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Vision‑based egg quality prediction 
in Pacific bluefin tuna (Thunnus 
orientalis) by deep neural network
Naoto Ienaga1,2,8, Kentaro Higuchi3,8, Toshinori Takashi3, Koichiro Gen3, Koji Tsuda4,5,2 & 
Kei Terayama2,6,7*

Closed-cycle aquaculture using hatchery produced seed stocks is vital to the sustainability of 
endangered species such as Pacific bluefin tuna (Thunnus orientalis) because this aquaculture 
system does not depend on aquaculture seeds collected from the wild. High egg quality promotes 
efficient aquaculture production by improving hatch rates and subsequent growth and survival 
of hatched larvae. In this study, we investigate the possibility of a simple, low-cost, and accurate 
egg quality prediction system based only on photographic images using deep neural networks. We 
photographed individual eggs immediately after spawning and assessed their qualities, i.e., whether 
they hatched normally and how many days larvae survived without feeding. The proposed system 
predicted normally hatching eggs with higher accuracy than human experts. It was also successful in 
predicting which eggs would produce longer-surviving larvae. We also analyzed the image aspects that 
contributed to the prediction to discover important egg features. Our results suggest the applicability 
of deep learning techniques to efficient egg quality prediction, and analysis of early developmental 
stages of development.

In recent decades, global aquaculture production has grown substantially, contributing an increasing supply of 
fish for human consumption1. The seed stocks of many marine and freshwater species for aquaculture are par-
tially or fully sourced from wild-caught juveniles, which is to the detriment of wild resource management2. To 
preserve wild resources while meeting food demands, a closed-cycle aquaculture system2, which does not depend 
on wild resources, needs to be established. However, hatchery production of aquaculture seeds has not reached a 
commercial scale for most fish species because of poor and fluctuating larval survival rates2. For example, Pacific 
bluefin tuna (Thunnus orientalis; PBT) were reared under aquaculture conditions throughout a complete life 
cycle in 20023, and rearing techniques for larval culture in indoor facilities are being developed4–6. Nevertheless, 
inconsistent and low survival rates during larval stages still remain significant problems.

One of the major factors limiting the development of efficient seed production is the high variability and 
unpredictability of egg quality7. In most marine fish species, including PBT, the egg quality varies greatly due 
to, for examples, maternal age and condition factors, the timing of the spawning cycle, overripening processes, 
genetic factors, and also intrinsic properties of the egg itself8. Low-quality eggs generally lead to poor egg survival 
and hatching success, and gracile larvae with low growth and survival rates and reduced stress resistance9,10. 
Therefore, the development of accurate tools for assessing egg quality before use is required in order to improve 
the production efficiency of aquaculture hatcheries.

To date, much effort has been directed toward evaluating fish egg quality at early stages based on fertiliza-
tion success, morphology, biochemical composition, and the transcriptomes of eggs. Although the fertilization 
rate is a possible indicator of egg quality in salmonids, it is not always correlated with egg quality in marine fish 
species9. Biochemical indicators of egg quality include lipid composition11, free amino acids11,12, carbohydrates13, 
and enzyme activities related to carbohydrate metabolism13,14. Recent reports indicate that the transcriptomic 
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profile of eggs may be correlated with egg quality in rainbow trout (Oncorhynchus mykiss15), sea bass (Dicen-
trarchus labrax16), striped bass (Morone saxatilis17), and Japanese eel (Anguilla japonica18). However, egg quality 
determination by biochemical and transcriptomic methods is disadvantageous for routine hatchery application 
because the methodologies are time-consuming, and therefore cannot assess the quality of eggs before they are 
used in larval culture. In contrast, assessment of egg morphology at early embryonic stages could be a simple 
but useful method of predicting the quality of fish eggs. Several morphological characteristics, including the 
size, shape, and distribution of lipid vesicles, could be used as predictive criteria to assess hatching success in 
several marine fish species19,20. Moreover, positive relationships between blastomere cleavage patterns and the 
hatch rates of fish eggs have been observed21.

Despite the potential applicability of morphological criteria for rapid egg quality assessment, an accurate 
and practical egg quality prediction system has not been established due to several obstacles. First, the develop-
ment of a functional prediction system (e.g., a regression model for egg quality prediction) and its usage require 
many data sets of egg morphological characteristics to train the system to account for the large variations that 
generally occur in marine finfish egg morphology20,22. Second, a prediction system would only be applicable to a 
single fish species due to species-specific criteria for egg quality determination20. Third, the scoring procedure of 
morphological characteristics, such as blastomere morphology, is very subjective21. Therefore, a simple, accurate, 
and objective technique for egg quality prediction is required.

Recently, it has been reported that deep neural networks (DNNs), especially convolution neural networks 
(CNNs), enable the development of high-performance image classification and recognition models with capabili-
ties comparable or superior to those of humans23–26. The trained CNN models can also be utilized to visualize 
and analyze important local features of objects for purposes of image classification and recognition27. By apply-
ing these techniques to egg quality analysis, it is possible to create a simple, time-efficient, and highly accurate 
system of egg quality prediction.

In the present study, we successfully used a CNN model to establish a vision-based egg quality prediction 
and analysis framework for PBT. This framework requires only a photographic egg image for prediction. First, 
we targeted hatching success as a representative criterion for the egg quality evaluation8, and performed a pre-
diction experiment of normally hatching (NH) or not NH prediction. We also conducted an experiment of the 
survival days (SD) prediction, which is a prediction of whether larval survival will be fewer than or more than 
four days without feeding. SD is a modified criterion of the survival activity index (SAI) in starvation tolerance 
test commonly used for evaluation of egg and larvae quality28–30. Furthermore, we visualized the aspects of the 
images that the network focused on to generate a prediction using Grad-CAM27. Our results suggest that the 
proposed framework enables quantified and objective egg quality prediction, which has the potential to improve 
the production efficiency of aquaculture hatcheries.

Results
The proposed framework.  Figure 1 shows the overall proposed egg quality prediction and analysis frame-
work. The framework consists of three systems: (a) the egg detection system, (b) the egg quality prediction sys-
tem, and (c) the feature visualization system. First, an egg is detected by a Faster R-CNN31 from the input image 
(Fig. 1a). The VGG1632-based network generates a prediction from the extracted image regarding whether the 
egg will hatch normally, and whether the SD is within or more than four days (Fig. 1b). Grad-CAM27 is used 
to visualize the aspects of the image most relevant to normal hatching (Fig. 1c). Red or yellow areas contribute 

Figure 1.   Overview of the proposed framework for egg quality prediction and analysis. (a) Only the egg region 
is extracted from a photographed image by Faster R-CNN. (b) By training the VGG16-based network using 
the egg images, NH and SD predictions are performed. (c) The features of the eggs that contributed to the NH 
prediction were examined by visualization.
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greatly to the prediction, while blue areas have little impact on the prediction. See “Materials and methods” for 
the details of these systems, including the training procedure and detailed parameters of the network. The entire 
framework enables automatic prediction and analysis of egg quality from only a photographic image.

Dataset.  290 eggs at the one- to two-cell stage were photographed individually three times, each with a dif-
ferent emphasis on the cytoplasm, contour, or oil droplet of the egg (Fig. 2), resulting in a total of 870 images. 
The hatching statuses and SDs of the 290 eggs collected from seven spawning events are presented in Tables 1 
and 2, respectively. Five hatching statuses were recorded: NH and not NH (this includes malformed hatched 
[MH], died just after hatching [DH], unfertilized [UF], and unhatched [UH]). See “Materials and methods” for 
details of the dataset.

Egg detection.  The egg detection system was trained with 144 (the three different emphasis images of 48 
eggs) egg images among the 870 egg images. The system was applied to the rest of the egg images (726 images). 
We visually checked each of the bounding boxes detected by the Faster R-CNN to see if they contained the entire 
egg, and we found that the system was successful in detecting them in almost all cases except one image (see 
Supplemental Fig. S1). Thus, the detection accuracy was 0.999 (725/726). In the following processes, we used 
the egg images extracted from all photographed images by the system. For the exceptional image, we manually 
extracted its egg image.

Evaluation metrics.  For qualitative evaluation of NH and SD predictions, we calculated the averages of 
accuracy and F-measure via ten-fold cross-validation, and the area under the curve (AUC) for each of the three 
types of images. See “Materials and methods” for the details.

Result of NH prediction.  Three types of the image set (cytoplasm, contour of the egg, and oil droplet) were 
trained and evaluated separately. The accuracy and F-measure were evaluated via ten-fold cross-validation on 
290 images (each image set has 290 images respectively. See “Dataset”). The ratio of the image of each class was 
made the same for each fold. Figure 3a shows successful and failed examples of prediction by the egg quality 
prediction system based on contour-focused photographic samples. (1), (2), (3), and (4) were NH, NH, not NH, 
and not NH, respectively. The system predicted (1), (2), (3), and (4) as NH, NH, not NH, and NH, respectively. 
That is, the system successfully predicted for (1), (2), and (3). We evaluated NH prediction performances for 
each focus type (Fig. 3b). The accuracy and F-measure were slightly better for contour images than for cytoplasm 
or oil droplet images. The accuracy was 0.856 and the F-measure was 0.911 (see Supplemental Tables S1–S6 
for confusion matrices and the details regarding accuracy). We also show the receiver operating characteristic 

Figure 2.   Examples of three types of the input egg images. Images focused on the (a) cytoplasm, (b) contour of 
the egg, and (c) oil droplet.

Table 1.   Hatching status of the collected 290 eggs.

NH

Not NH

MH DH UF UH

224 6 1 50 9

Table 2.   SD of the collected 290 eggs.

SD 0 1 2 3 4 5 6 7 8

Number of eggs 60 6 4 1 6 23 132 55 3
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(ROC) curve for the contour images in Supplemental Fig. S2; the AUC is 0.812. Prediction accuracy for each 
spawning event based on the contour-focused egg images is shown in Supplemental Table S14.

Result of SD prediction.  Figure 4a shows successful and failed examples of SD prediction based on con-
tour-focused egg images, all of which were NH eggs. The system successfully predicted the SD outcomes for 
samples (1) and (2) as more than four and within four, respectively. We evaluated SD prediction performances 
for each focus type (Fig. 4b). Although SD is difficult to determine from an image alone, the prediction accuracy 
of the proposed system was 0.804 and the F-measure was 0.875 (see Supplemental Tables S7–S12 for confusion 

Figure 3.   Result of NH prediction. (a) (1), (2), (3), and (4) were NH, NH, not NH, and not NH, respectively. 
The system predicted (1), (2), (3), and (4) as NH, NH, not NH, and NH, respectively. That is, the system 
successfully predicted for (1), (2), and (3). (b) Averages and standard errors of accuracy and F-measure for NH 
prediction in ten-fold cross-validation.

Figure 4.   Result of SD prediction. (a) The system successfully predicted (1) and (2) but failed in (3) and (4). (1) 
and (4) were more than four SD; (2) and (3) were NH but within four SD. (b) Accuracy averages and standard 
errors and F-measure for SD prediction in ten-fold cross-validation.
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matrices and the details of accuracies). We also show the ROC curve for the contour images in Supplemental 
Fig. S3; the AUC is 0.789. Prediction accuracy for each spawning event based on the contour-focused egg images 
is shown in Supplemental Table S14.

Result of the visualization of image parts that contributed to NH prediction.  Figure 5 shows typ-
ical examples of the visualization results based on contour-focused egg images. The network tends to emphasize 
the cytoplasm when the prediction is NH (Fig. 5a,c), and the chorion when the prediction is not NH (Fig. 5b,d). 
Causes of not NH were eggshell peeling (Fig. 5d-1, d-2, and d-4) or a dust particle near the chorion (Fig. 5d-3). 
The network succeeded in capturing these features, which are considered important by human experts. The 
network correctly predicted Fig. 5d-3 as not NH despite visible cleavage (the egg was MH). Prediction failed in 
some cases. For example, the above-mentioned abnormal features can be seen in Fig. 5b-2 and 3; however, the 
eggs were NH. Figure 5c shows examples of anomalous images that the network failed to detect as such.

Comparison with expert predictions.  We compared the prediction performance of the proposed sys-
tem with that of expert humans, using 50 randomly selected images from the 290 contour images. The ratio of 
NH and not NH in the subset was matched to the ratio of NH and not NH in the entire dataset. Four experts 
performed NH prediction. The accuracies for the four experts were 0.80, 0.66, 0.72, and 0.70, respectively. The 
average accuracy was 0.72 (± 0.051). In comparison, the prediction accuracy of the proposed system was 0.88 
(see Supplemental Table S13 for all answers of the four experts and the network).

Figure 6 shows four examples out of the 50 images used for the comparison. The IDs of (a), (b), (c), and (d) are 
11, 32, 29, and 21 in Supplemental Table S13, respectively. The eggs in Fig. 6 are difficult to predict. For example, 
although the cytoplasm in (a) is neatly gathered around the oil droplet, a small bubble that may negatively affect 
hatching is also present. All experts incorrectly predicted (a) as not NH, whereas the network answered correctly 
(NH); the same is true of (b). Only one of the experts, as well as the network, correctly predicted (c) as not NH. 
The network prediction for (d) was incorrect, while three of the experts predicted correctly; there were only two 
such cases out of 50 images. Further, there were no cases in which all experts answered correctly but the network 
failed. These results show the potential of the CNN-based approach for the NH prediction.

Discussion and conclusion
In this study, we proposed a framework by which to predict and analyze whether or not the egg will hatch nor-
mally and whether SD is within or more than four days from photographed egg images. Egg quality can be gener-
ally defined as the egg’s potential to produce viable fry8, whereas good quality eggs for the fish farming industry 

Figure 5.   Examples of visualized image aspects that contributed to NH prediction. The images in the first and 
third rows are the input contour images; those in the second and bottom rows show the parts of the eggs that 
contributed to the prediction as visualized by Grad-CAM. Images (a) and (c) were predicted as NH; (b) and 
(d) were predicted as not NH. Each acronym below the visualized images indicates the hatching status. That is, 
examples of true-positive (a), false-negative (b), false-positive (c), and true-negative (d), respectively.
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have been defined as those exhibiting low mortalities at fertilization, hatching, and first feeding33. For this reason, 
NH success is widely accepted as the ultimate measures of egg quality in aquaculture species34. Moreover, the 
previous study has reported that mouth opening of PBT larvae occurs 2–3 days after hatching, and first feeding 
begins at 3 days after hatching in the rearing conditions35, suggesting that more than four SD without feeding 
is also the dependable criteria for egg quality in the PBT. In fact, mass mortality during first feeding commonly 
occurs in the hatchery production of bluefin tuna species likely due to low egg quality36. Although SD has not 
been measured as egg quality criteria in bluefin tuna species so far, Gimenez et al.13 has analyzed mortality at first 
feeding (3 days after hatching) in starvation experiment for evaluating egg quality of the common dentex (Dentex 
dentex). Therefore, the proposed framework could predict egg quality in the PBT. In the hatchery production, 
the precise evaluation of egg quality is one of the most important steps of the mass culture process, allowing the 
allocation/discarding of eggs or hatched larvae for/from further culture procedures37. This study will contribute 
to improve the production efficiency of aquaculture hatcheries of the PBT.

In this method, the egg region is automatically extracted from the photographed image with remarkable 
accuracy (99.9%). Such high accuracy stems from the monotonous background of the images, and the fact that 
only eggs are represented in the images. From these extracted images, the system predicts whether or not the egg 
will hatch normally and whether SD is within or more than four days. The aspects of the image that contributed 
to the prediction are visualized. The results of our experiments suggest that the quality of PBT eggs can be pre-
dicted with practical accuracy from egg images alone using deep learning techniques. The F-measure, which is 
an indicator of accuracy, of the NH predictions was 0.911, and that of the SD prediction was 0.875. The accuracy 
of NH prediction by the proposed method was higher than that by the experts. This result guarantees the high 
performance of the proposed method.

Most conventional methods of egg quality prediction use quantitatively measurable indicators, such as the 
size and shape of a lipid vesicle, or lipid droplet distribution. In contrast, our proposed framework based on deep 
learning techniques demonstrates the system’s ability to evaluate traits related to egg quality that have not been 
previously considered. In particular, the visualization analysis suggests that both the cytoplasm and the chorion 
of the egg could be important factors in predicting NH and SD. During normal embryogenesis, the cytoplasm 
gathers to the egg animal pole, the outline of the cytoplasm becomes clear, and cleavage begins. Therefore, cyto-
plasm is a reasonable aspect of the egg to emphasize when predicting NH.

From the viewpoint of labor load, it is not realistic for humans to predict individual egg quality based on the 
above indicators. However, in our proposed framework, the process is fully automated from egg extraction to 
hatching prediction, so the user only has to take a photograph of the egg. Because our framework enables highly 
accurate egg quality prediction at a very realistic cost, it is highly practical for use in aquaculture.

As the eggs used in this study were collected from only seven spawning events, they may be sourced from a 
small number of parent fish. Generally speaking, the more data we have, the better the prediction performance 
can be expected for machine learning. In the future, we would like to make the proposed framework more robust 
by using eggs collected from a large number of batches and parent fish. We would expect such diversity, along 
with a larger quantity of samples, to improve prediction accuracy by reducing bias beyond what we were able to 
achieve in this study, with its relatively limited quantity of data. The network was able to detect some anomalies 
that experts did not notice, but overlooked other anomalies that experts did notice (Figs. 5 and 6). These defects 
can also be solved by increasing the number and variety of images that the network is exposed to.

In the present study, the Grad-CAM analysis shows an emphasis on cytoplasm to predict the hatching success 
of PBT eggs. Several studies have reported that blastomere morphology is correlated with hatching success in 
marine fish species, including the Atlantic cod (Gadus morhua38), Atlantic halibut (Hippoglossus hippoglossus21), 
wolffish (Anarhichas lupus21), and turbot (Scophthalmus maximus9). In halibut, the five blastomere characteristics 
at the 8-cell stage (blastomere symmetry, cell size uniformity, cell membrane adjacency, clarity of cell margins, 
and presence of inclusions) were strongly associated with hatching success21. Although human experts were 
unable to detect differences in blastomere morphology between eggs predicted as NH and not NH in this study, 
our prediction system might be trained to recognize the key morphological characteristics of blastomeres as 
criteria for NH predictions. These predictions could be readily validated, as our study design utilizing multi-well 
culture plates provides a useful means of relating blastomere morphology to the subsequent fate of individual 

Figure 6.   Test image examples to compare the prediction accuracy of experts with the network. (a,b) Actually 
NH. The network predicted them correctly while four experts failed. (c) Actually not NH. The network and only 
one expert predicted correctly. (d) Actually not NH. The network failed to predict, and three experts predicted 
correctly.
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eggs. Based on this potential, it can be said that DNNs can replicate the knowledge of human experts. Moreover, 
the categorization procedure implemented by the Grad-CAM might be considered more objective in identifying 
aspects of eggs associated with their quality, as described previously21,22. In the future, the proposed framework 
will allow not only egg quality prediction, but also further elucidation of mechanisms affecting normal and 
abnormal development in the early developmental stages of various fish species.

Materials and methods
Embryo preparation.  Three-year-old PBTs were reared in a circular land-based tank (20 m in diameter, 
6  m in depth) at Fisheries Technology Institute, Japan Fisheries Research and Education Agency. Eggs were 
obtained using a net immediately after spontaneous spawning in the tank, and then moved into the laboratory. 
All animal housing and experiments were conducted in strict accordance with the institutional guidelines for 
care and use of live fish. The protocols were approved by the institutional committee on the Fisheries Technology 
Institute, Japan Fisheries Research and Education Agency.

Photographing PBT eggs and determining egg quality.  In this study, a total of 24 spawning events 
of the PBT were observed between 2 July and 7 August. To investigate morphological characteristics of PBT 
eggs, we randomly selected 290 eggs out of seven different spawning events and photographed them individually 
under a stereomicroscope (SZX-7, Olympus, Tokyo, Japan) and digital camera (DP70, Olympus) at 40 × magnifi-
cation. Each egg was photographed three times, with each photograph differentially focusing on cytoplasm, egg 
contour, or oil droplet as shown in Fig. 2.

After taking color images, we transferred each egg into a well of a 48-well polystyrene culture plate containing 
0.75 ml sterilized seawater and antibiotics (50 µg/ml streptomycin and 50 U/ml penicillin), maintained at 24 °C. 
At the morula stage (2–3 h after spawning) the eggs were examined under the stereomicroscope to determine 
fertilization status. After 40 h, NH larvae, MH larvae, DH larvae, UF eggs, and UH eggs were examined. Hatched 
larvae were subsequently reared in the culture plate without feeding to assess SD.

Egg detection system.  As shown in the upper left quadrant of Fig.  1, the original egg images were 
1600 × 1200 pixels, with an egg approximately 450 pixels in diameter near the center (in some images, there 
was another egg on the edge). Faster R-CNN31, which is a convolutional neural network (CNN) method that 
performs object detection, was utilized to extract only the egg region from the original image. We used Faster 
R-CNN in a Mask R-CNN implementation39,40. An example of the extraction is shown in Fig. 1.

Fine-tuning is effective for a small dataset. This technique enables the network retraining by slowly adjusting 
the parameters of only part of pre-trained weight while training with another dataset. We used the pre-trained 
weight MS COCO41 (trained on 80k images) for Faster R-CNN. It was fine-tuned using 144 manually extracted 
egg images over ten epochs; the other parameters were the default values in the original implementation40.

Of the regions detected as the egg in the image, only the region closest to the center of the image was predicted 
as the egg. The detected region was enlarged by a factor of 1.1. The test was performed on all images other than 
the 144 images used for fine-tuning. We confirmed by visual inspection that extraction failed in only one image 
(see Supplemental Fig. S1). The failed extraction was manually retried. Images of the egg region were used in 
subsequent processing.

Egg quality prediction system.  The deep CNN VGG1632 is a representative model used for image clas-
sification. VGG16 consists of 13 convolutional layers and three fully connected layers. We used the pre-trained 
weight, trained on the ILSVRC-2012 dataset, which contains 1.3 million color images in 1000 categories. The 
input image size is resized to 224 × 224 pixels.

The parameters and the details of training the VGG16-based network for the two tasks (NH and SD predic-
tion) are as follows:

•	 Types of input images: Three types of input images were prepared; one focused on cytoplasm, another on 
egg contour, and one on the oil droplet (Fig. 2). Each type of the image set consisted of 290 images and was 
used to train and evaluate the model separately (three models were trained).

•	 Data augmentation and image normalization: We employed the data augmentation technique23,42 to 
improve prediction accuracy and prevent overfitting. Vertical flip, horizontal flip, and random rotation with 
180° range were randomly performed on the training and validation images. At the same time, z-score 
standardization was performed for each image (the average pixel value for each image becomes zero while 
standard deviation/variance becomes one). For test images, only z-score standardization was performed.

•	 Data division: We applied ten-fold stratified cross-validation to evaluate the model’s predictive ability on the 
two tasks. All input images (290 images) were first divided into ten subsamples (nine training and validation 
versus one test). The training and validation images were further divided into four more subsamples (three 
training versus one validation). The final ratio was training:validation:test = 27:9:4. Each dataset was divided 
while maintaining the ratio between the two classes; for the NH prediction, the classes were NH or not NH, 
and for the SD prediction, the classes were more than or within four days.

•	 Network: We retrained the last l convolutional layers of VGG16 on our dataset. The three fully connected 
layers of VGG16 were discarded, and replaced with two new fully connected layers. Each of the two fully 
connected layers contained u and two units, respectively (the two tasks are binarily classified) with a drop-
out rate d between the two layers. The activation functions of the two fully connected layers were ReLU and 
softmax.
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•	 Training: The model was trained and evaluated with ten-fold cross-validation using images focused on 
cytoplasm, contour, or oil droplet (in any case, there were 290 images). The training was stopped when the 
categorical cross-entropy loss of the validation data did not drop for 10 consecutive epochs. The optimization 
method was stochastic gradient descent with a learning rate of 1e−4. Each input was weighted according to 
the reciprocal of the number of each class, that is, the weight of the minority class was one, and the majority 
class was less than one. The batch size was 10.

Three parameters, l, u, and d, were decided by a grid search in the range of (11, 9, 6, 3), (1024, 2048, 4096), 
and (0.2, 05), respectively.

Feature visualization system.  Grad-CAM27 was used to examine the egg aspects that were important for 
quality prediction. The aspects of the image that contributed to the prediction were shown in red by Grad-CAM 
(Fig. 5). The weight of the fold with the highest F-measure was the Grad-CAM input weight.

Evaluation metrics.  True-positive (negative) means that both the actual value and the prediction are posi-
tive (negative). False-positive (negative) means that the actual value is negative (positive), but the prediction is 
positive (negative). Note that positive means NH (more than four days), and negative means not NH (within 
four days) for NH (SD) prediction. Accuracy and F-measure were calculated as follows:

where TP, TN, FP, FN are true-positive, true-negative, false-positive, and false-negative respectively.
Accuracy is a basic evaluation index indicating what percentage of the predictions is correct. However, if the 

data are biased, evaluating with accuracy alone is not reliable. Precision is a measure of how many samples are 
correctly predicted out of samples that are predicted as positive. That is, precision indicates how accurate the 
positive prediction is. Recall is an indicator of how accurately the system can predict positive samples as such. 
The applicability of each indicator varies according to the problem in question; however, in most instances, the 
harmonic mean (F-measure) is used.

Usually, whether the prediction is positive or negative is determined whether the output value of the softmax 
function is larger or smaller than 0.5. This threshold can be set arbitrarily by the user. For example, if a higher 
TPR [same definition as Recall) is desirable even though FPR (FP/(FP + TN)] becomes higher, the user can lower 
the threshold. A model that provides a high TPR while keeping a low FPR at any threshold is a good model. The 
plot of TPR and FPR for various thresholds is the ROC curve (Supplemental Fig. S2, S3), and the size of the area 
under the ROC curve is AUC. AUC can also measure the goodness of the model.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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