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Background: The impact of migraine without aura (MWoA) on cognitive

function remains controversial, especially given the sparse literature on

emotional memory.

Methods: Twenty seven MWoA patients and 25 healthy controls (HCs) were

enrolled in this cross-sectional study. Emotional memory behavior was

evaluated by combining incidental encoding with intentional encoding of

five emotional categories of visual stimulus [positive valence + high arousal

(PH), negative valence + high arousal (NH), positive valence + low arousal

(PL), negative valence + low arousal (NL), and neutral (N)]. The recollection

performance (Pr) was measured and compared. Then, the neural relevance

was explored by correlating the Pr with gray matter volume (GMV) and resting-

state functional connectivity (rs-FC) based on structural and functional

magnetic resonance imaging.

Results: No significant differences in recollection performance or emotional

enhancement of memory effect were observed. However, MWoA patients

were more sensitive to the valence and arousal of emotional stimuli under

incidental encoding. Significantly, the Pr-PH under incidental encoding and

Pr-PL under intentional encoding were negatively correlated with the GMV

of the left precuneus, and the rs-FC between the left precuneus and

putamen was positively correlated with Pr-PL under intentional encoding

in MWoA patients.

Conclusion: Our study demonstrated the tendency for the influence

of migraine on emotional memory and revealed the left precuneus

as a critical contributor to recollection performance, providing novel

insights for understanding emotional memory and its neural mechanisms

in MWoA patients.
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Introduction

Migraine is a common neurological condition, with a global
prevalence of approximately 15% (Headache Classification
Committee of the International Headache Society, 2018).
Migraine without aura (MWoA) is the most subtype classified
by the International Headache Society (Silberstein et al., 2005).
As a disabling headache disorder, mechanisms involved in
MWoA remain unclear, and the neuropsychological impairment
remains controversial (Tardiolo et al., 2019). Some studies found
that several cognitive tests are unaffected by migraines (Le Pira
et al., 2000; Gaist et al., 2005; Pearson et al., 2006; Camarda et al.,
2007; Pellegrino Baena et al., 2018). In a population-based study
of Danish twins, the cognitive performance of the twins with
MWoA did not differ from non-migraineurs, and comparisons
within twin pairs yielded comparable results (Gaist et al., 2005).
Moreover, a retrospective single-blinded study reported that
cognitive functions remained unimpaired even with a long
history of MWoA (Pearson et al., 2006). However, other studies
found that MWoA might lead to poor cognitive performance
in executive function, processing speed, attention, and memory
(Le Pira et al., 2000; Camarda et al., 2007; Pellegrino Baena et al.,
2018). Such indeterminate conclusions need further exploration
and research, particularly in less frequently studied high-order
cognitive functions, such as emotional memory.

Previous studies have established that emotional events were
better recollected than non-emotional events, a phenomenon
known as the emotional enhancement of memory (EEM) effect
(LaBar and Cabeza, 2006). Emotional memory paradigms were
implemented to investigate the EEM effect with features such
as arousal and valence (Kensinger, 2004). Arousal dichotomizes
excitement and calmness, and stimuli with high arousal can
enhance the initial encoding and subsequent consolidation of
events by attracting attention (Mather and Sutherland, 2011).
In contrast, valence refers to the positive or negative aspects of
emotional stimuli that enhance memory (Dolcos and Cabeza,
2002). Memory recall from pictures or words with negative
valence produces potent effects compared to positive valence,
suggesting that memory may favor negative stimuli (Inaba et al.,
2005; Mickley and Kensinger, 2008; Bowen and Kensinger,
2017; Bowen et al., 2018; Farris and Toglia, 2019). Studies
conducted on emotional memory in Alzheimer’s disease found
that emotional memory was impaired, and the EEM effect was
lost (Li et al., 2016). However, young adults with migraine
have been reported to have a higher risk for dementia (Chuang
et al., 2013). Moreover, the pathophysiology of dementia began

Abbreviations: MWoA, migraine without aura; EEM, emotional
enhancement of memory; NH, negative pictures with high arousal;
PH, positive pictures with high arousal; NL, negative pictures with low
arousal; PL, positive pictures with low arousal; N, neutral pictures; Pr,
recollection performance; GMV, gray matter volume; rs-FC, resting-state
functional connectivity; MoCA, Montreal Cognitive Assessment; HAMA,
Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale.

approximately 20 years before the onset of clinical symptoms
(Sperling et al., 2014). Besides, it has been shown that the
prevalence of white matter hyperintensities in migraine is 38.7∼
44.4% (Dobrynina et al., 2021), and the incidence of subclinical
brain infarction was twice that of healthy controls (HCs)
(Monteith et al., 2014). Thus, this study aims to investigate
whether there is emotional memory damage in MWoA patients
and further explore the underlying neural mechanism by
correlating the recollection performance with voxel-wise gray
matter volume (GMV) and resting-state functional connectivity
(rs-FC) values, considering that the cerebral cortex and FC are
crucial for brain functions (Shafiee et al., 2020; Wirsich et al.,
2020).

Materials and methods

Participants and settings

This cross-sectional study recruited 32 right-handed MWoA
patients from the headache clinic of The First Affiliated Hospital
of Anhui Medical University in China between June 2018
and February 2019. MWoA diagnoses were based on the
headache characteristics and the International Classification of
Headache Disorders 3rd edition (ICHDIII criteria) (Headache
Classification Committee of the International Headache Society,
2018). Patients included in this study were18 to 60 years of age
with a migraine history of 1 year before the study, experiencing
a minimum of one attack per month with moderate-to-
severe pain 3 months before screening. The exclusion criteria
were as follows: head trauma or vascular disease; previous or
current psychiatric or neurological disorders or somatoform
disorders, such as depression, stroke, and dementia; substance
abuse; anerythrochloropsia; magnetic resonance imaging (MRI)
contraindications. Thirty-one sex-matched and age-matched
volunteers from the community in the same geographical area
with no personal or family history of migraine were recruited
as HCs for this effort. The exclusion criteria for MWoA were
also applied to HCs. Migraineurs and healthy subjects were
diagnosed and screened by a specialist headache neurologist.
Five MWoA patients and six HCs were excluded for analysis
due to technical issues with the MRI data (motion artifact) or
emotional memory data (recording issues), resulting in a final
sample of 27 MWoA patients and 25 HCs.

General demographic information, including age, sex,
and education level, was collected from all participants.
Montreal Cognitive Assessment (MoCA), Hamilton Anxiety
Scale (HAMA), and Hamilton Depression Scale (HAMD)
were used to evaluate global cognitive function, anxiety,
and depression, respectively. The emotional memory test
and MRI scans were performed during the inter-migraine
period, a 2-day interval during the absence of acute migraine
attacks. The characteristics of migraine, such as duration of
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disease, monthly frequency and duration of attacks, and pain
intensity/impact, were collected.

Emotional memory behavioral test

Stimulus
Two hundred pictures were selected from the International

Affective Picture System (Lang et al., 2010), a widely used
collection of color photographs featuring the two independent
emotional properties of arousal and valence. Both properties
ranged from 1 to 9, where 1 corresponded to a very negative
valence or low arousal state, and 9 corresponded to a very
positive or high arousal state. The valence was considered
negative, positive, and neutral for ratings of≤ 4,≥ 6.0, and 4.5–
5.5, respectively. Similarly, the arousal was considered high, low,
and neutral for ratings of ≥ 6.0, ≤ 4.0, and 4–6, respectively.
According to valence and arousal ratings, the pictures were
divided into five categories: positive with high arousal (PH),
positive with low arousal (PL), neutral (N), negative with high
arousal (NH), and negative with low arousal (NL) (Li et al.,
2020). The neutral category excluded high/low arousing and
valence images. These pictures were depicted in 2 lists of
100 stimuli. Then each list was divided into two 50-picture
subgroups. Each subgroup consisted of 10 PH, 10 PL, 10 N, 10
PL, and 10 PL. For each list, one subgroup (50 pictures) was
presented during the encoding phase, and both subgroups (100
pictures—50 seen and 50 unseen) were presented during the
retrieval phase (Figure 1). These pictures included humans and
landscapes and were presented in counterbalance.

Apparatus
The E-prime v.2.0 software (PST Inc., Sharpsburg, PA, USA)

was used to present the stimuli and record the participants’
responses on a laptop computer.

Procedure
The procedure began when the participants were ready

and acclimatized to the new environment, a room for
neuropsychological testing. The behavioral test was divided
into incidental and intentional sessions according to encoding.
Each session had an encoding phase, where participants were
asked to immediately identify whether the main object shown
in a picture was a person (categorization task). During this
phase, the stimulus was presented for 2,000 ms, and the
stimulus interval was 500 ms. Then, there was a 30 min
delay between the encoding and retrieval phases. During the
retrieval phase, the remember/know procedure was employed to
estimate recollection and familiarity directly (Yonelinas, 1994).
Participants were asked to identify whether the image presented
was old (seen during the encoding phase) or new (or not). If
the pictures were considered old, they were then asked whether
they recollected the details of the images (recollection) or were

only familiar with the pictures (familiarity) based on their
memory differences (recognition task) (Quamme et al., 2010).
Some quality control methods were performed to ensure that
each subject could distinguish recollection from familiarity as
accurately as possible and follow the same criteria. Practice
examples were provided with on-screen instructions before the
test to ensure that the participants understood each task and
the difference between recollection and familiarity. Moreover,
participants were asked to describe the criteria they used in the
retrieval task at the end of the test. During the incidental session,
participants were unaware of the later retrieval task in the
encoding phase. However, participants were asked to memorize
the pictures carefully when encoded during the intentional
session. The intentional session began after the completion of
the incidental session (Figure 1). Investigators and participants
were double-blinded for the test.

Magnetic resonance imaging
acquisition

All MRI data were acquired on a General Electric 750 w 3.0 T
MRI scanner (General Electric, Waukesha, WI, USA) with a 24-
channel head coil. The MRI protocol included the acquisition
of three-dimensional T1-weighted (3D T1) high-resolution
structural images, resting-state blood oxygen level-dependent
scans, and axial T2-weighted and FLAIR images. The included
participants did not show structural abnormalities on the MRI
examination. The BRAVO (brain volume) sequence [repetition
time (TR) = 8.5 ms, inversion time (TI) = 450 ms, echo time
(TE) = 3.2 ms, 188 slices, no slice gap, slice thickness = 1 mm,
field of view (FOV)= 256× 256 mm2, matrix size= 256× 256,
and flip angle = 12◦] was used to acquire the 3D T1 images. An
echo-planar imaging sequence (TR = 2,000 ms, TE = 30 ms,
slice gap = 1 mm, slice thickness = 3 mm, FOV = 220 × 220
mm2, matrix size = 64 × 64, and flip angle = 90◦) was used to
acquire resting-state functional MRI (rs-fMRI) scans.

Structural magnetic resonance imaging
pre-processing

Structural 3D T1 images were pre-processed using
the VBM8 (voxel-based morphometry)1 toolbox in SPM8
(Statistical Parametric Mapping)2 in Matlab (Mathworks,
Natick, MA). First, we visually inspected all structural images to
screen for anatomical abnormalities or artifacts. The standard
brain templates were used to segment the image into gray
matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) volumes. A diffeomorphic anatomical registration
algorithm (DARTEL) toolbox was used to co-register structural
MR images. For each subject, a flow field was created for

1 https://neuro-jena.github.io/software.html#vbm

2 http://www.fil.ion.ucl.ac.uk/spm/
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FIGURE 1

The procedure of the emotional memory paradigm.

wrapping scans onto the template. Then, gray matter images
were normalized spatially to the Montreal neurological institute
(MNI) coordinates using these data. Subsequently, the images
were resampled at 1.5 × 1.5 × 1.5 mm voxel size and smoothed
with an 8 mm full-width half-maximum (FWHM) Gaussian
kernel to construct a DARTEL template (Cheng et al., 2015).

Resting-state functional magnetic resonance
imaging data pre-processing

The rs-fMRI data were pre-processed with DPABI (Data
Processing and Analysis of Brain Imaging)3 (Yan et al., 2016),
a MatLab toolbox. First, we accounted for the magnetic
field instability, and the initial 10 volumes were removed
for each scan. Then, images within each scan were realigned
using 1.5 mm and 1.5◦ movement thresholds to correct
motion between time points. The frame-wise displacement
was calculated, and other covariates, such as estimated motion
parameters and the WM and CSF signals, were regressed. The
data set was then bandpass filtered between 0.01 and 0.08 Hz.
Finally, the individual structural images were co-registered to
the mean functional image. Then, the structural and functional
images were normalized to the MNI space using the DARTEL
toolbox. These images were resliced to a 3 × 3 × 3 mm
voxel and spatially smoothed with a 6 mm FWHM Gaussian
kernel. The DPABI software was used to define a seed region
using automatic anatomical labeling (AAL) (Tzourio-Mazoyer
et al., 2002), and the functional connectivity (FC) was calculated
between the seed region and the rest of the brain. The correlation
coefficients (r) were transformed into Fisher z-scores to obtain
normally distributed values.

Statistical analysis

Demographic data analysis
This was the primary analysis of the data. Statistical

analysis was performed using SPSS 23.0 software package (SPSS,

3 https://rfmri.org/dpabi

Chicago, III). Normally and skewed distributed variables were
reported as mean ± standard deviation and median (25th, 75th
percentiles), respectively. We assessed normality and compared
general demographic characteristics between the two groups
using a χ2-test for sex and Mann-Whitney U-tests for age,
education level, MoCA, HAMA, and HAMD scores. Statistical
significance was set at a two-tailed p-value < 0.05.

Emotional memory behavioral test
The hit (Hit) and false alarm (FA) rate was calculated as the

ratio of the sum of remember and know judgments given to old
and new pictures, respectively. This study used the difference
between Hit and FA judged by memory as the recall score
index, expressed as Pr (Koen and Yonelinas, 2016). A priori
power analysis was performed using G∗Power 3 program to
compute the necessary sample size. Alpha, effect size, and power
(1 – β) were set at 0.05, 0.25, and 80%, respectively (Cona
et al., 2015). The sample size of 25 individuals in each group
was considered sufficient. A 5 × 2 mixed-factorial covariance
analysis was performed on Pr with the stimuli emotional
categories (5 categories, PH, PL, N, NH, and NL) as the within-
subject factors and the participant groups (2 groups) as the
between-subject factors with the MoCA, HAMA, and HAMD
scores as covariates. The Bonferroni correction was used for
post hoc multiple comparisons. Investigators responsible for
data analyses were blinded to patient grouping.

Gray matter volume analysis
Voxel-wise analysis of within-group correlation in GMV

and Pr was conducted with a multiple regression model. Sex, age,
education level, total intracranial volume, MoCA, HAMA, and
HAMD scores were used as covariates.

Functional connectivity analysis
The significant brain region identified using correlation

analyses between GMV and Pr in MWoA patients was used
as the seed region in the rs-FC analysis. Voxel-wise analysis
was performed on the within-group correlation with the rs-
FC values and Pr using a multiple regression model. Sex, age,
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education level, head motion, MoCA, HAMA, and HAMD
scores were set as covariates.

In GMV and FC analysis, we set the statistical threshold at
p-value < 0.05 (cluster level, FWE corrected) with an extent
threshold of 50 voxels. Significant clusters were automatically
identified using the Xjview toolbox.4 Each significant cluster
in GMV or rs-FC correlation analysis was extracted for each
subject and used for the region of interest analysis.

Results

General demographic results

Table 1 contains demographic and clinical information of
the study participants. There were no significant differences
in gender, age, and education degree between the two groups
(p > 0.05). In MWoA patients, the MoCA score was lower, and
the HAMA and HAMD scores were higher than HCs (p < 0.05).

Emotional memory behavioral test
results

Incidental encoding
For incidental encoding, the group x emotion interaction

was significant [F(4, 188) = 2.449, p = 0.048] (Figure 2A).
The result suggested a bias in collection performance between
the two groups. Then, further analysis showed that the simple
main effect of emotion (within-subject factors), but not group
(between-subject factors), was significant. The PH, NH, and NL
stimuli were better discriminated compared to neutral stimuli
in MWoA patients (p = 0.01, p < 0.001, and p = 0.001) and
HCs (p = 0.023, p < 0.001, and p = 0.006). Therefore, these
results illustrated the EEM effect in MWoA patients and HCs.
Moreover, MWoA patients (p = 0.009) and HCs (p = 0.001)
recollected the PH stimuli better than the PL stimuli; however,
only the MWoA patients (p < 0.001), but not HCs (p > 0.05),
recollected the NH stimuli better than the NL stimuli. Similarly,
the patients (p < 0.001) and HCs (p < 0.001) recollected
the NL stimuli better than the PL stimuli; however, only the
patients (p < 0.001), but not HCs (p > 0.05), recollected the
NH stimuli better than PH stimuli. Besides, NH stimuli were
better recollected than PL stimuli in both groups (p < 0.001)
(Figures 3A,B). In brief, the results showed that MWoA patients
were more sensitive to emotional stimuli composition (valence
and arousal) (Table 2). Besides, no significant main effect
of group [F(1, 47) = 0.663, p = 0.419] or emotion [F(4,
188)= 0.933, p= 0.446] was observed.

4 http://www.alivelearn.net/xjview

TABLE 1 General demographic information of participants.

MWoA
(n = 27)

HC
(n = 25)

p

Demographic characteristics

Age (years) 28 (25, 36) 28 (23, 38.5) 0.324

Sex (male/female) 6/21 10/15 0.165

Education degree (years) 16 (9, 17) 16 (12, 17) 0.899

Cognitive

MoCA 28 (25, 28) 28 (27, 29) *

Emotion

HAMA 5 (1, 10) 1 (0.5, 2) *

HAMD 6 (1, 10) 1 (0, 2) *

Migraine characteristics

Duration of migraines in
years

10 (6, 14) —— ——

Monthly frequency of
migraine attacks

4 (3, 4) —— ——

Attack duration 12 (12, 12) —— ——

NRS 5 (6, 7) —— ——

HIT-6 62± 7.1 —— ——

*p < 0.001. The monthly frequency of migraine attacks was the mean frequency of 3
months before the participation interview. Pian intensity was calculated as the mean
numeric rating scale (NRS: 0= no pain to 10= unbearable pain) score for the days with
a headache. HIT-6, headache impact test, ranges from 36 to 78; a higher score represents
a more severe headache.

Intentional encoding
For intentional encoding, the main effect of group [F(1,

47) = 0.814, p = 0.372] or emotion [F(4, 188) = 0.144,
p = 0.965], and the group x emotional interaction [F(4,
188) = 0.125, p = 0.973] was insignificant (Figures 2B, 3C,D
and Table 2).

Correlation between gray matter
volume and recollection performance

In MWoA patients, the GMV of the left precuneus [cluster
size = 601 voxels, peak MNI coordinate x/y/z = −6/−78/57,
peak T = 5.72, and partial correlation coefficient (r) = −0.79,
p < 0.001, Figure 4] was negatively correlated (p < 0.05,
FWE corrected) with the Pr-PH under incidental encoding.
Interestingly, the GMV of another cluster in the left
precuneus (cluster size = 1144 voxels, peak MNI coordinate
x/y/z = −7.5/−61.5/39, peak T = 5.75, and r = −0.776,
p < 0.001, Figure 5) were negatively correlated (p < 0.05, FWE
corrected) with Pr-PL under intentional encoding. No other
significant correlations between the GMV and Pr were observed
in MWoA patients. However, no significant correlations
between the GMV in the left precuneus and Pr were found
for HCs in voxel-wise analysis. Moreover, the GMV of the
significant brain region derived using correlation analysis was
extracted in MWoA patients, and partial correlation analysis
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FIGURE 2

Recollection performance as a function of picture type. (A) Incidental encoding, (B) intentional encoding. Note that Pr represents recollection
performance, which varies from 0 (no discrimination between old and new pictures) to 1 (perfect discrimination). Bars represent estimated
marginal means ± standard deviations.

FIGURE 3

Histograms of simple main effects of emotion on Pr value within the group. (A,B) The comparison of Pr between the 5 categories of stimuli
under incidental encoding in MWoA patients and HCs, respectively. (C,D) The comparison of Pr between the 5 categories of stimuli under
intentional encoding in MWoA patients and HCs, respectively. *p < 0.05. Bars represent means ± standard errors.
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TABLE 2 The Pr value of patients with MWoA and healthy controls.

Incidental encoding Intentional encoding

MWoA HC MWoA HC

N 0.338± 0.151 0.452± 0.161 0.438± 0.224 0.511± 0.222

PH 0.464± 0.200 0.574± 0.174 0.538± 0.167 0.595± 0.137

PL 0.332± 0.209 0.403± 0.210 0.432± 0.224 0.480± 0.206

NH 0.641± 0.176 0.640± 0.150 0.557± 0.194 0.633± 0.173

NL 0.522± 0.187 0.591± 0.168 0.519± 0.204 0.567± 0.191

was performed with the Pr in HCs. However, significant results
were not identified (p > 0.05).

Correlation between resting state
functional connectivity and
recollection performance

The AAL atlas defined the left precuneus as the seed region
for rs-FC analysis. In MWoA patients, the rs-FC between the
left precuneus and the left putamen (cluster size = 62 voxels,
peak MNI coordinate x/y/z = 33/−12/−6, peak T = 5.73,
and r = 0.817, p < 0.001, Figure 6) was positively correlated
(p < 0.05, FWE corrected) with the Pr-PL under intentional
encoding. In HCs, the rs-FCs between the left precuneus
and several brain regions (the lingual gyrus, calcarine sulcus,
superior temporal gyrus, paracentral lobule, and postcentral
lobule) were positively correlated (p < 0.05, FWE corrected)
with the Pr-PH under incidental encoding (Table 3). The rs-FC
between the left precuneus and inferior parietal cortex was also
positively correlated (p < 0.05, FWE corrected) to the Pr-PH
under intentional encoding (Table 3).

Discussion

Recollection and familiarity are two separate processes
underlying emotional memory. Based on the dual-process
approach, familiarity reflects a classical signal-detection process,
and recollection reflects a threshold process (Yonelinas, 2001).
The recollection, but not familiarity, decreases over time,
particularly over short intervals, and the decline of the
recollection component causes memory loss (Kishiyama et al.,
2005; Yang et al., 2016). Therefore, the analysis focused on
the recollection component of emotional memory. In this
study, the MWoA patients and HCs exhibited an EEM effect
under incidental encoding. Recollection benefited from extreme
valence and arousal and increased the distinction during the
encoding step (Alonso et al., 2015). Kensinger et al. (2007)
demonstrated a similar enhancement for negative and high

arousal stimuli compared to neutral ones. Under intentional
encoding, both groups’ EEM effect was missing, consistent
with previous reports in young adults (Kensinger et al., 2005,
2007). For intentional encoding, participants attempted to
focus their cognitive resources on all memorization items,
including neutral stimulus, by prompting subsequent retrieval
tasks. For incidental encoding, participants were uninformed
of subsequent retrieval tasks; therefore, they could not allocate
similar resources, resulting in a subjective connection toward
different stimuli/items. MWoA patients might be benefiting
from the intentional encoding instructions and elaborate
encoding strategies, similarly to the HCs (Kensinger et al., 2005).
Understanding the enhancement of emotional characteristics on
memory in MWoA patients could help develop interventions
to prevent dementia and promote healthy aging (Alonso et al.,
2015). Notably, MWoA patients exhibited better recollection
performance for PH than NH and NH than NL under
incidental encoding. These differences were not observed in
HCs, indicating that patients with MWoA were more susceptible
to valence and arousal of emotional stimuli. However, we did
not find a deterioration in recollection performance or EEM
effect. The reasons for this are likely twofold. On the one
hand, the limbic circuitry, comprised of the amygdala and
hippocampus, is not only responsible for emotions, learning,
and memory but is also implicated in experiential aspects of
pain. It has been demonstrated that the chronification of pain
was activity-induced plasticity of limbic cortical circuits leading
to neocortex reorganization, during which the representation
of pain gradually shifts from sensory to the memory of
pain and/or the inability to extinguish painful memories
(McCarberg and Peppin, 2019). One the other hand, previous
studies reported that MWoA patients showed enhanced brain
activation toward emotional stimulation (Wilcox et al., 2016)
and were more sensitive to negative stimuli (Wang et al.,
2017). In particular, the unpleasant category of IAPS images
included highly arousing mutilation and attack images (Lang
et al., 2010). Although poor global cognitive functions were
observed in migraine patients, they may not capture changes in
general intellectual functions or might be sensitive to changes
in specific cognitive domains (Gates et al., 2019). Thus, a
tendency for influence of MWoA on emotional memory was
considered.

In MWoA patients, we observed correlations between
the GMV of the left precuneus and recollection performance.
However, the precuneus is a core region of the default
mode network (DMN) involved in episodic memory
(Buckner et al., 2008). The abnormalities in the precuneus
might affect information transfer, multimodal integration,
and pain sensitivity and processing in MWoA patients
(Zhang et al., 2016). The left precuneus might be damaged,
remodeled, and involved in a compensation mechanism
during pain management, which might explain the negative
correlation between the GMV of the left precuneus and
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FIGURE 4

Correlation between voxel-wise gray matter volume in the left precuneus and the Pr-PH (positive stimulus with high arousal) under incidental
encoding in MWoA patients. p < 0.05, cluster-level FWE corrected. Scatter plot of ROI-based partial correlation analysis between gray matter
volume in the left precuneus and the Pr-PH.

FIGURE 5

Correlation between voxel-wise gray matter volume in the left precuneus and the Pr-PL (positive stimulus with low arousal) under intentional
encoding in MWoA patients. p < 0.05, cluster-level FWE corrected. Scatter plot of ROI-based partial correlation analysis between gray matter
volume in the left precuneus and the Pr-PL.

recollection performance. Moreover, the rs-FC between the
left precuneus and the left putamen positively correlated
with the recollection performance. The putamen is
involved in cognitive, emotional, and reward processing

(Haber and Knutson, 2010; Ghandili and Munakomi, 2022) and
connects to the components of the DMN (Byrne et al., 2019).
In this study, the FC of this intra-reward system was correlated
with the recollection performance in MWoA patients.
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FIGURE 6

Correlation between voxel-wise rs-FC of the left precuneus and the left putamen and the Pr-PL (positive stimulus with low arousal) under
intentional encoding in MWoA patients. p < 0.05, cluster-level FWE corrected. Scatter plot of ROI-based partial correlation analysis between
rs-FC and the Pr-PL.

TABLE 3 Correlation between the recollection performance and the rs-FC of the left precuneus and brain regions in healthy controls.

Brian regions Peak T cluster size Peak MNI (mm)

x y z

Incidental encoding pR-PH

Lingual gyrus 4.84 115 −15 −87 −18

Calcarine 5.17 116 18 −96 9

Superior temporal 6.03 93 −51 −21 6

Paracentral lobule 5.57 196 −6 −42 53

Postcentral 5.42 61 24 −30 57

Intentional encoding pR-PH

Inferior parietal 5.93 93 −42 −60 51

p < 0.05, cluster level FWE corrected. Coordinates of peak voxels (x, y, z) are given in MNI space.

GMV in the left precuneus and the rs-FC between the
left precuneus and the left putamen were not correlated to
the recollection performance in HCs. The precuneus, putamen,
and reward systems participate in pain processing during
migraine (Tanasescu et al., 2016; Zhang et al., 2016; Porreca and
Navratilova, 2017). Therefore, we believed these associations
might result from the pathological mechanism of the disease
itself. In HCs, the rs-FCs between the left precuneus and several
brain regions (the lingual gyrus, calcarine sulcus, superior
temporal gyrus, paracentral lobule, and postcentral lobule) were
positively correlated with recollection performance. The lingual
gyrus and calcarine sulcus belong to the visual cortex, (Huff
et al., 2022). Gao et al. (2019) revealing that the superior
temporal gyrus was a brain region responsible for audiovisual
affective and emotional processing. Moreover, the inferior

parietal lobule is a component of the ventral attention network
(Corbetta et al., 2008). It indicated that information from
various brain areas/networks was integrated to successfully
perform the task in HCs. When patients are exposed to
a migraine attack, changes in neurobiological progression
might lead to changes in mood, vision, attention, cognition,
and behavioral regulation. The integration of the necessary
information for behavior might be disturbed. However, neural
reserve and compensation support the cognitive reserve
(Anthony and Lin, 2018). In MWoA patients, the performance
of emotional memory might be maintained because of
compensatory contribution from the left precuneus.

This study had several limitations. First, it was a cross-
sectional study with a sex-skewed sample and a widely spread
age group. The included migraine patients were only without
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aura, and their education level was relatively high. Longitudinal
studies with expanding sample diversity, such as migraine
subtypes and left-hand participants, are needed in the future
to observe the applicability of the current results. Second,
although we controlled for several potential confounders,
residual confounding factors could exist. Third, the behavioral
test for emotional memory was within a laboratory setting,
and tests are required in real-life environments in the future.
Moreover, the recollection performance may differ when using
different encoding-retrieval interval times (Yang et al., 2016).
Finally, for the rs-FC analyses, the left precuneus was focused
on and set as the seed region. Other brain regions should also be
incorporated in future studies.

Conclusion

In conclusion, our results revealed the tendency for
the influence of migraine on emotional memory. Although
these impacts were insufficient to indicate deterioration in
recollection performance and EEM effect, the patients with
MWoA were more sensitive to valence and arousal of emotional
stimuli under incidental encoding. Moreover, a difference was
found in the structural and functional contributions of the left
precuneus in recollection performance between MWoA patients
and HCs, indicating its crucial role in emotional memory. These
findings help recognize the association between migraine and
emotional memory and its neural correlations. It might provide
novel insights into early interventions in preventing cognitive
decline because of migraine.
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