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Musculoskeletal injuries (MSKI) are a significant burden on the military healthcare system.
Movement strategies, genetics, and fitness level have been identified as potential
contributors to MSKI risk. Screening measures associated with MSKI risk are
emerging, including novel technologies, such as markerless motion capture (mMoCap)
and force plates (FP) and allow for field expedient measures in dynamic military settings.
The aim of the current study was to evaluate movement strategies (i.e., describe variables)
of the countermovement jump (CMJ) in Marine officer candidates (MOCs) viamMoCap and
FP technology by clustering variables to create distinct movement strategies associated
with MSKI sustained during Officer Candidates School (OCS). 728 MOCs were tested and
668 MOCs (Male MOCs = 547, Female MOCs = 121) were used for analysis. MOCs
performed 3 maximal CMJs in a mMoCap space with FP embedded into the system. De-
identified MSKI data was acquired from internal OCS reports for those who presented to
the OCS Physical Therapy department for MSKI treatment during the 10 weeks of OCS
training. Three distinct clusters were formed with variables relating to CMJ kinetics and
kinematics from the mMoCap and FPs. Proportions of MOCs with a lower extremity and
torso MSKI across clusters were significantly different (p < 0.001), with the high-risk cluster
having the highest proportions (30.5%), followed by moderate-risk cluster (22.5%) and
low-risk cluster (13.8%). Kinetics, including braking rate of force development (BRFD),
braking net impulse and propulsive net impulse, were higher in low-risk cluster compared
to the high-risk cluster (p < 0.001). Lesser degrees of flexion and shorter CMJ phase
durations (braking phase and propulsive phase) were observed in low-risk cluster
compared to both moderate-risk and high-risk clusters. Male MOCs were distributed
equally across clusters while female MOCs were primarily distributed in the high-risk
cluster. Movement strategies (i.e., clusters), as quantified by mMoCap and FPs, were
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successfully described with MOCs MSKI risk proportions between clusters. These results
provide actionable thresholds of key performance indicators for practitioners to use for
screening measures in classifying greater MSKI risk. These tools may add value in creating
modifiable strength and conditioning training programs before or during military training.

Keywords: musculoskeletal injuries, markerless motion capture, force plates, marines, screening, unsupervised
learning, k-means clustering, military

INTRODUCTION

Musculoskeletal injuries (MSKIs) sustained during initial military
training remain a significant cause of lost duty time, attrition, and
financial burden on the military healthcare system, as well as
degrade military readiness and subsequent deployability
(Piantanida et al., 2000; Nindl et al., 2013a; Nindl et al.,
2013b; Lovalekar et al., 2021). According to the Army Public
Health Command's, Health of the Force Report 2020, over 50% of
soldiers experienced an injury resulting in 2 million medical
encounters and 10 million limited duty days (APHC, 2020).
Consequently, there is heightened awareness and interest in
screening tests that can inform military leadership regarding
MSKI risk and be incorporated into policy and practices to
mitigate training related MSKIs.

MSKIs sustained during military training are multifaceted and
can be attributed to a host of factors, such as genotype (Bray et al.,
2009), low fitness (Robinson et al., 2016), female sex (Lovalekar
et al., 2020), or prior MSKI history (Eagle et al., 2019).
Additionally, movement strategies have been associated with
MSKI risk in both athletic and military populations (Chorba
et al., 2010; Lisman et al., 2013; Markström et al., 2019). Previous
attempts to evaluate movement strategies have included the gold-
standard method of marker-based motion capture (MoCap)
(Russell et al., 2006). Although the data is clinically
meaningful, MoCap is burdensome on time and largely
confined to state-of-the-art biomechanical laboratories and
thereby preventing field data collection. In an attempt to move
“from the lab to the field” and to address limitations of MoCap,
emerging technologies and algorithms have been developed as
alternative testing modalities. Markerless motion capture
(mMoCap) is an emerging technology (Mündermann et al.,
2006; Sonnenfeld et al., 2021) for movement screening that
reportedly produces valid ground reaction force estimates (Fry
et al., 2016; Mosier et al., 2019), valid to MoCap system
kinematics (Perrott et al., 2017; Drazan et al., 2021), and is
reliable (Martinez et al., 2018; Mosier et al., 2018). mMoCap
may provide a field expedient measure to evaluate movement
strategy-related kinetics, kinematics and performance measures
and provide insight intoMSKI risk. In addition, the incorporation
of concurrent FP andmMoCap assessment measures could create
a higher fidelity system to detect kinetics in different phases of
commonly performed dynamic movements, such as the
countermovement jump (CMJ) (Beckham et al., 2014;
McMahon et al., 2018).

One particular movement, the CMJ, may be beneficial for
incorporation with FP and mMoCap testing as it has been used
widely as a screening and readiness measure for athletes and

military personnel as it is directly correlated to isometric strength,
one repetitionmaximum half squat (Boraczyński et al., 2020), and
is reliable and repeatable for quantifying neuromuscular
readiness (Cormack et al., 2008; Welsh et al., 2008; Merrigan
et al., 2020). The CMJ is a simple and field-ready test that may
provide information regarding MSKI risk and preventative
strategies to mitigate MSKIs through information, such as
force production, loading kinematics via FP or mMoCap
technology (Hart et al., 2019; Pontillo and Sennett, 2019;
Pontillo et al., 2021).

To analyze movement strategies associated with MSKI risk,
independent statistics (i.e., T-tests, ANOVAs) and univariate
prediction modeling (i.e., logistic and linear regression) have
traditionally been used indicate and predict MSKI (Dudley
et al., 2017; de la Motte et al., 2019), whereas more robust
analytical, statistical, and machine learning approaches have
been underutilized for MSKI prediction. These advanced
methodologies may better indentify the relevant information
and complex relationships associated with MSKI and provide
an appropriately robust approach to a non-linear problem
(i.e., indicating MSKI risk), but have yet to be fully evaluated
in this manner. Specifically, supervised learning that utilizes
labeled data such as MSKI or noMSKI to train an algorithm
for prediction (Connaboy et al., 2018) and unsupervised learning,
which uses unlabeled data to detect trends or hidden patterns
within the data set (i.e., Clustering), warrant further investigation
for identifying MSKI risk.

To date, cluster analysis, a specific type of unsupervised
learning, has been incorporated into human performance
investigations to evaluate physical performance standards
(Allison et al., 2019; Gaudet et al., 2019), questionnaires
(i.e., pre-game expectations) (Kumar et al., 2019; Popovych
et al., 2020), shoulder injuries in volleyball players (Gaudet
et al., 2019), and change of direction movement strategies
during ACL injuries (Sigurðsson and Briem, 2019). More
recently, Rauch et al. (2020), used k-means clustering, a type
of clustering method to describe kinetic and kinematic variables
that accurately describe CMJ movement strategies for basketball
players positional groups. However, clustering has not been
applied to assess MSKI risk via movement strategies during
military training. Therefore, we explored movement strategies
associated with MSKI by clustering CMJ kinetic and kinematic
variables in FP and mMoCap in Marine Corps Officer candidates
(MOCs) undergoing 10 weeks of arduous military training
known to cause a high incidence rate for MSKIs (Cumulative
injury incidence in Marine Officer Candidates School: Male
MOCs = 59.5%, Female MOCs = 80% (Piantanida et al., 2000).
The primary aim of the current study was to evaluate movement
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strategies (i.e., description of variables) of the CMJ in MOCs via
mMoCap and FP technology by clustering variables to create
distinct movement strategies associated with MSKI sustained
during Officer Candidates School (OCS). In addition, we
explore other analytical techniques such as two-way ANOVA
and provide rationale why movement strategies may be better
suited for clustering techniques to assess MSKI risk.

MATERIALS AND METHODS

Researchers briefed and consented MOCs for the study. Ethical
approval was provided by The University of Pittsburgh
(STUDY19030386) and the research was endorsed by the
Office of Naval Research and Officer Candidates School. 728
MOCs (MaleMOCs = 599, FemaleMOCs = 129) volunteered and
participated in the mMoCap and FP testing which comprised
four intake classes.

Officer Candidates School
One pathway to be commissioned as an Officer in the
United States Marine Corps (USMC) requires the completion
of OCS. OCS is a 10-week initial military training course for male
and female MOCs that consists of intense physical and military
training within a controlled and challenging environment.
Physical training is conducted based on a predetermined
schedule and includes graded events that are designed to test
general strength and endurance under field and tactical
conditions. In addition, running, hiking, obstacle course
navigation and bodyweight exercises are performed as part of
regular supervised training occurring 3–5 days/week.

Movement Assessment
Prior to the start of physical training, height and weight were
recorded by a stadiometer and digital scale (Healthometer
Professional 500KL, McCook, IL). MOCs were required to
perform a warm-up and familiarization phase before testing.
DARI mMoCap (DARI Motion, Inc. Overland Park, KS), a 3-
dimensional mMoCap system was used for data collection.
8 Black-fly FLIR GigE cameras (50 Hz) were placed around an
2.5 × 3.5 m matted area with Hawkin Dynamic dual FP (Hawkin
Dynamics, ME), sampling at 1,000 Hz, embedded into the mat.
Prior to daily testing, the DARI mMoCap was calibrated to the
manufacturer’s specifications, and FPs were tested to ensure
device ground contact. DARI mMoCap use Captury Live
motion tracking software (CL, The Captury Ltd., Saarbrücken,
Germany) that uses sums of spatial Gaussian functions to
generate a subject-specific body model representing the shape
and color statistics to estimate joint centers (Stoll et al., 2011).
Before capture, the FPs were zeroed and a background
subtraction was performed on the DARI mMoCap system so
that when MOCs enters the mMoCap area, MOCs are
differentiated from the background during initialization of the
tracking model. MOCs placed one foot on each FP, and cued into
a calibration position, in which both elbows were at 90°, and
hands downwards. A computerized subject-based model was
generated and virtually overlaid on the live image of the

MOCs, and scaling actions (lunges, squats, arm rotations)
were performed to capture the MOCs joint centers.

MOCs performed three maximal-effort CMJs, with 15 s rest
between each jump. The MOCs were cued to start with hands
above head, stand still (1 s of quiet phase to register system
weight), and performed the jump with a counter-movement and
arm swing to a self-selected depth. Participants were instructed to
jump immediately after researchers verbally gave a 3-2-1
countdown. A trial was unsuccessful and redone if the MOC
failed to land within the confines of the force plates. If the skeleton
was visually misaligned from a joint center, either the MOCs
would redo the CMJ or the skeleton would be re-tracked post-
hoc. MOCs flagged for a misalignment in the skeleton were
further evaluated visually for misalignments in skeleton joint
centers. After visual inspection, the mean for each FP and
mMoCap variable were calculated and three standard
deviations above or below the mean were visually inspected
for the potential removal of trail (i.e., mMoCap: Skeleton
misalignment or joint center deviating from joint center and
FP: Unweighting phase starting early due to movement artifact
from MOCs). A total of 728 MOCs were tested, while 668 MOCs
(Male MOCs = 547, Female MOCs = 121) were retained after
filtering of artifacts in mMoCap and FPs.

All variables from DARI mMoCap were uploaded to DARI’s
cloud platform and processed using DARI Insight Processing
(version 1.0.4-250) and DARI Insight Vault (version 1.0.3-854)
software. mMoCap joint coordinate systems are defined during
movement tracking and calculations for knee, hip and ankle
kinematics follow the methods prescribed by the International
Society of Biomechanics (Grood and Suntay, 1983; Wu et al.,
2005). Variables from FPs were uploaded to Hawkin Dynamic
Cloud (v16.2.0) and processed using Hawkin Dynamic Software
(v7.3.8) using force-time curve cut-offs for varying phases
(i.e., Braking and Propulsive phase) explained in Figure 1,
along with the description of variable calculations in Table 1.
Analysis was performed on one CMJ that was based on peak CMJ
jump height via FPs with the matching jump number from
mMoCap. DARI mMoCap outputs right and left limbs, which
limbs were averaged for a gross bilateral movement (i.e., (Left +
Right Ankle Flexion)/2).

Musculoskeletal Injuries Labeling
De-identified MSKI data was acquired from internal OCS reports
for those who presented to the OCS Physical Therapy department
for MSKI treatment during the 10 weeks of OCS training. MSKIs
were presented into four anatomical regions: 1) lower body (LB),
2) torso, 3) upper body (UB), 4) head and neck (HN). The specific
body parts associated with each region include: 1) LB: foot, ankle,
knee, lower leg, and upper leg, 2) Torso: lumbar spine, thoracic
spine, ribs, hip 3)UB: shoulder, elbow, upper arm, forearm, hand,
and wrist 4) HN: cervical spine. Severity of injury was defined as
Disposition and was either Light Duty: limitations to full training
or Full Duty: No limitations to training. To account for inclusion
of multiple MSKIs within a MOC, injury severity was rounded up
to the most severe (i.e., light duty) when analyzing for light duty
MSKIs per cluster, and joint MSKI was rounded to the specific
joint MSKI analyzed (i.e., Hip MSKI, Knee MSKI, Ankle MSKI).
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The rounding technique was performed so that the correct joint
MSKI and the highest severity was pulled, and so that no
duplicate MOCs were presented in the data.

Data Analysis
Two-way independent measures analysis of variance (ANOVAs)
were conducted to analyze the effect of sex (between-subjects

FIGURE 1 | Analytical pipeline describing the data analysis methods, and the force plate force-time curve describing the different phases of the CMJ.
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variable: male and female), the effect of injury (between-subject
variable: MSKI and noMSKI), and the effect of interaction
between sex and injury, on 18 FP and mMoCap dependent
variables in Table 2. If the interaction effect was statistically
significant, simple main effects of injury at each level of sex were
analyzed.

K-means clustering (MacQueen, 1967) is an unsupervised
technique that initially randomly assigns cluster centroids,
then in an iterative process attempts to group the values

closest to the cluster centroid in which to minimize the sum
of squares within each cluster. Before k-means clustering, ten
variables were reduced and scaled from Table 2 to reduce
dimensionality (Steinbach et al., 2004), characterizing the
kinetic and kinematic braking and propulsive phases. Each
variable was scaled so that its mean equals zero and the
standard deviation equals one. Spearman correlations were
performed on the ten variables to assess for highly correlated
variables that display similar concepts, thus the concepts may be

TABLE 1 | K-means clustering variables definitions.

Variables Definitions

Kinetic measures
Braking RFD (N/s) Difference in newtons from the end of braking to the start of braking divided by the duration of the braking phase
Braking net impulse (N.s) Impulse above system weight during braking phase
Propulsive net impulse (N.s) Impulse above system weight during propulsive phase
Peak relative propulsive power (W/kg) Peak power during propulsive phase divided by kg of subject mass

Kinematic measures
Braking phase (s) Duration of braking phase
Propulsive phase (s) Duration of propulsive phase
Max hip flexion (degrees)a Max flexion angle between pelvis and femur during loading phase
Max knee flexion (degrees)a Max flexion angle between femur and tibia during loading phase
Max ankle flexion (degrees)a Max flexion angle between tibia and foot during loading phase
Dynamic valgus (degrees)a Measure of knee deviation from the leg Plane, which is defined using the positions of hip and ankle joint centers and the pelvis

anterior direction

aMarkerless Motion Capture variables are from the start of the movement to the pelvis reaching minimum height; Force plate variables are described in Figure 1.

TABLE 2 | Force plate and markerless motion capture variables in Marine Officer Candidates (MOCs).

Male MOCs (n = 547) Female MOCs (n = 121)

Abbreviation MSKI (n = 109) noMSKI
(n = 438)

Male MOCs
(n = 547)

MSKI (n = 44) noMSKI
(n = 77)

Female
MOCs (n = 121)

Kinetic variables
Braking RFD (N/s) BRFD 3,349 ± 1,675 3,782 ± 1,832 3,696 ± 1,808 2,180 ± 1,153 2,524 ± 1,223 2,399 ± 1,205
Avg. braking force (N) ABF 1,190 ± 207 1,235 ± 201 1,226 ± 203 907 ± 128 963 ± 147 943 ± 143
Avg. relative braking force
(%BW)

ARBF 152.7 ± 19.6 156.4 ± 19.1 155.6 ± 19.3 147.7 ± 18.5 150.2 ± 16.6 149.3 ± 17.3

Avg. propulsive force (N) APF 1,364 ± 198 1,404 ± 208 1,396 ± 206 995 ± 125 1,044 ± 144 1,026 ± 139
Avg. relative propulsive force
(%BW)

ARPF 174.9 ± 13.0 177.6 ± 16.3 177.1 ± 15.7 161.6 ± 12.1 162.6 ± 11.9 162.2 ± 12.0

Braking net impulse (N.s) BNI 109 ± 21 112 ± 21 111 ± 21 76 ± 14 83 ± 15 81 ± 15
Propulsive net impulse (N.s) PNI 222 ± 33 227 ± 33 226 ± 33 147 ± 21 157 ± 22 153 ± 22
Peak relative propulsive
power (W/kg)

PRPP 53 ± 7 54 ± 8 54 ± 8 43 ± 6 44 ± 6 43 ± 6

Peak propulsive power (W) PPP 4,215 ± 789 4,335 ± 827 4,311 ± 820 2,699 ± 491 2,853 ± 492 2,797 ± 495
Kinematic variables
Braking phase (s) BP 0.29 ± 0.08 0.27 ± 0.07 0.28 ± 0.07 0.28 ± 0.07 0.28 ± 0.06 0.28 ± 0.06
Propulsive phase (s) PP 0.39 ± 0.05 0.38 ± 0.06 0.38 ± 0.05 0.40 ± 0.05 0.40 ± 0.06 0.40 ± 0.06
Time to take off (s) TTTO 1.11 ± 0.14 1.09 ± 0.14 1.10 ± 0.14 1.10 ± 0.14 1.10 ± 0.12 1.10 ± 0.13
Max hip flexion (degrees)a HF 99.9 ± 15.4 97.6 ± 16.1 98.0 ± 16.0 103.0 ± 17.7 105.7 ± 15.5 104.8 ± 16.4
Max knee flexion (degrees)a KF 116.3 ± 14.0 114.7 ± 14.7 115.0 ± 14.6 109.1 ± 11.2 113.3 ± 14.7 111.8 ± 13.6
Max ankle flexion (degrees)a AF 33.7 ± 6.3 32.8 ± 6.0 33.0 ± 6.0 34.5 ± 6.7 33.7 ± 5.1 34.0 ± 5.7
Dynamic valgus (degrees)a DV 5.7 ± 3.4 5.5 ± 3.0 5.5 ± 3.0 6.7 ± 3.4 7.1 ± 3.8 6.9 ± 3.6

Performance variables
Jump height (m) JH 0.40 ± 0.07 0.40 ± 0.07 0.40 ± 0.07 0.28 ± 0.05 0.29 ± 0.05 0.29 ± 0.05
Modified reactive strength
index (JH/TTTO)

mRSI 0.36 ± 0.08 0.38 ± 0.09 0.38 ± 0.09 0.26 ± 0.06 0.27 ± 0.07 0.27 ± 0.07

aMarkerlessmotion capture variables; MSKI = Lower Extremity and Torso; noMSKI = Upper Extremity, Head and Neck, and noMSKI; Two-way ANOVA for Sex*Injury results in text; MSKI =
Musculoskeletal Injury; data presented as mean ± standard deviation.
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represented twice (Sambandam, 2003). Thresholds of highly
correlated variables were set at r >0.85 or <−0.85, and if
pairwise variables fell >0.85 or <−0.85 one of the pairwise
variables would be subject to be removed. To determine the
number of clusters, an elbow plot and visual inspection of three
separate runs (two, three, and four number of clusters) of
k-means were performed. The elbow method is a subjective
measure, evaluating for a “kink” in the curve, in which
optimal number of clusters are chosen (Figure 3), by
measuring the total within sum of squares (Kodinariya and
Makwana, 2013). The separate runs of k-means were
visualized by a 2-dimensional principal component analysis
(PCA) plot (Figure 4) to evaluate for the minimization of
cluster overlap. R Version 3.6.1 (R Core Team, 2019) packages
including Hmisc V. 4.5 (rcorr, Spearman correlation), stat V.
3.6.2 (kmeans, K-Means Clustering), ggplot2 V. 3.3.5 (Elbow plot
and Cluster visualization) were used for analysis and
visualization.

Fisher’s exact tests were used to compare the proportions
across clusters for MOCs with MSKIs, Male and Female MOCs
with MSKI, Female and Male MOCs, MOCs with ankle MSKI,
Knee MSKI, and Hip MSKI, Male and Female MOCS with ankle
MSKI, KneeMSKI, andHipMSKI, MOCs with Light DutyMSKI,
and Male and Female MOCs with Light Duty MSKI. Relative risk
and 95% confidence intervals were calculated between each
cluster for each of the proportions. One-way independent
measures analysis of variance (ANOVAs) were conducted to
analyze the effect of cluster (between-subjects variable:
C1,C2,C3), on each of the ten dependent variables used in
k-means clustering. All Statistical analysis was conducted using
IBM SPSS Statistics Version 25 (IBM Corp; Armonk, NY).
Statistical significance was set a priori at α = 0.05, two-sided.

RESULTS

Female MOCs were significantly shorter (M = 176.5 ± 6.9 cm; F =
163.9 ± 5.4 cm, p < 0.001) and weighed less than male MOCs
(M = 80.2 ± 9.4 kg; F = 64.6 ± 7.2 kg, p < 0.001), while age was not
different (M = 24.8 ± 3.0 years; F = 24.8 ± 3.3 years). Two-way
ANOVAs were conducted to analyze the effect of sex and injury
on the variables listed in Table 2. There was no significant
interaction between Sex and Injury in their effect on any of
the dependent variables analyzed (all interaction p values >0.05).
There was a statistically significant main effect of sex on all
dependent variables analyzed (all main effect of sex p values <
0.05), except for AF (p = 0.183, ηp2 = 0.003), TTTO (p = 0.894, ηp2
= 0.000), and BP (p = 0.674, ηp2 = 0.000). There were significant
main effects for injury for BRFD (p = 0.037, ηp2 = 0.007), ABF (p =
0.016, ηp2 = 0.009), APF (p = 0.037, ηp2 = 0.007), BNI (p = 0.029,
ηp2 = 0.007), and PNI (p = 0.042, ηp2 = 0.006). The main effects of
injury were not statistically significantly different for the other
dependent variables.

K-Means Clustering
Ten variables were reduced and scaled from Table 2 to
characterize the CMJ kinetics and kinematic braking and

propulsive phases for k-means clustering. Before clustering,
Spearman correlations were performed to check for highly
correlated variables and none of the ten variables used for
k-means clustering presented with the criterion described in
Figure 2 (r >0.85 or <−0.85). BP and BRFD had the greatest
correlation (r = −0.84), while all other pairwise correlations were
below r = 0.69 and greater than r = −0.54.

The ten scaled variables were analyzed using k-means
clustering for male and female MOCs (MOCs = 668, Male
MOCs = 547, Female MOCs = 121). The Elbow plot
determined (Figure 3) the optimal number of clusters were
two and three clusters. Clusters were visualized (Figure 4) in a
2-dimensional PCA plot, displaying two and three clusters had
the least amount of overlap when compared to four clusters, thus
three clusters where chosen.

Fishers exact test was used to compare proportion of MOCs
with MSKIs between clusters (Table 3) and showed that clusters
were significantly different (p < 0.001). C3 having the highest
proportion of MSKIs (30.5%) and C1 having the lowest (13.8%),
while C2 moderate (22.5%). This defines C3 as a “high-risk”
cluster, C1 as a “low-risk” cluster, and C2 as a “moderate-risk”
cluster based on proportions MOCs with MSKIs in each cluster.
Relative-risk (95% Confidence Interval) (Table 3) compared
high-risk to low-risk (RR (95% CI) =2.2 (1.5–3.3)), moderate
risk to low risk (RR (95% CI) = 1.6 (1.1–2.5)), and high-risk to
moderate-risk (RR (95% CI) = 1.3 (1.0–1.9)). After stratifying by
sex MSKI, the percent of male MOCs with MSKI was
proportionally different between clusters (p = 0.011). While
the percent of female MOCs with MSKI were proportionally
similar for the low-risk and moderate-risk cluster (25% MSKI),
while high-risk (38.1% MSKI) was different, although not
significant across clusters (p = 0.770). Lastly, proportions of
sex were calculated and the percent of female MOCs were
primarily distributed to high-risk cluster (41%), while similar
distributions in low-risk (3.9%) and moderate-risk (3.8%).

Disposition of MSKI was assessed by evaluating proportion of
MOCs with a light duty MSKI within each cluster (Table 4).
There were no significant differences across clusters (p = 0.149),
with high-risk having largest percentage of light duty MSKI
(79.4%) and moderate risk the lowest (64.8%). Joint specific
MSKI (Table 5) hip (Table 5C) and knee (Table 5B) MSKI
across clusters were not significantly different, while ankle
(Table 5A) MSKI was significantly different (p = 0.010, low-
risk: 3.3%, moderate-risk: 3.6%, high-risk: 10.1%).

One-way ANOVAs were conducted on each dependent
variable (Table 6), demonstrating that k-means clustering
performed well at separating groups for each of the ten
variables (p < 0.001). Bonferroni Post Hoc identified
significant differences in BNI, PNI, PRPP, BP, PP, KF, and AF
across the clusters, and BRFD, HF, and DV were significantly
different between low-risk and high-risk. Between low-risk and
high-risk, high-risk resulted in lesser values in kinetics
(i.e., BRFD: low-risk = 4,518 ± 1,725 N/s, high-risk = 2,019 ±
761 N/s and PNI: low-risk: 238 ± 33 N.s, high-risk: 180 ± 35 N.s)
and greater values in kinematics measures (i.e., KF: low-risk =
102.6 ± 10.4°, high-risk = 114.3 ± 13.0°, and BP: low-risk = 0.23 ±
0.05 s, high-risk = 0.32 ± 0.07 s), although BNI was significantly
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greater in the moderate-risk cluster among clusters (low-risk:
111 ± 21 N.s, moderate-risk: 122 ± 18 N.s, high-risk: 88 ± 16 N.s).
Representation of MOCs movement strategy from each cluster
are presented in Figure 5.

DISCUSSION

This study applied unsupervised learning (k-means clustering) to
baseline CMJ kinetic and kinematic variables to discriminate distinct
movement strategies that were prospectively associated with
developing an MSKI during OCS in Marine Officer Candidates.
Significant differences in the variables used to designate each cluster
were indicative of greater kinetics (BRFD, impulse, power) and lower/
shorter kinematics (joint flexions, time duration measures) in the
low-risk cluster, while the high-risk cluster demonstrated longer time
durations and moderate joint flexion kinematics, and lower kinetics.
Such findings suggest that efficient CMJ movement strategies are
associated with a lower risk for MSKI during military training.

K-Means Clustering has Utility for
Classifying MSKI Risk
Two separate analyses were conducted in this study to evaluate
MSKI risk in Marine Officer Candidates. When utilizing a two-

way ANOVA to compare between sexes and injury groups,
kinetic variables, such as BRFD, braking net impulse, and
propulsive net impulse were significantly greater in the
noMSKI group compared to MSKI. No kinematic variables
were significantly different between MSKI and noMSKI,
suggesting that CMJ kinematics are not associated with MSKI
risk. In agreement with our results, similar analyses were
previously reported using multiple independent sample t-tests
to evaluate running gait kinematics and reported few kinetics and
kinematics were significantly different between MSKI and
noMSKI in runners (Dudley et al., 2017). Additionally, some
kinetic and kinematic measures in the single-leg drop jump were
significantly different between male and female adolescents
(Romanchuk et al., 2020). The interpretation from these
analyses are limited, because each individual kinetic or
kinematic variable are compared across groups (MSKI vs.
noMSKI or Male vs. Female) one at a time, whereas in reality,
the kinematic chain functions as a synchronized movement of
multiple components. Therefore, clustering movement strategies
incorporates combinations of kinetics and kinematics that relate
to MSKI risk and sex differences. Such approaches allow not only
for clustering of CMJ variables to create a comprehensive
movement profile, but also compare MSKI status and sex
between movement strategies rather than grouping based on
MSKI classification.

FIGURE 2 | Correlation plot on the 10 variables used for k-means clustering; r values represented by value and color representation (darker red = greater positive r
values and darker blue = greater negative r values); If pairwise r values were >0.85 and <−0.85 then one variable of the pairwise variables were removed; No variables
were removed.
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FIGURE 3 | Elbow plot demonstrating, y-axis = total within sum of squares by x-axis = number of clusters (k); Subjective evaluation for number of clusters chosen
for analysis, used for determination of k; “Kink” in curve occurs at k = 2 and 3.

FIGURE 4 | Three separate analyses of k-means clustering (k = 2, 3, and 4). (A) k = 2, Two Clusters. (B) k = 3, Three Clusters. (C) k = 4, Four Clusters; Represented
by PCA 2-d plot for representation of cluster distribution and overlap; (B) was chosen with insight from elbow plot, and visual comparison of cluster distributions with
minimal overlap of clusters.
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When comparing kinetic and kinematic variables among
injury groups, there are often substantial overlap of variables,
which limits significant results between groups that contribute to
MSKI risk associations (Bahr, 2016). This highlights the need for
analyses to distinctly stratify groups (i.e., clustering) and then
observe MSKI and sex proportions for clear thresholds of
variables associated with varying MSKI risk with minimal
overlap of variables. Recently, Rauch et al. (2020) used
k-means clustering to stratify three groups to evaluate the
CMJ kinetic and kinematic variables associated with basketball
player positional group movement strategies, concluding that
CMJ movement strategies indicated positional groups

(i.e., forward, guards). Our analysis followed a similar method
and approach to understand CMJ movement strategies and their
relation to MSKI. While k-means clustering is a readily used
technique to stratify biomechanics data (i.e., gait pattern) it has
rarely been used to classify proportions of MSKIs. Typical
machine learning biomechanical analyses use predictive
modeling [classification (80.6%) and regression (11.6%)] with
limited use of data mining techniques, such as clustering (7.8%)
(Halilaj et al., 2018). Due to differences in methodologies, it is
difficult to compare the present results with previous literature,
therefore this analysis highlights the utility of clustering
techniques to identify MSKI risk associations.

TABLE 3 | Proportions of MOCs with Lower Body and Torso Musculoskeletal Injury by Cluster.

C1 (low-risk) C2 (moderate-risk) C3 (high-risk) Fisher’s exact test p value Relative-risk (95% CI)

C3/C1 C2/C1 C3/C2

%MSKI 28/203 = 13.8% 47/209 = 22.5% 78/256 = 30.5% <0.001 2.2 (1.5–3.3) 1.6 (1.1–2.5) 1.3 (1.0–1.9)
%MSKI Male 26/195 = 13.3% 45/201 = 22.4% 38/151 = 25.2% 0.011 1.9 (1.2–3.0) 1.7 (1.1–2.6) 1.1 (0.77–1.6)
%MSKI Female 2/8 = 25.0% 2/8 = 25.0% 40/105 = 38.1% 0.770 1.5 (0.5–5.1) 1.0 (0.2–5.5) 1.5 (0.5–5.1)
%Male 195/203 = 96.1% 201/209 = 96.2% 151/256 = 59.0% <0.001
%Female 8/203 = 3.9% 8/209 = 3.8% 105/256 = 41.0% <0.001

Fisher’s exact test comparing clusters; p < 0.05 across all three clusters; Relative-Risk (95% confidence interval) comparing between clusters; MSKI = Musculoskeletal Injury; Each MOCs
received a MSKI, or noMSKI label: MSKI = lower body and torso and noMSKI = upper body, head and neck, and noMSKI; %MSKI = (MSKI/(MSKI + noMSKI)); %MSKI Male=(Male
MSKI/(Male MSKI+Male noMKSI)); %MSKI Female=(Female MSKI/(Female MSKI+Female noMSKI)); %Female=(Female/(Female+Male)); %Male = (Male/(Female+Male)).

TABLE 4 | Proportion of MOCs with Light Duty Musculoskeletal Injury by Cluster.

C1 (low-risk) C2 (moderate-risk) C3 (high-risk) Fisher’s exact test p
value

%MSKI Light duty 21/28 = 75.0% 30/47 = 64.8% 62/78 = 79.4% 0.149
%MSKI Light duty male 20/26 = 76.9% 28/45 = 62.2% 26/38 = 68.4% 0.458
%MSKI Light duty female 1/2 = 50.0% 2/2 = 100% 36/40 = 90.0% 0.394

Fisher’s exact test comparing clusters; p < 0.05 across all three clusters; Light Duty = Missed training days due to MSKI; MSKI = Musculoskeletal Injury;%MSKI Light duty=(Light duty/
(Light duty+Full duty));%MSKI Light duty male=(Male light duty/(Male light duty+Male full duty)); %MSKI Light duty female=(Female light duty/(Female light duty+Female full duty)).

TABLE 5 | Proportions of MOCs with Joint Musculoskeletal Injury by Cluster.

C1 (low-risk) C2 (moderate-risk) C3 (high-risk) Fisher’s exact test p
value

A. Ankle MSKI (n = 547)

%MSKI Ankle 6/181 = 3.3% 6/168 = 3.6% 20/198 = 10.1% 0.010
%MSKI Ankle male 5/174 = 2.9% 6/162 = 3.7% 9/122 = 7.4% 0.166
%MSKI Ankle female 1/7 = 14.3% 0/6 = 0.0% 11/76 = 14.4% 1.00

B. Knee MSKI (n = 557)

%MSKI Knee 8/183 = 4.4% 18/180 = 10.0% 16/194 = 8.2% 0.106
%MSKI Knee male 8/177 = 4.5% 17/173 = 9.8% 8/121 = 6.6% 0.153
%MSKI Knee female 0/6 = 0.0% 1/7 = 14.3% 8/73 = 11.0% 0.789

C. Hip MSKI (n = 532)

%MSKI Hip 2/177 = 1.1% 5/167 = 3.0% 10/188 = 5.3% 0.072
%MSKI Hip male 2/171 = 1.1% 5/161 = 3.1% 4/117 = 3.4% 0.346
%MSKI Hip female 0/6 = 0.0% 0/6 = 0.0% 6/71 = 8.5% 1.00

Fisher's exact test comparing clusters; p < 0.05 across all three clusters; 5a. MSKI Ankle (n = 547): MSKI = Ankle, noMSKI = upper body, head and neck and noMSKI, NA = lower body,
and torsoMSKIs excluding ankle; 5b. KneeMSKI (n = 557): MSKI = Knee, noMSKI = upper body, head and neck and noMSKI, NA = lower body and torsoMSKIs excluding knee; 5c. Hip
MSKI (n = 532): MSKI = Hip, noMSKI = upper body, head and neck and noMSKI, NA = lower body and torso MSKIs excluding hip; If labeled “NA” then excluded from analysis;%MSKI
Joint=(MSKI Joint/(MSKI Joint+noMSKI)); %MSKI Joint male=(MSKI Joint male/(MSKI Joint male+noMSKI male)); %MSKI Joint female=(MSKI Joint female/(MSKI Joint
female+noMSKI female)).
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In our clustering analysis, the proportion of MSKIs across
movement strategy clusters significantly differed, in which the
low-risk cluster had the lowest proportion of MOCs with a MSKI
(13.8%), followed by moderate-risk (22.5%) and high-risk
(30.5%). Similar associations were present for the proportion
of MSKIs in male and females MOCs, in which the highest
proportion of MSKI were in the high-risk cluster. Although,
female MOC's proportions of MSKIs across clusters were not
significantly different, potentially due to a smaller sample size
than male MOCs. In addition, opposite trends existed where
female MOCs were highly distributed to the high-risk cluster and
male MOCs in the low and moderate-risk cluster. Therefore, we
have demonstrated that female MOCs have different CMJ
movement strategies than male MOCs that associate with a
higher risk of MSKI across clusters. However, there was a
large proportion of male MOCs (59%) with similar CMJ
movement strategies as female MOCs demonstrating that

movement strategies, along with female sex are risk factors for
higher MSKI risk.

Kinetic and Kinematic Variables Associate
With the MSKI Risk Clusters
The MSKI risk labeled proportions (high, moderate and low risk)
coincided with kinetic values, such that higher values associated
with low-risk (except for breaking net impulse), and lower values
associated with high-risk (see Table 6). On the other hand, the
low-risk cluster had lower/shorter kinematics (joint flexion, time
duration), while the moderate and high-risk cluster had higher/
longer kinematic values. The trends of variables across groups
parallel similarly to those reported by McHugh et al. (2021).
Specifically, when distributing male NCAA athletes across three
groups (average, below average, and above average) FP variables,
inverse trends were observed. Peak relative propulsive power was

TABLE 6 | Markerless motion capture and force plate variables used for K-means clustering in Marine Officer Candidates.

Abbreviation C1 (low-risk) C2 (moderate-risk) C3 (high-risk) Omnibus p value Bonferroni adjusted post
hoc pairwise

comparison p-value

C3,C1 C2,C1 C3,C2

Kinetic measures
Braking RFD (N/s) BRFD 4,518 ± 1,725 4,200 ± 1,556 2,019 ± 761 <0.001 <0.001 0.057 <0.001
Braking net impulse (N.s) BNI 111 ± 21 122 ± 18 88 ± 16 <0.001 <0.001 <0.001 <0.001
Propulsive net impulse (N.s) PNI 238 ± 33 228 ± 30 180 ± 35 <0.001 <0.001 0.004 <0.001
Peak relative propulsive power (W/kg) PRPP 59 ± 7 51 ± 6 46 ± 6 <0.001 <0.001 <0.001 <0.001

Kinematic measures
Braking phase (s) BP 0.23 ± 0.05 0.27 ± 0.05 0.32 ± 0.07 <0.001 <0.001 <0.001 <0.001
Propulsive phase (s) PP 0.33 ± 0.04 0.40 ± 0.04 0.42 ± 0.05 <0.001 <0.001 <0.001 <0.001
Max Hip Flexion (degrees)a HF 89.8 ± 15.9 104.3 ± 13.3 102.6 ± 15.6 <0.001 <0.001 <0.001 0.712
Max Knee Flexion (degrees)a KF 102.6 ± 10.4 126.0 ± 9.4 114.3 ± 13.0 <0.001 <0.001 <0.001 <0.001
Max Ankle Flexion (degrees)a AF 29.6 ± 4.9 36.8 ± 5.3 33.0 ± 5.6 <0.001 <0.001 <0.001 <0.001
Dynamic Valgus (degrees)a DV 5.4 ± 2.8 5.5 ± 3.2 6.4 ± 3.4 <0.001 0.002 1.0 0.007

amMoCap variables; One-way ANOVA, analyze effect of cluster (between-subjects variable: C1, C2, C3); Figure 5A (Left). = low-risk cluster, Figure 5B (Middle). = moderate-risk cluster,
Figure 5C (Right). = high-risk cluster; data presented as: mean ± standard deviation.

FIGURE 5 | Example of Marine Officer Candidates from each cluster during max joint flexion in the CMJ (A) (Left): Low-risk cluster (B) (Middle): Moderate-risk
cluster (C) (Right): High-risk cluster; Cluster names defined by proportions of MOCswithMSKI (Table 3); Low-risk cluster: lower joint flexions, shorter time durations, and
higher kinetics; Moderate-risk cluster: higher joint flexions, moderate time durations, and moderate kinetics; High-risk cluster: moderate joint flexions, longer time
durations, and lower kinetics.
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highest (63.8 ± 3.2 W/kg) and propulsive phase was lowest
(0.268 ± 0.025 s) in the above average group, while peak
relative propulsive power was lowest (52.3 ± 1.9 W/kg), and
propulsive phase was highest (0.295 ± 0.041 s) in the below
average group. In addition, Márquez et al. (2018) reported
that recreationally trained athletes’ relative peak power was
greater in men (52.91 ± 7.13W/kg) than women (43.36 ±
2.58W/kg). These values suggest that the MOCs in the
moderate-risk cluster, predominantly male MOCs (96.2%),
were more similar to both the below average male NCAA and
male recreationally trained athletes. While the high-risk cluster
MOCs (41% female and 59% male MOCs) were lower in peak
relative propulsive power when compared to below average male
NCAA and male recreationally trained athletes, but greater than
female recreationally trained athletes. As the military emphasizes
enhanced training and preparation to optimize performance for
the “tactical athlete,” it may be advantageous for MOCs to meet
similar thresholds of performance that have similar training
demands as an average NCAA D1 athlete. In addition, as the
military facilitates gender integration (male and female service
members in the same roles, i.e., ground combat), the baseline
strength and power gap between sexes should be attenuated, as
the training demands for male and female MOCs are similar
at OCS.

As previously mentioned, there is limited research in
clustering with MSKI risk association. There is also limited
research regarding the utility of the CMJ for classifying MSKI
risk. More prevalent is the drop landing and drop jump for risk
indicators of MSKI, specifically anterior cruciate ligament, and
patellofemoral pain (Krosshaug et al., 2016; Holden et al., 2017;
Boling et al., 2021). During the drop landing, females are at risk
for greater knee valgus at initial contact (Lam and McLeod, 2014;
Prieske et al., 2015). In our sample, dynamic valgus was
significantly greater in the high-risk cluster (6.4 ± 3.4°)
comprising 41% of the female MOCs, when compared to the
low-risk cluster (5.4 ± 2.8°), which could be postulated to be a risk
factor for greater MSKI risk, although a 1-degree difference may
not be clinically relevant.

Due to the lesser joint flexions in the low-risk clusters for hip
(89.8 ± 15.9°), knee (102.6 ± 10.4°), and ankle (29.6 ± 4.9°), there
were shorter time durations (i.e., braking phase), but greater
kinetics (i.e., BRFD) thus indicating these MOCs were more
efficient in the CMJ movement strategies, with greater energy
storage utilization, such as the stretch shortening cycle (Komi,
2000) in the amortization phase (McMahon et al., 2018).
Alternatively, the high-risk and moderate-risk cluster had
greater degrees of flexion in all joints with longer time
durations for the braking and propulsive phase. The
moderate-risk cluster had approximately two times the BRFD
values and significantly greater braking net impulse, propulsive
net impulse measures than the high-risk cluster, concluding that
both moderate-risk and high-risk clusters were less efficient in
CMJ variables due to their underlying kinematics, but the
moderate-risk cluster was protected by greater kinetic
measures (peak relative propulsive power, braking net impulse,
propulsive net impulse and BRFD) than the high-risk cluster.

Joint MSKI Location is Associated With
Movement Strategies
Hip, Knee and Ankle MSKI proportions were calculated in each
cluster (Table 5), with the proportion of MOCs with an ankle
MSKI (Table 5A) significant across clusters, but not hip or knee
MSKI. Ankle sprains have been attributed to poor transition of
non-weight bearing to weight bearing conditions during dynamic
movements (Delahunt and Remus, 2019). In the high-risk cluster,
there is a low braking impulse and rate of force development, thus
pre-disposing these individuals if repetitive loading occurs,
causing fatigue in the braking phase or a scenario if the
external force exceeds their capacity to develop force. Lastly,
hip extension strength was reported to be a significant indicator
of an ankle sprain (De Ridder et al., 2017). While not directly
measured, the CMJ relies heavily on the musculature around the
hip (Mackala et al., 2013) and may contribute to the significant
findings. Interestingly, the proportion of knee MSKI did not
follow the same distribution as ankle and hip MSKI, with the
largest proportion of knee MSKIs in the moderate-risk cluster
(Table 5B). This could be related to greater knee flexions, lower
performance in the propulsive phase, but similar BRFD when
compared to the low-risk cluster. This demonstrates the
moderate-risk cluster lacked the strength to transition and
apply force into the propulsive phase due to the large degrees
of flexion. This is turn, over acute repetitive dynamic loading and
take-off, may lead to fatigue in the musculature causing structural
properties around the knee joint to be at a greater risk for MSKI
(Marshall et al., 2014). In addition, patellofemoral stresses are
greatest at the deepest degrees of knee flexion, thus contributing
to the potential of chronic overuse MSKIs (Schoenfeld, 2010).

The Countermovement Jump, a Useful Tool
for MSKI Risk Screening
The high-risk cluster had a relative risk (RR) 2.2 times higher risk for
developing an MSKI compared to the low-risk cluster when
grouping dependent variables in the CMJ for both male and
female MOCs. In a recent systematic review, Pedley et al. (2020),
reported that 11/14 = 78.6% of articles reviewed reported MSKI
associations with drop-jump, while only 1/12 = 8.3% articles
reviewed reported MSKI associations with CMJ. Interestingly,
many of these articles in the review by Pedley et al. solely
evaluated CMJ jump height. Knapik et al. (2001) reported no risk
associations with MSKI when vertical jump height was stratified by
higher jump heights vs. lower heights in men and women during
U.S. Army Basic Combat Training. While jump height is a readily
utilizedmeasure to identify neuromuscular readiness andMSKI risk,
the current state of force plate technology enables practitioners to
readily identify different phase characteristics (braking and
propulsive phase) as simply as calculating jump height (Lake
et al., 2018). In addition, Knapik et al. (2001) reported Army
Physical Fitness Test measures and reported that slower 3.2-km
run time [RR (CI) = Men: 1.6 (1.0–2.4) and Women: 1.9 (1.1–2.5)]
and fewer push-ups [RR (CI) = Men: 1.8 (1.2–2.8) and Women: 1.6
(1.1–2.5)] were significant contributors to MSKI risk associations
when compared to faster 3.2-km run times and greater push-ups.
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This further demonstrates that CMJ kinetic and kinematic variables,
when stratifying by high and low performers, have similar utility in
classifying MSKI risk associations as physical fitness test in the
military.

Limitations and Strengths
Strengths of this study includeMSKI diagnosing and reporting by
the same medical staff through all OCS classes. Since OCS has the
same requirements for all MOC, the training is similar regarding
volume, load, and duration, and allowed for a controlled
environment mitigating confounders in physical training.
Limitations of this study were the relatively smaller sample
sizes when MOCs were stratified by MSKI anatomic sub-
location and then further by sex. In addition, because a MSKI
may result in attrition from OCS or a light duty classification, it is
possible that some of the MOCs with noMSKI did not seek
medical attention. While we have suggested thresholds with
variables according to MSKI risk (Table 6), these thresholds
may not be generalizable to other populations (i.e., NCAA
athletes). As force plates begin to become mainstream in usage
for tactical and athletic populations, we encourage researchers to
report multiple descriptive measures (Tables 2, 6) for carryover
of population similarity. We have demonstrated the CMJ
variables indicate MSKI using multiple domains of technology
(i.e., FP and mMoCap), although novel, backend cleaning of data
and filtering of artifacts consumed time in the final interpretation
of results. In a dynamic military setting needing quick actionable
decision aids, future software updates or technology should
include automatic re-processing of data or flags in artifacts of
data. In addition, the proprietary MSKI risk algorithms used by
the commercial grade technology, should be properly validated
before use in a population.

CONCLUSION

This study demonstrates that CMJ movement strategies are
associated with MSKI risk in military populations. By utilizing
robust analytical techniques (i.e., unsupervised cluster analysis),
we successfully identified three distinct CMJ movement
strategies that differed in the proportion of MOCs with a
MSKI, such that the high-risk cluster had a relative risk of
developing a MSKI 1.6 and 2.2 times higher than the moderate
and low risk clusters, respectively. These data further provide
thresholds for practitioner use, to make actionable decisions for
interventions to modify CMJ strategies (i.e., joint flexions) and/
or implement auxiliary training programs to improve strength
and power, and thus, reduce MSKI. As the field of human
performance expands into military populations, combined with
the growing market of technology used for screening, it is
necessary to understand the applicability and usefulness of
screening tools in this population.
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