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miR‑30a targets STOX2 to increase cell 
proliferation and metastasis in hydatidiform 
moles via ERK, AKT, and P38 signaling pathways
Zhenzhen Guo1†, Chenyu Zhu1†, Youhui Wang1, Zhen Li1, Lu Wang1, Jianhui Fan1, Yuefei Xu1, Na Zou2, 
Ying Kong1†, Dong Li2† and Linlin Sui1*†   

Abstract 

Background:  A hydatidiform mole is a condition caused by abnormal proliferation of trophoblastic cells. MicroRNA 
miR-30a acts as a tumor suppressor gene in most tumors and participates in the development of various cancers. 
However, its role in hydatidiform moles is not clear.

Methods:  Quantitative real-time reverse transcription PCR was used to verify the expression level of miR-30a and 
STOX2 (encoding storkhead box 2). Flow cytometry assays were performed to detect the cell cycle in cell with differ-
ent expression levels of miR-30a and STOX2. Cell Cycle Kit-8, 5-ethynyl-2′-deoxyuridine, and colony formation assays 
were used to detect cell proliferation and viability. Transwell assays was used to test cell invasion and migration. Dual-
luciferase reporter assays and western blotting were used to investigate the potential mechanisms involved.

Result:  Low miR-30a expression promoted the proliferation, migration, and invasion of trophoblastic cells (JAR and 
HTR-8). Dual luciferase assays confirmed that STOX2 is a target of miR-30a and resisted the effect of upregulated miR-
30a in trophoblastic cells. In addition, downregulation of STOX2 by miR-30a could activate ERK, AKT, and P38 signaling 
pathways. These results revealed a new mechanism by which ERK, AKT, and P38 activation by miR-30a/STOX2 results 
in excessive proliferation of trophoblast cells in the hydatidiform mole.

Conclusions:  In this study, we found that miR-30a plays an important role in the development of the hydatidiform 
mole. Our findings indicate that miR-30a might promote the malignant transformation of human trophoblastic cells 
by regulating STOX2, which strengthens our understanding of the role of miR-30a in regulating trophoblastic cell 
transformation.
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Background
Gestational trophoblastic disease (GTD) refers to a group 
of placental trophoblast diseases characterized by abnor-
mal proliferation [1], including the hydatidiform mole, 

villus cancer, epithelial itch trophoblastic tumors, and 
placental site trophoblastic tumors [2–4]. GTD can be 
divided into two types: Benign and malignant, among 
which the hydatidiform mole is the only benign GTD; the 
others are malignant. Choriocarcinoma can be caused by 
a hydatidiform mole, an ectopic pregnancy, and abortion 
[5]. A hydatidiform mole is an abnormal pregnancy char-
acterized by placental villus edema and abnormal growth 
of trophoblastic cells [6]. Placental edema can lead to 
a series of pathological phenomena, such as edema 
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abortion (HA), partial hydatidiform moles (PHMs), and 
complete hydatidiform moles (CHMs). The occurrence of 
hydatidiform moles accounts for 80% of GTD [7], and the 
incidence varies in different regions of the world [8, 9]. 
There are many factors that induce hydatidiform moles, 
such as age, ethnicity, genetics, spontaneous abortion, 
and nutritional restriction [10]. The incidence of hydatid-
iform moles in women between the ages of 21–35 years 
is lower than that in women over the age of 35 or under 
the age of 21 [11]. Compared with the general female 
population, women who have a history of spontaneous 
abortion are 2–3 times more likely to have a hydatidiform 
mole [12]; women who have had a hydatidiform mole are 
10–20 times more likely to develop hydatidiform moles 
in subsequent pregnancies compared with women who 
have not; and about 20% have the possibility of malignant 
transformation after resection. However, the pathogen-
esis of the hydatidiform mole is currently unclear.

MicroRNAs (miRNAs) regulate gene expression by 
binding to the 3′ untranslated region (UTR) of their 
target gene mRNA, acting as negative regulatory fac-
tors [13]. There is increasing evidence that miRNAs 
play an important role in the pathogenesis and progres-
sion of various tumors by regulating cell proliferation 
[14], the cell cycle [15], inflammatory responses [16], 
cell differentiation [17], apoptosis, and metastasis [18]. 
miRNAs also play a regulatory role during embryonic 
development [19]. The miRNA-518 family is a specific 
biomarker of the placenta. miR-518b, which is abnor-
mally expressed in placental tissues during preec-
lampsia, not only regulates early growth response 1 
(EGR1)-mediated angiogenesis and migration of troph-
oblast cells, but also regulates the establishment of the 
hypoxia model of early embryonic development [20]. 
Previous studies have shown that mir-30a-5p is located 
in the 6q13 region of chromosome 6 and is dysregu-
lated in certain tumors [21]. In HEPG2 and MHC97l 
cancer cells, overexpression of mir-30a completely 
blocked the activation of the KRAS proto-oncogene, 
GTPase (KRAS)/ Raf-1 proto-oncogene, serine/threo-
nine kinase (c-RAF)/MAPK/ERK kinase (MEK)/extra-
cellular regulated kinase (ERK) pathway. These findings 
suggested that mir-30a plays a role in the growth, apop-
tosis and metastasis of hepatoma cells by regulating the 
k-RAS/c-RAF/MEK/ ERK signaling pathway, and might 
become a targeted biomarker for liver cancer treat-
ment [22]. miR-30a is overexpressed in the placenta of 
patients with eclampsia, and might exert its effect by 
influencing the invasion and apoptosis of trophoblast 
cells by targeting IGF1 (encoding insulin like growth 
factor 1) [23]. Storkhead box 2 is a winged helix domain 
protein, encoded by the STOX2 gene on chromosome 
4q35, near the chromosomal region associated with 

preeclampsia. STOX2 is a transcription factor involved 
in trophoblast differentiation and is the most impor-
tant collateral of STOX1 [24, 25]. The abnormal expres-
sion of STOX2 in neural crest stem cells and lung cells 
of the offspring of asthmatic inflammatory model mice 
was analyzed by transcription expression [26]. In addi-
tion, compared with non-pregnant mice, the inflamma-
tory response of STOX2 to air pollutants in pregnant 
mice was increased [27]. Melanoma suppressor protein 
(MIA) affects the expression of STOX2 in a paracrine 
manner, promoting the proliferation and metastasis 
of oral squamous cell carcinoma [28]. The same study 
found that STOX2 combined with anticancer drugs, 
such as paclitaxel, cisplatin, or 5-FU, could reduce the 
drug resistance of cancer cells, providing a new treat-
ment paradigm [28]. In our previous study [29], we 
compared the expression levels of STOX1 and STOX2 
in decidual tissue from pregnancies with pre-eclamp-
sia and/or fetal growth restriction (FGR), and found 
that STOX1 did not show differential gene expression 
between any of the groups, while the expression of 
STOX2 in the decidua of pregnancies with preeclamp-
sia and FGR was significantly lower than that in the 
control group.

Our laboratory has been committed to the study of 
the pathogenesis of hydatidiform moles. Previously, we 
detected the expression of miRNAs between hydatidi-
form moles and normal villi (results unpublished) and 
identified a large number of differentially expressed miR-
NAs. Among them, miR-30a was the miRNA with the 
largest differential multiple. Therefore, we further inves-
tigated miR-30a and found that it had low expression in 
hydatidiform mole tissue [30]. In addition, we found that 
miR-30a can affect the occurrence of hydatidiform moles 
by regulating UDP-GlcNAc:betaGal beta-1,3-N-acetyl-
glucosaminyltransferase 5 (B3GNT5). Thus, the regula-
tory mechanism of miR-30a appears to be multifaceted, 
and whether it regulates other genes and affects other 
pathways or the cell cycle is unknown. Further study at 
our laboratory showed that another miRNA, miR-196b, 
inhibits cell migration and invasion through targeting 
MAP3K1 (encoding mitogen-activated protein kinase 
kinase kinase 1) in hydatidiform moles [31]. Determin-
ing the molecular pathogenesis of the hydatidiform mole 
will contribute to the treatment and prevention of hyda-
tidiform moles. In the present study, based on the obser-
vation of the low expression of miR-30a in hydatidiform 
mole tissue, we combined laboratory database and bio-
logical software prediction to identify STOX2 as a possi-
ble target of miR-30a. Further experiments showed that 
miR-30a, by regulating STOX2, actives the protein kinase 
B (AKT), ERK, and P38 signaling pathways to affect the 
development of hydatidiform moles.
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Methods
Sample collection
Twenty formalin fixed, paraffin embedded hydatidiform 
mole tissues, 10 fresh hydatidiform mole tissues, and 15 
normal placental tissues were collected from the Dalian 
Women’s and Children’s Hospital. The use of these sam-
ples and the experimental protocol were approved by 
the ethics committees of Dalian Medical University. All 
patients provided written informed consent.

Cell culture and transfection
The human trophoblast cell line JAR and the human 
cervical cancer cell line HeLa were purchased from the 
American Type Culture Collection (Manassas, VA, USA). 
HTR-8/SVneo cells were obtained from the Animal Insti-
tute of the Chinese Academy of Sciences (Beijing, China). 
The cells were maintained in Roswell Park Memorial 
Institute (RPMI-1640 medium (Invitrogen; Thermo 
Fisher Scientific, Waltham, MA, USA) containing 10% 
fetal bovine serum (ScienCell, Carlsbad, CA USA), 1% 
penicillin–streptomycin solution (Thermo Fisher Scien-
tific). Cultures were maintained in a cell incubator with a 
humidified atmosphere of 5% CO2 at 37 °C.

The miR-30a mimics and mimic negative control (Ribo-
Bio, Guangzhou, China), and the miR-30a inhibitor and 
inhibitor negative control were purchased from Guang-
zhou RiboBio Co., Ltd, (Guangzhou, China). Small inter-
fering RNA  (siRNA) targeting STOX2 and the negative 
control (NC) siRNA were produced by Shanghai GeneP-
harma (Shanghai, China). The si-STOX2 sequence was 
5′-AUG​GGA​GAC​AUA​CUG​AUG​GTT-3′ and the si-NC 
sequence was 5′-ACG​UGA​CAC​GUU​CGG​AGA​ATT 
-3′. The STOX2 cDNA and corresponding negative con-
trol were constructed by GeneCopoeia Inc. (Rockville, 
MD, USA). Cells were seeded in 6-well plates, grown to 
70–80% confluence, and transfected with the various 
constructs and vectors using the Lipofectamine® 2000 
reagent according to the manufacturer’s instructions.

Quantitative real‑time reverse transcription PCR (qRT‑PCR)
Total RNAs were extracted from JAR and HTR-8 cells 
using the TRIzol reagent. cDNA was synthesized from 
the RNA using a TransScript All-in-one First-Strand 
cDNA Synthesis SuperMix for qPCR kit (One-Step 
gDNA Removal) (TransGen, Beijing, China) according 
to the manufacturer’s specifications. The DNA was then 
used as the template for qPCR using a TransStart Top 
Green qPCR SuperMix (TransGen), which was analyzed 
on an ABI 7500 Real-Time PCR System (Applied Biosys-
tems; Foster City, CA, USA). The qPCR conditions were 
94  °C for 30  s; followed by 40 cycles of denaturation at 
94 °C for 5 s and annealing/elongation at 60 °C for 30 s. 
U6 was used as the internal reference for miR-30a, and 

GAPDH (encoding glyceraldehyde-3-phosphate dehy-
drogenase) was used as the control for STOX2 expres-
sion. The qPCR primer were as follows: STOX2 forward: 
5′-AGC​CTG​TCC​CTC​CTC​AAA​TCTCA-3′, reverse: 
5′-CTC​TGT​GTT​CTT​GTT​TGC​CCCT-3′; GAPDH for-
ward: 5′- GTG​AAG​GTC​GGA​GTC​AAC​G-3′, reverse: 
5′-TGA​GGT​CAA​TGA​AGG​GGT​C-3′; Relative expres-
sion was calculated using the 2−ΔΔct method. All experi-
ments were performed on triplicate samples.

Cell Counting Kit‑8 (CCK‑8) assay
Transfected Cells were seeded in 96-well plates in 200 μl 
of medium at a density of 5000 cells per well and cultured 
for 24, 48, and 72  h. CCK-8 reagent (Dojindo, Kuma-
moto, Japan) was added into each well. After incubation 
for 4 h at 37 °C, the absorbance at 450 nm was detected 
using a microplate reader (BioTek, Winooski, VT, USA).

Colony formation assay
At 48  h after transfection, 3 × 103 Cells were seeded in 
the wells of 6-well plates and incubated for 15 days. The 
colonies formed were fixed with methanol for 30 min and 
stained with 1% crystal violet for 15  min. Cell numbers 
was counted under a microscope using Image J software 
(NIH, Bethesda, MD, USA).

5‑ethynyl‑2’‑deoxyuridine (EdU) assay
The EdU reagent (Beyotime, Shanghai, China) was added 
into wells of 96-well plates containing transfected cells 
and cultured for 2 h in a 37 °C incubator. The cells were 
then fixed with 4% paraformaldehyde for 30  min, incu-
bated with 0.1% Triton-X 100 for 15 min, and then with 
with Azide-488 for 30  min at room temperature in the 
dark. Images were taken under an inverted microscope 
(Olympus, Tokyo, Japan).

Transwell assay
Transwell plates (8 μm pore size, 24-wells; Corning Inc., 
Corning, NY, USA) were used to evaluate the migra-
tory and invasive potential of JAR and HTR-8 cells. For 
the migration assay, transfected cells were collected and 
resuspended in 1 ml of serum-free RPMI-1640 medium, 
and 5 × 104 cells were added to the upper chamber of the 
Transwell apparatus; RPMI-1640 medium with 10% FBS 
was seeded into the lower chamber. After incubation for 
24 h in 5% CO2 at 37  °C, the migratory cells were fixed 
with methanol for 30  min and stained with 0.2% crys-
tal violet for 30  min. For the invasion assay, the upper 
Transwell chamber was pre-coated with Matrigel (BD 
Biosciences, San Jose, CA, USA), 5 × 104 transfected 
cells were seeded into the upper chamber in serum-
free RPMI-1640 medium, after incubation for 30 h, the 
cells that had not invaded were wiped off with a cotton 
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swab, and the invasive cells were fixed with methanol for 
30 min and stained with 0.2% crystal violet for 30 min. 
The cells in all the migratory and invasive chambers were 
counted under a light microscope (Olympus).

Western blotting assay
After the cells were transfected for 48 h, total protein was 
extracted using a ProteinExt® Mammalian Total Protein 
Extraction Kit (TransGen), and the amount of protein was 
determined using the bicinchoninic acid (BCA) method 
(TransGen). Protein (30 or 60  µg) was separated using 
10% sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis (SDS-PAGE) and transferred onto a nitrocellu-
lose membrane (Millipore, Bedford, MA, USA) using cold 
transfer buffer. The membrane was stained with Ponceau S 
(Beyotime, Shanghai, China) and washed with Tris buffered 
saline-Tween 20 (TBST). The membrane was blocked in 5% 
non-fat milk for 2 h at room temperature. The membrane 
was then incubated with primary antibodies overnight 4 °C. 
The primary antibodies used were as follows: anti-STOX2 
(1:1000, Abcam, Cambridge, MA, USA), anti-ERK (1:1000, 
Beyotime), anti-phospho(p)-ERK (1:500, Beyotime), anti-
AKT (1:1000, Beyotime), anti-p-AKT (1:500, Abcam), anti-
P38 (1:1000, Elabscience, Wuhan, China), anti-p-P38 (1:500, 
Elabscience), and anti-GAPDH (1:4000, Proteintech, Rose-
mont, IL, USA). Next day, the membrane was washed and 
then incubated with the secondary antibody at room tem-
perature for 1 h. The blots were then developed by chemi-
luminescence using Pierce ECL kits (Pierce Biotechnology, 
Rockford, IL, USA). The gray values of the immunoreactive 
protein bands were analyzed using Image J software.

Luciferase activity assay
miRNA prediction websites (miRBase, TargetScan, and Pic-
Tar) was used to predict the binding site of miR-30a in the 
STOX2 3′ UTR. The 3′-UTR of STOX2 was synthesized 
by PCR and cloned into the Xhol site downstream of the 
Renilla luciferase gene in the PmiR reporter vector (Pro-
mega, Madison, WI, USA). The wild-type (WT) or mutated 
(Mut) miR-30a seed sequences in the 3′ UTR of STOX2 were 
constructed onto the PmiR reporter vector. HeLa cells were 
seeded into 12-well plates and cotransfected with miR-30a 
mimics or negative control and the WT or Mut vector. After 
incubation for 24 h, a Dual-Luciferase® Reporter Assay was 
carried out according to the manufacturer’s manual (Pro-
mega). The luciferase activities were measured using a Fluo-
rescence/Multi-Detection Microplate Reader (BioTek).

Cell cycle analysis
At 48 h after transient transfection, cells was collected and 
washed with phosphate-buffered saline twice, and then 

fixed using cool 70% ethanol overnight at 4 °C. The fixed 
cells were stained with propidium iodide (PI)/RNase solu-
tion (Sungene, Tianjin, China) for 30 min at room temper-
ature and analyzed using a FACS Calibur flow cytometer 
(BD Biosciences). The percentage of cells in each phase 
of the cell cycle was analyzed using the ModFit software 
(Verity Software House, Topsham, ME, USA.

Immunohistochemistry (IHC)
Tissue sections were dewaxed in xylene and dehydrated 
using an ethanol gradient. The activity of endogenous 
peroxidase was blocked using 3% H2O2 for 20  min in 
the dark. Goat serum was added onto the tissues using 
a dropwise method over 20 min at room temperature. 
Then, the sections were incubated with the follow-
ing primary antibodies overnight at 4  °C: anti-STOX2 
(1:100, Abcam), anti-AKT (1:70, Beyotime), anti-ERK 
(1:100, Beyotime), anti-p-ERK (1:50, Beyotime), anti-
p-AKT (1:70, Abcam), anti-P38 (1:100, Elabscience), 
and anti-p-P38 (1:50, Elabscience). Next, the second-
ary antibody and horseradish peroxidase streptavidin 
were incubated for 30  min at 37  °C, respectively. The 
sections were stained using 3, 3’-diaminobenzidine 
(DAB) (OriGene Technologies, Beijing, China) and 
hematoxylin (KeyGEN BioTECH, Jiangsu, China). Tis-
sues sections were imaged under a light microscope.

Hematoxylin and eosin (HE) staining
The Hydatidiform mole and normal placenta tissues 
were fixed in 4% formaldehyde and embedded in paraf-
fin for Hematoxylin and eosin (HE) staining. The slices 
were stained with hematoxylin for 20  min and eosin 
with for 30 s to 1 min. The sections were then analyzed 
under a light microscope.

Statistical analysis
All data are presented as mean ± SD and were analyzed 
using GraphPad Prism 6.0 software (GraphPad Inc., La 
Jolla, CA, USA). All experiments were repeated three 
times independently. The significance of the difference 
between two groups was assessed via one-way analysis 
of variance (ANOVA) and a P value < 0.05 was consid-
ered statistically significant.

Result
Upregulation of miR‑30a inhibited trophoblastic cell 
proliferation, cell cycle, and metastasis
In our previous study, we demonstrated that the expres-
sion level of miR-30a was lower in hydatidiform moles 
[30]. However, the regulatory mechanism of miR-30a 
in hydatidiform moles is still unclear. In this study, we 
explored the mechanism of miR-30a in hydatidiform 
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mole disease at the cellular level. HTR-8 cells were 
transfected with miR-30a mimics/negative control and 
miR-30a inhibitor/negative control and the transfec-
tion efficiency was confirmed (Fig.  1A). A CCK-8 assay 
showed that the proliferation of HTR-8 cells was weak-
ened by upregulating miR-30a; conversely, suppression of 
miR-30a increased cell proliferation (Fig.  1B). Transfec-
tion with miR-30a mimics reduced the colony formation 
ability of HTR-8 cells (Fig. 1C and Additional file 1: Fig. 
S1). Compared with cells transfected with the negative 
control, the fluorescence activity of cells transfected miR-
30a mimics decreased in the EdU assay. This suggested 
that cell proliferation was inhibited (Fig.  1D). Further-
more, we demonstrated that downregulation miR-30a 
enhanced the proportion of cells S-phase of the cell 
cycle, thus promoting the growth of trophoblastic cells 
(Fig. 1E and Additional file 1: Fig. S1B). Transwell assays 

for migration and invasion of HTR-8 cells showed that 
compared with cells transfected with the negative con-
trol, cells transfected the miR-30a mimics had impaired 
migration and invasion abilities, whereas downregulating 
miR-30a increased the migration and invasion abilities of 
HTR-8 cells (Fig. 1F, G). These results demonstrated that 
miR-30a inhibited cell viability, the cell cycle, and metas-
tasis of trophoblastic cells.

The effect of different expression levels of STOX2 
on the proliferation and metastasis of trophoblastic cells
To investigate the effect of STOX2 on the proliferation and 
metastasis of trophoblast cells, firstly, we tested the trans-
fection efficiency of STOX2 siRNA or the STOX2 cDNA 
construct using qRT-PCR, which confirmed the expected 
reduced and increased expression of STOX2, respectively 
(Fig.  2A, C). We performed CCK-8, colony formation, 

Fig. 1  Upregulation of miR-30a inhibited the proliferation, cell cycle, and metastasis of HTR-8 cells. A The level of miR-30a as detected using 
qRT-PCR. B CCK-8 assay to test the proliferation of HTR-8 cells transfected with miR-30a mimics/negative control or miR-30a inhibitor/negative 
control. C Colony formation ability of the different groups of cells. D EdU assay to detect the growth ability of HTR-8 cells expressing different levels 
of miR-30a. The last line is the positive control. E Flow cytometry analysis of the cell cycle. The migration (F) and invasion (G) of HTR-8 cells analyzed 
using Transwell assays. Bar = 100 μm. *P < 0.05, **P < 0.01
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and EdU assays in JAR and HTR-8 cells. The CCK-8 assay 
showed that upregulation of STOX2 promoted cell pro-
liferation significantly compared with that in the control 
group, whereas the proliferation ability of the cells was sig-
nificantly decreased following downregulation of STOX2 
(Fig. 2B, D). The ability of cells transfected with the STOX2 
cDNA construct to form colonies increased; however, the 
colony forming ability of cells in the STOX2 siRNA group 
decreased significantly (Fig.  2E, F). Similarly, the EdU 

assay demonstrated that the fluorescence activity (cell 
replication) was enhanced after upregulating STOX2, but 
decreased after silencing STOX2 (Fig. 2G, H).

Transwell assays revealed that overexpression of 
STOX2 enhanced cell migration and invasion, whereas 
silencing of STOX2 reduced cell migration and invasion 
(Fig.  2I–L). These results indicated that upregulation of 
STOX2 promoted the metastatic behavior of trophoblas-
tic cells.

Fig. 2  The effect of different expression levels of STOX2 on the proliferation and metastasis of trophoblastic cells. A and C Relative STOX2 
expression was detected using qRT-PCR in JAR and HTR-8 cells transfected with STOX2 siRNA/negative control or STOX2 cDNA/negative control. 
B and D The effect of different STOX2 levels on JAR and HTR-8 cell proliferation in each group. E and F Colony formation ability of cells expressing 
different levels of STOX2. G and H Experiment of Edu in JAR and HTR-8 cells transfected with STOX2 siRNA or STOX2 cDNA. The last line is the positive 
control. Transwell assay migration (I and J) and invasion (K and L) abilities of the different groups of cells. Bar = 100 μm. *P < 0.05, **P < 0.01
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miR‑30a targets the 3′ UTR of STOX2 mRNA and has low 
expression in hydatidiform moles.
Bioinformatic analysis (miRBase, TargetScan, PicTar) 
predicted STOX2 as a candidate target gene for miR-30a. 
As shown in Fig. 3A, an miR-30a binding site was iden-
tified in the 3′ UTR region of STOX2. Subsequently, we 
cloned the WT and Mut 3′ UTR of STOX2 into a lucif-
erase reporter vector, which contained the Renilla lucif-
erase gene fused to the STOX2 3′ UTR sequence and 
expressed firefly luciferase for normalization. These vec-
tors were transfected into HeLa cells with miR-30a mim-
ics or their negative controls. As expected, compared 
with co-transfecting WT STOX2 3′UTR PmiR vector 
and the negative control, the luciferase reporter activity 
in cells was reduced after co-transfection WT STOX2 3′ 
UTR PmiR and miR-30a mimics; however, the luciferase 

reporter activity was unchanged when we co-transfected 
Mut STOX2 3′ UTR PmiR and miR-30a mimics or the 
negative control (Fig. 3B). Furthermore, western blotting 
showed that the protein level of STOX2 was reduced in 
JAR and HTR-8 cells transfected with miR-30a mimics. 
Conversely, when we inhibited the expression of miR-
30a, the STOX2 protein level increased (Fig.  3C, D). In 
our previous research, we detected that miR-30a expres-
sion was lower in hydatidiform mole tissues than in nor-
mal placenta tissues [30]. In the present study, we found 
that the expression of STOX2 was high in hydatidiform 
mole tissues (Fig. 3E). In addition, there was a correlation 
between the expression of miR-30a and STOX2 (Addi-
tional file 2: Fig. S2). These results confirmed our predic-
tion that STOX2 is a target of miR-30a and that miR-30a 
might participate in the pathogenesis of hydatidiform 
moles by targeting STOX2.

Fig. 3  miR-30a targets the 3′-UTR of the STOX2 mRNA. A Schematic showing the position of the cloned sequences in the luciferase reporter 
construct. Below are shown the STOX2 3′-UTR region containing the miR-30a-5p binding site, the miR-30a-5p sequence, and the mutated binding 
site, used to construct the wild-type and mutant vectors, respectively. B HeLa cells were transfected with wild-type or mutant luciferase reporter 
vectors with miR-30a mimics to determine the luciferase activity. C and D Western blotting assay to detect the protein levels of STOX2 after 
regulating of miR-30a expression using mimics or inhibitors. E IHC showing the expression of STOX2 in hydatidiform mole tissues and normal 
placenta. Bar = 100 μm. *P < 0 .05 or **P < 0 .01, ***P < 0.001
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STOX2 mitigates miR‑30a inhibition of proliferation 
and metastasis in trophoblastic cells
We investigated the functions of STOX2 and miR-30a 
in trophoblastic cells based on our previous research, 
which showed that increasing miR-30a levels could 
inhibit the proliferation and metastasis abilities of 
JAR and HTR-8 cells. We performed CCK-8 assays 
(Figs. 4A, B; 5A, B), colony formation assays (Figs. 4C, 

D; 5C, D), and EdU assays (Figs. 4E, F; 5E, F) to explore 
cell proliferation. The results showed that overexpres-
sion of miR-30a and STOX2 could increase the pro-
liferation of cells compared with that in the miR-30a 
mimics group. Conversely, in cells transfected with 
STOX2 siRNA, the opposite results were obtained. 
Transwell migration and invasion assays revealed that 
enhanced expression of STOX2 impaired the ability 

Fig. 4  STOX2 mitigates miR-30a stimulation of proliferation and metastasis in JAR cells. A and B CCK-8 assay showed the proliferation of JAR cells 
co-transfected with miR-30a mimics and STOX2 cDNA or miR-30a inhibitor and STOX2 siRNA. C and D Colony formation experiment assessing 
the growth of JAR cells. E and F The viability of JAR cells was analyzed using an EdU assay. The last line is the positive control. G and H Cell 
migration detected after co-transfection with STOX2 cDNA or miR-30a inhibitor and STOX2 siRNA into JAR cells. I and J Cell invasion detected after 
co-transfection with STOX2 cDNA or miR-30a inhibitor and STOX2 siRNA into JAR cells. Bar = 100 μm. *P < 0 .05 or **P < 0 .01, ***P < 0.001
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of the miR-30a mimics to decrease trophoblastic cell 
metastasis (Fig. 4G, I; 5G, I). Compared with the miR-
30a inhibitor group, co-transfection with the STOX2 
siRNA and the miR-30a inhibitor also blocked migra-
tion and invasion (Fig. 4H, J; 5H, J). These data suggest 
that STOX2 increased the proliferation and metastasis 
of JAR and HTR-8 cells. 

miR‑30a influences the ERK 1/2, AKT, and p38 signaling 
pathways by regulating the expression of STOX2 
in trophoblastic cells
We found that miR-30a and STOX2 mediated tropho-
blastic cell proliferation and metastasis in  vitro. We 
next studied the molecular mechanisms by which miR-
30a and STOX2 inhibit the growth, invasiveness, and 

Fig. 5  STOX2 mitigates miR-30a stimulation of proliferation and metastasis in HTR-8 cells. A and B CCK-8 assay showing the proliferation of HTR-8 
cells co-transfected with miR-30a mimics and STOX2 cDNA, or with the miR-30a inhibitor and STOX2 siRNA. C and D Colony formation assay for 
the growth of HTR-8 cells. E and F The viability of HTR-8 cells was analyzed using an EdU assay. The last line is the positive control. G and H Cell 
migration assessed after co-transfection of the STOX2 cDNA or miR-30a inhibitor and STOX2 siRNA into HTR-8 cells. I and J Cell invasion assay after 
co-transfection of STOX2 cDNA or miR-30a inhibitor and STOX2 siRNA into HTR-8 cells. Bar = 100 μm. *P < 0 .05 or **P < 0 .01, ***P < 0.001
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migration of JAR and HTR-8 cells. After transfection of 
miR-30a mimics, the levels of phosphorylated AKT, ERK, 
and P38 decreased and but the levels of total AKT, ERK, 
and P38 did not change. Conversely, upregulation of 
STOX2 increased the levels of p-AKT, p-ERK, and p-P38. 
Cotreatment with miR-30a mimics and STOX2 cDNA 
further increased the levels of p-AKT, p-ERK, p-P38, 
without any changes in the total protein levels of AKT, 
ERK, and P38 (Fig.  6A, C). Similar levels of AKT, ERK, 
and P38 proteins were observed in miR-30a inhibitor and 
STOX2 siRNA co-transfected group, miR-30a inhibitor 
group, STOX2 siRNA group, and NC-transfected group. 
STOX2 siRNA transfection reduced the levels of p-AKT, 
p-ERK, p-P38 in the presence of miR-30a inhibitor in JAR 
and HTR-8 cells (Fig. 6B, D). These results suggested that 
miR-30a targets STOX2, which affects the AKT/p-AKT, 
ERK/p-ERK, P38/p-P38 signaling pathways, resulting in 
inhibited cell proliferation and metastases. However, fur-
ther experiments are required to validate this hypothesis.

Discussion
The hydatidiform mole is one of the most common 
GTDs, with a prevalence of 1:1000 in North America and 
Europe; however, it is more common in South America 
and Asia. Differences in histology, genetics, and clini-
cal features allow hydatidiform moles to be divided into 
complete moles (CHM) and partial moles (PHM) [32, 33]. 
Ultrasound is the main method for the clinical detection 
of a hydatidiform mole; however, it is also determined by 
the age of the fetus. Worldwide, hydatidiform moles are 
usually diagnosed at an early stage; however, in develop-
ing countries, patients are still diagnosed in early preg-
nancy with complications [34]. Although hydatidiform 
moles are benign, there is still a high possibility of devel-
oping malignant trophoblastic tumors. Clinical treatment 
for hydatidiform moles comprises curettage and hyster-
ectomy. In the later stage, the content of human chori-
onic gonadotropin (hCG) should be detected to prevent 
recurrence. Hydatidiform moles and their curative sur-
gery not only cause gross physical damage to patients, 
but also induce a large psychological burden. Therefore, 
new treatment methods are urgently needed.

miRNAs regulate many genes and are involved in the 
development of a variety of tumors [35, 36]. miR-30a 

plays a key role in many types of human cancers, with 
anti-cancer effects in non-small cell carcinoma [37], 
breast tumors [38], renal cell carcinoma [39], and colo-
rectal cancer [40]. miR-30a prevents DNA replication 
and leads to DNA degradation by targeting RPA1 (encod-
ing replication protein A1), which induces P53 expres-
sion, and triggers S-phase checkpoints, preventing cell 
cycle progression, and ultimately leading to cancer cell 
death [41]. In addition, miR-30a regulates EYA2 (encod-
ing EYA transcriptional coactivator and phosphatase 
2) to mediate the G1/S cell cycle and the expression of 
related cyclins [42]. In gallbladder cancer, miR-30a could 
directly target E2F7 (encoding E2F transcription factor 7) 
to regulate epithelial-mesenchyme transition (EMT) and 
metastasis, and participated in cancer progression [43]. 
The expression of miR-30a-3p was significantly increased 
in the preeclamptic placenta tissue, and regulated troph-
oblast invasion and apoptosis by targeting IGF-1 [23]. In 
the present study, we found that downregulation of miR-
30a enhanced the proliferation, migration, and invasion 
abilities of trophoblastic cells, and had lower expression 
in hydatidiform mole tissues than in the normal placenta, 
which suggested that miR-30a is involved in the develop-
ment of hydatidiform moles.

STOX2 is considered to be the only other member of 
the family that includes STOX1; to date, its function has 
been unclear. However, studies on STOX1 have reported 
that the polyploidy defect that appears before incomplete 
invasion of extravillous trophoblasts caused by STOX1 
dysfunction seems to be the center of pre-eclampsia, and 
activates phosphatidylinositol-4,5-bisphosphate 3-kinase 
(PI3K)/AKT/forkhead box (FOX) signaling pathway [24]. 
It has been reported that STOX1A regulates the cell 
cycle by binding to cyclin B1 to regulate mitosis [44]. An 
increase in the level IGF1 led to an increase in the expres-
sion of STOX1 in extravillous trophoblasts through the 
mitogen activated protein kinase (MAPK) pathway, 
thereby identifying a new signaling cascade involved in 
maternal–fetal communication [45]. Homologous genes 
have similar biological functions. The RNA encoded by 
intron 3 (IT3) of STOX2 can affect the alternative splicing 
of host genes in placental cells. The long noncoding RNA 
STOX2-IT3 affects genes involved in trophoblast differ-
entiation and invasion, thus affecting the pathogenesis 

Fig. 6  miR-30a reduces STOX2 expression, which affects ERK 1/2, AKT, and p38 signaling pathways in trophoblastic cells. A and B Protein levels 
of ERK, AKT, and P38 signaling pathways-related proteins in cells co-transfected miR-30a mimics and STOX2 cDNA, and comparison of the 
levels of p-ERK1/2, p-AKT, and p-P38 in each group. C and D The protein levels of ERK, AKT, and P38 signaling pathways-related proteins in cells 
co-transfected the miR-30a inhibitor and STOX2 siRNA, and comparison of the levels of p-ERK1/2, p-AKT, and p-P38 in each group. *P < 0 .05 or 
**P < 0 .01, ***P < 0.001

(See figure on next page.)



Page 11 of 14Guo et al. Cancer Cell International          (2022) 22:103 	

Fig. 6  (See legend on previous page.)
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of eclampsia [46]. In the present study, we found that 
STOX2 not only reduced cell proliferation and metasta-
sis, but also was highly expressed in hydatidiform mole 
tissues, which suggested that STOX2 might induce hyda-
tidiform moles.

The biological role of miRNAs is achieved by regulat-
ing downstream target genes. Our results revealed that 
STOX2 was the direct target gene of miR-30a. Moreo-
ver, we found that STOX2 mRNA levels were reduced 
by upregulating miR-30a in trophoblastic cells. We also 
detected that downregulation of STOX2 could impair 
the proliferation and metastasis abilities of trophoblastic 
cells. However, the molecular mechanism by which miR-
30 regulates the biological role of STOX2 is not clear. The 
ERK, AKT, and P38 signaling pathways are important for 
tumor proliferation and metastasis, and are involved in the 
pathogenesis of various cancers. Studies have shown that 
miR-30a-5p targeting NEUROD1 (encoding neuronal dif-
ferentiation 1) could improve inflammatory responses and 
oxidative stress through the MAPK/ERK signaling path-
way in cases of spinal cord injury [47]. miR-30a released 
by the p53 r273h mutation can inhibit the expression of 
IGF1R (encoding insulin like growth factor 1 receptor), 
which leads to the activation of IGF-1-r-AKT signal cas-
cade in tumor cells [48]. Moreover, mir-30a was down-
regulated significantly in highly metastatic colorectal 
cancer cell lines and metastatic tissues, and its mechanism 
involves regulation of the AKT/mechanistic target of rapa-
mycin (mTOR) signaling pathway by targeting PIK3CD 
(encoding PI3K catalytic subunit delta) expression, thereby 
regulating the metastasis of cancer cells [49]. In addition, 
the mir-30-5p-transcription factor 21 (TCF21)-MAPK/
P38 signaling pathway might be a potential biomarker or 
therapeutic target of atherosclerosis [50]. Interestingly, in 
our study, we demonstrated that overexpression of miR-
30a inhibited the phosphorylation of ERK, AKT, and P38, 
whereas upregulation STOX2 ameliorated this suppressive 
effect. These data further confirmed that the aggressive 
proliferation potential of hydatidiform moles was caused, 
at least in part, by the low expression of miR-30a, which 
regulates STOX2 to activate the ERK, AKT, and P38 signal-
ing pathways. Further research into the specific molecular 
mechanism of this process is required, which could lead to 
new treatment strategies for hydatidiform moles by target-
ing miR-30a and STOX2.

Conclusions
In the summary, we demonstrated that STOX2 is highly 
regulated in hydatidiform moles. miR-30a could sup-
press the proliferation and invasion ability of tropho-
blastic cells through targeting STOX2, which affected 
the AKT, ERK, and P38 signaling pathways. Our find-
ings offer insights into the mechanism of hydatidiform 

mole formation. STOX2 and miR-30a could be devel-
oped as a biomarkers and therapeutic targets for hyda-
tidiform moles in the future.
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