissue Expression (GTEx) database, we evaluated gene 
expression levels of 2,016 high-quality postmortem samples from 316 donors of European descent, with 
PMI ranging from 1 to 27 hours. We found that PMI-related mRNA degradation is tissue-specific, gene-
specific, and even genotype-dependent, thus drawing a more comprehensive picture of PMI-associated 
gene expression across diverse human tissues. Additionally, we also identified 266 differentially variable 
(DV) genes, such as DEFB4B and IFNG, whose expression is significantly dispersed between short PMI 
(S-PMI) and long PMI (L-PMI) groups. In summary, our analyses provide a comprehensive profile of 
PMI-associated gene expression, which will help interpret gene expression patterns in the evaluation of 
postmortem tissues.

Human postmortem tissue, representing a type of valuable biological material, is widely used in various fields of 
study including biology, pathology, and forensic medicine1–3. Research using postmortem tissues from autopsies 
has been fundamental for improving knowledge of many diseases, including neurological disorders in particular4, 5.  
However, use of such tissue invariably involves a time delay, as tissue samples cannot immediately be stored in 
conditions which prevent mRNA degradation. As a result, the probability of cell autolysis and RNA degradation 
increases, potentially compromising the gene expression data. Thus, the major concern regarding the utility of 
autopsy tissue is postmortem mRNA degradation and how accurately postmortem mRNA represents physiologic 
conditions.

Postmortem mRNA degradation is a complex process affected by many factors6, 7, including agonal state, pH, 
and postmortem interval. The postmortem interval (PMI) between death and sample collection is an important 
factor. Previous studies have reported that RNA degradation is associated with PMI in many species8–10, includ-
ing human tissues11–13. Nevertheless, these studies had limitations. First, some of these samples were of poor 
quality with low RNA integrity number (RIN) scores. RNA integrity number (RIN) is an electrophoretic-basic 
method for evaluating the 28S to 18S ribosomal RNA (rRNA) ratio14, which reflects RNA integrity as a whole. 
Potential bias may result if RNA of low RINs is not well extracted. Second, these studies focused mainly on the 
correlation of RIN and PMI. However, RIN is largely derived based on the integrity of rRNA, and mRNA degra-
dation may be distinctly different and gene specific, which is not completely reflected by the RIN. Third, previous 
research focused on the expression of several genes associated with PMI using limited methods, such as quanti-
tative reverse transcription-PCR (qRT-PCR). Only one of these studies employed high-throughput sequencing 
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technologies15. In addition, the sample size in these studies was small, and ranged from several to a dozen speci-
mens, due to the difficulty in sample collection of human tissue.

The Genotype-Tissue Expression (GTEx) project16 provides an opportunity to systemically investigate the 
genome-wide patterns of change in gene expression levels associated with PMI in various human postmortem 
tissues. This project was initiated by the National Institutes of Health (NIH) to determine how genetic variation 
affects normal gene expression in human tissues, and thus ultimately inform the study of human disease. A large 
number of postmortem tissues were collected, including more than 50 different types of tissue from hundreds of 
human donors unselected for any disease. High-quality postmortem tissues were used to isolate nucleic acids, and 
genotyping, gene expression profiling, whole genome sequencing, and RNA sequencing (RNA-seq) analysis were 
performed. Accurate postmortem intervals were recorded for a majority of samples, ranging from 1 to 27 hours. 
The GTEx database is therefore well suited for transcriptome research into how PMI affects the gene expression 
across diverse postmortem human tissues.

In this study, we present a comprehensive view of mRNA degradation associated with PMI in 15 human tis-
sues using the GTEx RNA-seq data set. We found that postmortem mRNA degradation occurs in a tissue-type 
specific manner and is associated with gene-specific properties. mRNAs are relatively stable in central nerv-
ous system (CNS) tissues but are unstable in postmortem digestive tract tissues. Functional annotation analysis 
indicates that the mechanism for mRNA degradation in postmortem tissues is neither a wholly normal cellular 
function nor a random process. We also evaluated the interaction between genotype and PMI to access the influ-
ence of genetic background on postmortem mRNA degradation in whole blood, which showed that postmortem 
degradation occurs in a genotype-specific manner. Additionally, we identified 266 differentially variable (DV) 
genes associated with prolonged PMI by using Levene’s test. These findings provide a picture of gene expression 
affected by PMI in different human postmortem tissues, which may serve to improve the use of postmortem 
tissue for research.

Results
Identification of tissue-specific PMI-associated genes in the GTEx data.  The Genotype-Tissue 
Expression (GTEx) project is a resource project to discover expression quantitative trait loci (eQTL) using data 
from 900 donors in more than 53 sampled sites16. At an interim point in this project, the transcriptomic profiles 
from 573 donors were obtained from the GTEx portal website. We next excluded samples derived from non-post-
mortem sources and non-European donors. It is of note that very few samples were available for some types of 
tissue (e.g., vagina, spleen, and bladder), which may reduce confidence in some conclusions. We thus filtered out 
tissues with less than 80 samples. We then obtained a total of 2,016 samples from 15 distinct tissue types (or sub-
types), including (1) adipose (subcutaneous), (2) aorta artery, (3) tibial artery, (4) cerebellum, (5) cerebral cortex, 
(6) esophageal mucosa, (7) heart (atrial appendage), (8) lung, (9) skeletal muscle, (10) tibial nerve, (11) pituitary, 
(12) skin (suprapubic), (13) skin (lower leg), (14) thyroid, and (15) whole blood. The distribution of the postmor-
tem interval was plotted for 15 human tissues (Fig. 1), showing that the PMI ranged from 1 to 27 hours. The final 
data matrices, including 81 to 208 samples all from donors of European descent, were separately normalized in 
different tissues (see Methods).

To identify PMI-associated genes, we used multiple linear regression models, controlling covariates and 
hidden confounding factors (see Methods). To reduce false positives, we performed the permutation test 
10,000 times (see Methods). We summarized the numbers of PMI-associated genes in 15 human tissues with 
up-regulated and down-regulated at the false discovery rate (FDR) of 1, 5, and 10%, respectively (Table 1). At an 
FDR of 5%, 7,546 distinct genes were identified as PMI-associated genes from at least one tissue, while the num-
ber of PMI-associated genes for each tissue varied dramatically from 0 to 2,763. The details of PMI-associated 
genes from each tissue are provided in Supplementary Data S1. Among these, 1, 14, 96, 482, and 1,922 genes 
were found in six, five, four, three, and two tissues respectively. For each of these “multi-hit” genes, the direction 
of the expression response to the PMI was the same in the different tissues where the gene was identified. These 
genes appear to be involved in some fundamental metabolic processes or pathways associated with PMI, and this 
finding can be applied to multiple tissues. For example, CAPN5, the calcium-dependent cysteine protease which 
is ubiquitously expressed in mammals17, was found to be upregulated in five tissues.

In four tissues (cerebellum, pituitary, subcutaneous adipose, and suprapubic skin) only a few PMI-associated 
genes were identified, and we plotted the heat map of expression of these PMI-associated genes across samples 
in the remaining 11 tissues, whose number of identified PMI-associated genes was larger than 100 (Fig. S1). As 
shown in Fig. 2a, aortic samples were clearly clustered into Short-PMI (S-PMI) and Long-PMI (L-PMI) groups 
using the Euclidian distance with “Ward” measurement18. The mean time of PMI in the right-side group was 
much shorter than that in the left-side group. This apparent separation of “S-PMI” and “L-PMI” groups was 
observed in all 11 tissues. Furthermore, the Student’s t-test was performed to compare these groups and gave sig-
nificant results in every instance (P-values < 5.8E-3). Details are provided in Supplementary Table S1. To validate 
gene expression associated with PMI at individual gene levels, we selected two representative genes with either 
significantly positive or negative correlation (VEGFA and Srp72) in whole blood and skeletal muscle respec-
tively (Fig. 2b). In association with increasing PMI, the residual expression of VEGFA in whole blood showed an 
upward trend (Spearman-R = 0.38; FDR = 9.40E-7) while Srp72 showed the reverse pattern in muscle skeletal 
(Spearman-R = −0.52; FDR = 3.86E-14). These trends are consistent with previous studies verified by quantita-
tive reverse transcription-PCR (qRT-PCR)12, 19.

In view of the fact that sample size may have a marked impact on the numbers of PMI-associated genes iden-
tified, we cannot directly compare the numbers of identified PMI-associated genes in tissues of different sample 
sizes. After correction for sample size effect (see Methods), we observed that some tissues still have more signif-
icantly PMI-associated genes than other tissue (Table S2), suggesting different tissues may have different levels 
of sensitivity or susceptibility to postmortem mRNA degradation. The CNS (cerebellum, cerebral cortex, and 
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pituitary), as well as the lung, showed no (or less) sensitivity to postmortem mRNA degradation, which is consist-
ent with previous studies6, 20, 21. However, the esophageal mucosa showed the greatest sensitivity to postmortem 
mRNA degradation, where 2,763 genes associated with PMI were identified in 101 individuals. It is of note that 
the esophageal mucosa belongs to the digestive tract, and the increased rate of tissue turnover or the presence of 
digestive enzymes in the digestive tract may contribute to its overall RNA degradation11.

Functional annotations of PMI-associated genes.  To acquire a functional overview of the biological 
processes or pathways involved in the PMI-related mRNA degradation across various human tissues, we system-
atically investigated the functional annotations of the up- and down-regulated PMI-associated genes separately 
in 15 human tissues. As described below, 162 highly significant GO terms of Biological Process and Molecular 
Function or the KEGG pathways were identified in eight tissues (FDR < 0.05, fold enrichment > 2). The com-
plete list is provided in Supplementary Data S2. We found that nuclear-transcribed mRNA catabolic process: 
nonsense-mediated decay (GO: 0000184), one of the known mRNA degradation pathways was enriched in the top 
up-regulated significant annotations of tibial artery, esophageal mucosa, and thyroid (Table 2), suggesting that 
postmortem mRNA degradation in these tissues may be carried out in this manner.

In the up-regulated PMI-associated genes overall, the most enriched GO terms or KEGG pathways included: 
translation (GO:0006412), translational initiation (GO:0006413), structural constituent of ribosome (GO:0003735), 
and Ribosome (hsa03010), which were identified in three tissues, indicating that mRNAs involved in protein syn-
thesis and ribosome function are more stable and less sensitive to PMI-related mRNA degradation. This result 
is consistent with the findings of Yang et. al.22, which showed that mRNAs for biosynthetic proteins have lower 
average decay rates, and tend to be more stable during the PMI. In the down-regulated PMI-associated genes, 
the most related GO terms or KEGG pathways included: inflammatory response (GO:0006954), NIK/NF-kappaB 
signaling (GO:0038061), and Proteasome (hsa03050), indicating that mRNAs involved in the immune response 

Figure 1.  Postmortem Interval distribution of samples in 15 human tissues. Each histogram denotes the 
distribution of samples with different PMIs in hours.
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and proteolysis are more susceptible to PMI-related mRNA degradation. Gupta et al.23 performed GO Slim terms 
annotation in postmortem cardiac tissues and identified the GO terms of immune response (GO:0006955), defense 
response (GO:0006952), and inflammatory response (GO:0006954) in the down-regulated gene list. We observed 
similar results in our annotation of heart (atrial appendage).

In addition, we found some unique GO terms in specific tissues which had not been previously reported. 
For example, we observed significant GO terms of cell adhesion (GO:0007155), extracellular matrix organ-
ization (GO:0030198), and collagen fibril organization (GO:0030199) in up-regulated genes of tibial nerve, 
indicating that mRNAs involved in these specific GO terms of cell adhesion are more stable and less sensi-
tive to PMI-related mRNA degradation in tibial nerve. Many cell cycles related GO terms were annotated in 
down-regulated PMI-associated genes from whole blood, such as cell division (GO:0051301), mitotic nuclear 
division (GO:0007067), and G1/S transition of mitotic cell cycle (GO:0000082), suggesting that mRNAs involved 
in the cell cycle are more susceptible to PMI-related mRNA degradation in whole blood.

Genotype may affect PMI related mRNA degradation in whole blood.  Previous studies had reported 
that inter-individual variability exists in sensitivity to postmortem mRNA degradation of a given tissue5, 11, 15.  
However, little is known about the mechanism of this variability. In light of the potential effects of SNPs on the 
regulatory network and mRNA stability as well as postmortem mRNA degradation, we considered the possibility 
that an individual’s genotype may be a novel explanatory factor accounting for the inter-individual variability. We 
therefore further investigated the interaction between genotype and PMI to determine how genetic background 
influences on postmortem mRNA degradation in whole blood (see Methods).

In this case, we detected 740 significant (P-value < 4.75E-8) interactions. Among these interactions, 56% (418 
of 740) were verified to a significant level in one or more additional tissue(s), indicating that genotype may affect 
the PMI related mRNA degradation. The comprehensive list of SNPs and genes are provided in Supplementary 
Data S3. Here, we show two typical examples. The genotypes of SNP rs12406273 can have different effects on 
expression of the RIC8 Guanine Nucleotide Exchange Factor A (RIC8A gene) in tibial artery and whole blood 
(Fig. 3a). For individuals with the TT genotype, there is a significant negative correlation of PMI and RIC8A 
expression. Individuals with TC genotypes show no correlation or correlation which is less strong, and individ-
uals CC genotypes may even show a significant positive correlation. Another example of a relationship between 
the SNP genotype and the PMI-associated gene expression involves SPIN3 and the SNP rs1521177 in esophageal 
mucosa and whole blood (Fig. 3b). Once again, the GG genotype appears to confer a positive correlation with 
PMI, while the TT genotype is negatively correlated with PMI. Thus, we conclude that the same mRNA may 
undergo different rates of postmortem mRNA degradation for different individuals. These genotype-by-PMI 
interactions are probably linked with potential gene interactions whose mechanisms will require further study.

Gene dispersion changed with prolonged PMI in human tissues.  Considering the possibility that 
postmortem mRNA degradation may be a non-linear process, we examined the dispersion changes of gene 
expression in Short-PMI (S-PMI) and Long-PMI (L-PMI) groups in all tissues. Using Levene’s test, we identi-
fied 266 PMI-associated differentially variable (DV) genes which showed a significant difference in expression 
variance in S-PMI and L-PMI groups at FDR of 5% (Table 3). The distributions of identified PMI-associated DV 
genes in 15 human tissues were uneven in number, which is consistent with the distribution of previously identi-
fied PMI-associated genes, in that we identified more significant DV genes in the esophageal mucosa (74 genes) 

Tissues

FDR < 1% FDR < 5% FDR < 10%

up down total up down total up down total

(1) Cerebellum (n = 100) 0 0 0 0 0 0 0 0 0

(2) Pituitary (n = 81) 0 0 0 0 0 0 0 0 0

(3) Subcutaneous Adipose (n = 144) 3 3 6 6 5 11 8 5 13

(4) Suprapubic Skin (n = 116) 10 14 24 19 26 45 29 32 61

(5) Cerebral Cortex (n = 83) 2 8 10 41 64 105 124 138 262

(6) Lung (n = 125) 40 78 118 56 100 156 68 113 181

(7) Tibial Artery (n = 138) 49 67 116 85 109 194 113 144 257

(8) Tibial Nerve (n = 122) 165 70 235 228 110 338 252 129 381

(9) Lower leg Skin (n = 171) 198 159 357 351 285 636 485 366 851

(10) Thyroid (n = 116) 225 223 448 317 333 650 378 390 768

(11) Heart (n = 89) 199 200 399 421 405 826 582 575 1157

(12) Aorta Artery(n = 85) 430 494 924 693 720 1413 853 844 1697

(13) Skeletal Muscle (n = 208) 653 600 1253 843 811 1654 963 922 1885

(14) Whole Blood (n = 183) 677 842 1519 884 1106 1990 1021 1237 2258

(15) Esophageal Mucosa (n = 101) 1129 1020 2149 1529 1234 2763 1732 1355 3087

Table 1.  Numbers of PMI-associated genes in 15 human tissues. Columns “up” and “down” list the number 
of positive correlation and negative correlation PMI-associated genes respectively. Results derived from using 
three different FDR cutoffs (1%, 5%, and 10%) are shown.
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than in CNS tissues (0 genes). A comprehensive list of PMI-associated DV genes is provided in Supplementary 
Data S4.

Of these 266 PMI-associated DV genes, the expression variance of the majority (206 genes, 77%) decreased in 
the L-PMI group, while the others increased, supporting the common sense argument that postmortem mRNA 
degradation increases with prolonged PMI. For example, DEFB4B (Defensin Beta 4B) is an antibiotic peptide 
which plays a crucial role in host defense against microorganisms by permeabilizing bacterial membranes24. 
The expression dispersion of DEFB4B in esophageal mucosa is more pronounced in the S-PMI group than in 
the L-PMI group, and the residual expression tends to be zero with prolonged PMI (Fig. 4a). However, a few 
genes show an abnormal increase in expression variance with prolonged PMI. To take another example, IFNG 
(Interferon Gamma) is a cytokine that is critical for innate and adaptive immunity against viral, bacterial and 
protozoal infections. The expression dispersion of IFNG in the lung is more pronounced in the L-PMI than in the 

Figure 2.  Visualization of gene expression associated with PMI. (a) Heat map of 1,413 PMI-associated genes 
(row) on 85 samples (column). Colors represent residual gene expression values with red for low expression 
and blue for high expression. The PMI of each individual is displayed at the bottom and also illustrated in color 
bar at the top with color changes from red to green with PMI increased. (b) Scatter plot of two representative 
PMI-associated gene expression patterns of VEGFA and Srp72 in whole blood and muscle skeletal respectively. 
The dots represent the expression of samples. Spearman-R value in the title represents the Spearman correlation 
coefficient of gene expression and PMI across all samples.
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Tissues

Up-regulated gene set Down-regulated gene set

ID Description FDR ID Description FDR

Aorta Artery

GO:0042752 regulation of circadian rhythm 4.44E-02 GO:0006954 inflammatory response 3.31E-09

GO:0002250 adaptive immune response 1.29E-08

GO:0045087 innate immune response 2.27E-08

GO:0002224 toll-like receptor signaling pathway 6.25E-04

hsa04380 Osteoclast differentiation 2.20E-09

hsa05150 Staphylococcus aureus infection 7.81E-09

Tibial Artery

GO:0006413 translational initiation 6.00E-07

GO:0006614 SRP-dependent cotranslational 
protein targeting to membrane 1.10E-05

GO:0006412 translation 1.84E-05

GO:0019083 viral transcription 4.41E-05

GO:0000184 nuclear-transcribed mRNA catabolic 
process, nonsense-mediated decay 7.11E-05

GO:0003735 structural constituent of ribosome 8.86E-05

hsa03010 Ribosome 1.21E-04

Esophageal Mucosa

GO:0000184 nuclear-transcribed mRNA catabolic 
process, nonsense-mediated decay 2.43E-09 GO:0002223 stimulatory C-type lectin receptor signaling 

pathway 1.16E-06

GO:0006614 SRP-dependent cotranslational 
protein targeting to membrane 9.62E-09 GO:0002479 antigen processing and presentation of exogenous 

peptide antigen via MHC class I, TAP-dependent 3.56E-06

GO:0019083 viral transcription 5.20E-08 GO:0006511 ubiquitin-dependent protein catabolic process 4.75E-06

GO:0006412 translation 1.72E-06 GO:0038061 NIK/NF-kappaB signaling 8.87E-06

GO:0006413 translational initiation 5.15E-05 hsa04141 Protein processing in endoplasmic reticulum 7.36E-07

GO:0003735 structural constituent of ribosome 1.03E-06 hsa04145 Phagosome 7.43E-06

hsa03010 Ribosome 2.38E-09 hsa03050 Proteasome 8.65E-04

Heart

hsa00190 Oxidative phosphorylation 7.93E-03 GO:0006457 protein folding 8.57E-04

hsa05012 Parkinson’s disease 1.95E-02 GO:0006954 inflammatory response 1.95E-03

hsa05010 Alzheimer’s disease 4.02E-05 GO:1904871 positive regulation of protein localization to 
Cajal body 2.56E-02

hsa05016 Huntington’s disease 1.93E-03 hsa05150 Staphylococcus aureus infection 9.61E-09

hsa04380 Osteoclast differentiation 1.80E-05

hsa04610 Complement and coagulation cascades 2.93E-03

Skeletal Muscle

GO:0006120 mitochondrial electron transport, 
NADH to ubiquinone 1.49E-25 GO:0043488 regulation of mRNA stability 1.87E-07

GO:0032981 mitochondrial respiratory chain 
complex I assembly 1.74E-22 GO:0038061 NIK/NF-kappaB signaling 1.68E-03

GO:0070125 mitochondrial translational 
elongation 8.12E-19 GO:0016032 viral process 2.56E-03

GO:0070126 mitochondrial translational 
termination 2.05E-16 GO:0036498 IRE1-mediated unfolded protein response 2.59E-03

hsa05012 Parkinson’s disease 2.88E-44 GO:0002223 stimulatory C-type lectin receptor signaling 
pathway 6.43E-03

hsa00190 Oxidative phosphorylation 1.18E-42 GO:0044822 poly(A) RNA binding 2.57E-16

hsa05016 Huntington’s disease 2.07E-34 hsa03050 Proteasome 7.14E-04

Tibial Nerve

GO:0007155 cell adhesion 3.42E-06 GO:0044822 poly(A) RNA binding 1.86E-02

GO:0007399 nervous system development 8.04E-04

GO:0030198 extracellular matrix organization 1.43E-03

GO:0030199 collagen fibril organization 1.17E-02

hsa04514 Cell adhesion molecules (CAMs) 3.30E-03

Thyroid

GO:0000184 nuclear-transcribed mRNA catabolic 
process, nonsense-mediated decay 7.33E-10

GO:0006413 translational initiation 8.10E-10

GO:0006614 SRP-dependent cotranslational 
protein targeting to membrane 3.80E-07

GO:0019083 viral transcription 4.07E-06

GO:0006412 translation 3.37E-05

GO:0003735 structural constituent of ribosome 7.78E-04

hsa03010 Ribosome 2.97E-06

Continued
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S-PMI group, and its residual expression tends to increase with prolonged PMI (Fig. 4b), implying the biological 
activity of IFNG would persist for a prolonged time (almost 24 hours) in lung tissues after death.

Discussion
Despite the increasing demand for postmortem human tissue in many areas of research, collecting tissue samples 
without delay is challenging due to numerous factors, including legal issues, the expenditure of time and diffi-
culty of collection, and ethical concerns. Delay in collecting and securing specimens, defined as the postmortem 
interval (PMI), brings an inevitable bias to gene expression research. To address this problem, we used the GTEx 
RNA-seq data set to investigate PMI-associated genes and provide a more comprehensive picture of mRNA deg-
radation in diverse human postmortem tissues.

Our study identified 7,546 distinct PMI-associated genes with postmortem up- or down-regulation in 15 
human tissues. We found that the sensitivity of different tissues to PMI-associated mRNA degradation shows 
distinct gene to gene differences, and in a given tissue, numbers of PMI-associated genes vary dramatically from 
none to 2,763. For example, mRNAs in the central nervous system show more stability than those in the digestive 
tract tissues (e.g., esophageal mucosa), which is consistent with previous studies11, 25. Of particular interest, we 
found that even different regions in the same tissue may have significantly different sensitivities to postmortem 
mRNA degradation, and differing numbers of PMI-associated genes may be identified. For instance, we identi-
fied 45 genes in suprapubic skin, but there were 636 genes in skin of the lower leg; and there were 194 genes in 
tibial artery contrasting with 1,413 in the aorta artery. Postmortem changes occur when the heart stops beating, 
resulting in a stagnation of blood flow in the veins or small blood vessels. It thus appears that small blood vessels 
are less susceptible to postmortem mRNA degradation than large blood vessels, which may explain the discrep-
ancy in numbers of PMI-associated genes identified in the tibial artery and aorta artery. It is of note that the 
microcirculation continues working for some time after death, suggesting that tissues with abundant small blood 
vessels and microcirculation such as brain and lung tend to have little or no sensitivity to postmortem mRNA 
degradation. The discrepancy in numbers of PMI-associated genes in the lower leg skin and suprapubic skin can 
also be explained by the difference in the extent of microcirculation. These results are of particular importance in 
research utilizing mRNA from autopsies and may help determine the order in which organs are harvested.

In living cells, RNA degradation is a complex and highly regulated process26. For example, many cel-
lular factors and mechanisms are involved in modulating the rate of mRNA degradation27, such as the 
deadenylation-dependent pathway, endonuclease-mediated mRNA decay, miRNA, and P-bodies28. In con-
trast, the mechanism for degradation of mRNA in most postmortem tissues is poorly understood. From our 
PMI-associated gene functional annotation analysis of eight tissues, we found that postmortem mRNA degra-
dation is neither a random process nor a normal physiological condition. Nuclear-transcribed mRNA catabolic 
process: nonsense-mediated decay (GO:0000184), one of the known RNA degradation process, was identified in 
up-regulated enrichment annotations of three tissues, implying that postmortem mRNA degradation in these 
tissues may occur in this manner. In addition, we identified several tissue-specific GO terms and KEGG pathways 
in up- and down-regulated PMI-associated genes. This showed that mRNAs involved in protein synthesis are less 
susceptible to PMI-related RNA degradation than those involved in the immune response and in the proteasome. 
These findings are of particular importance for research focusing on specific gene expression using postmortem 
tissues. For example, postmortem blood should be collected earlier for analysis of gene expression involved in 
the cell cycle, as we have identified many cell cycle-related GO terms in down-regulated PMI-associated genes of 
whole blood.

We also investigated the interaction of genotype and PMI to explore the potential influence of genotype on 
PMI-related mRNA degradation. At a stringency P-value of 4.75E-8, we identified more than 700 PMI-genotype 
interactions in whole blood. These findings may provide direction for analysis of SNPs which potentially affect 
RNA stability or gene interaction, and hold promise for future studies. In addition, dispersion analysis using 
Levene’s test was performed in two PMI groups. The majority of DV genes we identified showed decreased expres-
sion variance with prolonged PMI, supporting the common sense concept that mRNA degradation increases in 
association with PMI. However, there are a few examples such as IFNG, which show an increase of expression 
variance in the L-PMI, indicating that some biological activities continue for some time after death.

Estimation of PMI is considered to be one of the most important tasks in the field of forensic medicine29, 30. 
We observed that the global pattern of gene expression can clearly be divided into two groups S-PMI and L-PMI. 

Tissues

Up-regulated gene set Down-regulated gene set

ID Description FDR ID Description FDR

Whole Blood

GO:0003714 transcription corepressor activity 4.41E-02 GO:0051301 cell division 3.85E-08

hsa04660 T cell receptor signaling pathway 5.11E-03 GO:0007067 mitotic nuclear division 1.01E-05

GO:0043161 proteasome-mediated ubiquitin-dependent 
protein catabolic process 1.57E-05

GO:0051436 negative regulation of ubiquitin-protein ligase 
activity involved in mitotic cell cycle 3.02E-05

GO:0000082 G1/S transition of mitotic cell cycle 3.43E-05

GO:0000083 regulation of transcription involved in G1/S 
transition of mitotic cell cycle 4.91E-04

hsa04110 Cell cycle 2.64E-05

Table 2.  Function enrichment of up- and down-regulated PMI-associated genes in eight human tissues.
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All of the 11 human tissues we evaluated showed significant P-values with the t-test. These results suggested that 
gene expression changes vary with PMI, and this characteristic might be used to estimate the PMI. Several studies 
have suggested that mRNA can be used to estimate PMI3, 9, 19, 31, 32. Our study thus provides novel direction for 
selection of the most suitable mRNA indicator for estimating PMI accurately. Specifically, we can use the most 
significantly correlated genes from the list of up-regulated genes to predict longer PMI, whereas using the list of 
most significantly decreased of the down-regulated genes predicts a shorter PMI.

To our knowledge, our analysis is currently the largest RNA-seq based transcriptome study of PMI affecting 
mRNA degradation in human postmortem tissues. In summary, we demonstrate that PMI-related mRNA degra-
dation is tissue-specific, gene-specific, and genotype-dependent which thus allows a more comprehensive picture 
of PMI-associated gene expression across diverse human postmortem tissues to be drawn. These findings provide 

Figure 3.  Examples of genotype-by-PMI interaction affecting the expression level of the gene. (a) The 
interaction between rs12406273 and PMI affecting RIC8A gene expression in tibial artery and whole blood. (b) 
The interaction of rs1521177 and PMI affecting SPIN3 gene expression in esophageal mucosa and whole blood. 
For each subplot, the larger panel on the left shows all samples, while the three smaller panels on the right 
show the samples with major allele homozygous, heterozygous and minor allele homozygous (with a cross) 
respectively.
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necessary information for both pathologists and molecular biologists to interpret gene expression patterns utiliz-
ing postmortem tissues.

Methods
GTEx Tissues and Expression Data.  The GTEx data set (v6, October 2015 released) was downloaded 
from the GTEx project through dbGaP (https://dbgap.ncbi.nlm.nih.gov). In this data set, we selected 2,016 
high-quality samples (RINs > 6.0) from 316 postmortem donors for study. For detailed information regarding 
sample collection, RNA sequencing, and the data processing pipeline refer to the GTEx Consortium paper33.

Subject-level variables, including age, gender, and body mass index (BMI) were obtained from the GTEx 
Portal (GTEx_Data_V6_Annotations_Subject Phenotypes DS.txt). Sample-level variable (SMTSISCH) was 
chosen to represent the postmortem interval and was obtained from the GTEx Portal (GTEx_Data_V6_
Annotations_Sample Attributes DS.txt). Samples for which SMTSISCH was less than zero or was missing were 
excluded from further analysis. As we would have to detect the genotype-by-PMI interaction on gene expression, 
tissue samples from donors of non-European descent were filtered out.

We extracted the whole-gene level RPKM (Reads Per Kilobase of transcript per Million mapped reads) values 
for 18,763 protein-coding genes. The data for different tissues were quantile normalized, and log2-transformed, 
respectively. 20% of genes showing low expression were then excluded from data analysis based on their mean 
expression levels across samples in each tissue. Finally, 15,010 genes passed filtration. We confined our analysis to 
tissues with expression data for at least 80 samples, resulting in a total of 2,016 samples and 15 tissues. The sample 
size for each tissue ranged from 81 to 208 (Table 1).

Correcting the confounding factors using the PEER algorithm.  To correct the known covariates as 
well as infer hidden data structures in the GTEx expression data, we employed a two-step approach34 based on 
the PEER algorithm35 prior to regression analysis. PEER was first used to unearth patterns of common variation 
across the whole data set and create up to 15 assumed global hidden factors for each tissue. The known covariates, 
including the donor’s age, gender, and BMI together with the PMI for all samples from 15 tissues were contained 
in PEER models. It is of note that PMI was also included to enable PEER to discover correlated patterns across 
global structured data. Next, the correlation between each of the 15 constructed factors and PMI was tested with 
the data set of each tissue. Factors showing a Pearson’s correlation or Spearman’s rank correlation test P-value 
smaller than 0.05 were excluded. The remaining factors along with non-PMI covariates were used as a new set of 
covariates in the regression analysis. The residual values of the regression were used as corrected gene expression 
data in the further analysis.

Multiple linear regression model for PMI-associated gene detection.  For each tissue, we modeled 
gene expression using the following multiple linear regression model:

∑µ α β γ δ θ ε= + + + + + +
=

Y PMI Age BMI Gender PC
(1)ij j j i j i j i j i

k

N

jk ki ij
1

where Yij is the expression level of gene j in the sample i; PMIi which denotes the postmortem interval for sample 
i with regression coefficient αj for gene j; Agei denotes the age of sample i with regression coefficient βj for gene 
j; BMIi denotes the BMI of sample i with regression coefficient γj for each gene j; Genderi denotes the gender of 
sample i with regression coefficient δj for gene j; PCki (1 ≤ k ≤ N) denotes the value of the k-th hidden factors of 
the gene expression profile for the i-th sample with regression coefficient θjk; N is the total number of factors 
uncorrelated with PMI; εij is the error term, and μj is the regression intercept (for gene j).

Tissues Decrease Increase Total

(1) Subcutaneous Adipose (n = 144) 8 2 10

(2) Aorta Artery (n = 85) 9 3 12

(3) Tibial Artery (n = 138) 0 1 1

(4) Cerebellum (n = 100) 0 0 0

(5) Cerebral Cortex (n = 83) 0 0 0

(6) Esophageal Mucosa (n = 101) 41 33 74

(7) Heart (n = 89) 23 1 24

(8) Lung (n = 125) 11 4 15

(9) Skeletal Muscle (n = 208) 15 8 23

(10) Tibial Nerve (n = 122) 1 0 1

(11) Pituitary (n = 81) 0 0 0

(12) Suprapubic Skin (n = 116) 0 0 0

(13) Lower leg Skin (n = 171) 3 0 3

(14) Thyroid (n = 116) 43 4 47

(15) Whole Blood (n = 183) 53 12 65

Table 3.  Numbers of PMI-associated differentially variable (DV) genes across 15 different human tissues.

https://dbgap.ncbi.nlm.nih.gov
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We fitted the model with the fitlm function in the Statistics toolbox of MATLAB. For each gene, a least square 
approach was used to estimate the regression coefficients. If αj was significantly deviated from 0, the gene j was 
considered to be PMI-associated. A gene was considered to be up-regulated (that is, the gene was degraded sig-
nificantly more slowly than the mean degradation rate or even increasingly expressed) with PMI if α > 0 and 
down-regulated (that is, the gene was degraded significantly more quickly than the mean degradation rate) if α < 0.

Throughout this study, GO term enrichment analyses were carried out by using the functional annotation tool 
of DAVID Bioinformatics Resource Server (version 6.8)36. The false discovery rate (FDR) adjustment for P-values 
was made using the Benjamin-Hochberg procedure37. An FDR less than 0.05 was considered as the threshold for 
significance unless otherwise specified.

Effect of sample size, bootstrapping and permutation analysis.  To evaluate the number of false 
positives that could be involved in our PMI-associated genes at FDR of 5%, we adopted an approach similar to 
that of Yang and Huang38. For each gene, we randomly permuted the sample PMI and repeated the identification 
procedure 10,000 times. We counted the number of occasions that the P-value was less than the original one, and 
included the genes whose number was smaller than 500 in our final results (Table 1).

To examine the effect of sample size, for each tissue we randomly selected samples of sizes ranging from 20 to 
the maximum number with ten additional samples added each time (Fig. S2) and then bootstrapped 100 times. 
As expected, larger sample size increases the power of identifying PMI-associated genes (e.g., the number of 
PMI-associated gene increases more than 100-fold in whole blood when sample size increases from 40 to 180). 
To correct the effect of sample size, we randomly selected the samples of size 80 (that is, the minimal sample 
size in 15 tissues) and bootstrapped 100 times, ensuring that our PMI-associated genes were not sensitive to a 

Figure 4.  Examples of differential gene expression dispersion among PMI groups. (a) Increased gene 
expression variance of DEFB4B in esophageal mucosa between PMI groups (left:121–696 mins vs. 707–
1,515 mins; right: all samples). (b) Decreased gene expression variance of IFNG in lung between PMI groups 
(left:156–757 mins vs. 760–1,485 mins; right: all samples). Each PMI group was plotted with jitter along the 
x-axis to show samples of different PMI. The red dotted line represents the median PMI of all samples.

http://S2
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particular sample size. We counted the average number of PMI-associated genes in 100 repetitions of bootstrap-
ping (Table S2).

Genotype-by-PMI interaction on PMI related mRNA degradation.  The genotype data for the 450 
donors was obtained from dbGaP (http://www.ncbi.nlm.nih.gov/gap). For each polymorphic site, an individual’s 
genotype was denoted with 0, 1 or 2 based on the number of alternative alleles. SNPs with minor allele frequency 
(MAF) less than 15% were filtered out, resulting in a total of 1,051,649 SNPs retained for further testing.

∑

µ α β γ

δ θ ε

= + + + +

+ + + +
=

·

Y PMI SNP Age BMI

Gender PC PMI SNP
(2)

ij j j i s j i j i

j i
k

N

jk ki i s ij
1

To discover the Genotype-by-PMI interaction on PMI related mRNA degradation, we added the genotype (SNPS, 
1 ≤ s ≤ 1,051,649) and genotype-by-PMI interaction terms (PMIi·SNPs) to the linear regression model described 
above. As a factor contributing to the gene expression variance, the significance of this interaction term was 
assessed for each gene after the model was fitted. To insure the overall computing time would be feasible, we 
randomly selected 2,000 genes in whole blood. All the computations were performed at the high-performance 
computing cluster of Peking University Institute of Systems Biomedicine.

To validate our results, we re-examined the significant interactions identified in whole blood using the other 
tissues from the GTEx dataset and permuted the PMI 10,000 times. We counted the number of occasions that the 
P-value was less than the original one, and only included the interactions whose number was smaller than 500.

Test for expression heteroscedasticity between PMI groups.  To compare the variance homogeneity 
of gene expression in Short-PMI (S-PMI) and Long-PMI (L-PMI) groups, we performed the Levene’s tests39 to 
determine whether the gene expression levels of different PMI groups have similar deviations from the group 
means. Let xkj be a set of j = 1, …, nk observations in each of k = 1, …, g PMI groups. The Levene’s test statistic is 
the ANOVA F-ratio comparing the g groups, calculated on the absolute deviations = | − |z x xkj kj k , where 

= ∑ =x xk n j
n

kj
1

1k
k  is the group means. The output value is the probability that at least one of the samples in the test 

has a significantly different variance, for which values less than 0.05 were considered statistically significant.

Statistical analysis and data availability.  Statistical computing was performed using MATLAB (v2016b) 
and R (v3.3, https://www.r-project.org/). The GTEx genotype and RNA sequencing data were downloaded from 
dbGaP (http://www.ncbi.nlm.nih.gov/gap), with study Accession number no.phs000424.v6.p1.
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