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Abstract
Aims The aim of the study was to determine how the administration of a high-fat diet supplemented with various forms of 
chromium to rats affects accumulation of this element in the tissues and levels of leptin, ghrelin, insulin, glucagon, serotonin, 
noradrenaline and histamine, as well as selected mineral elements.
Methods The experiment was conducted on 56 male Wistar rats, which were divided into 8 experimental groups. The rats 
received standard diet or high fat diet (HFD) with addition of 0.3 mg/kg body weight of chromium(III) picolinate (Cr-Pic), 
chromium(III)-methioninate (Cr-Met), or chromium nanoparticles (Cr-NP).
Results Chromium in organic forms was found to be better retained in the body of rats than Cr in nanoparticles form. How-
ever, Cr-Pic was the only form that increased the insulin level, which indicates its beneficial effect on carbohydrate metabo-
lism. In blood plasma of rats fed a high-fat diet noted an increased level of serotonin and a reduced level of noradrenaline. 
The addition of Cr to the diet, irrespective of its form, also increased the serotonin level, which should be considered a 
beneficial effect. Rats fed a high-fat diet had an unfavourable reduction in the plasma concentrations of Ca, P, Mg and Zn. 
The reduction of P in the plasma induced by supplementation with Cr in the form of Cr-Pic or Cr-NP may exacerbate the 
adverse effect of a high-fat diet on the level of this element.
Conclusion A high-fat diet was shown to negatively affect the level of hormones regulating carbohydrate metabolism (increas-
ing leptin levels and decreasing levels of ghrelin and insulin).

Keywords Chromium · Rat · Hormone · High-fat diet · Cr digestibility

Introduction

Diet, particularly a diet rich in fats, plays a key role in 
the development of civilization diseases such as diabetes, 
cardiovascular disease, and cancer [1]. Studies on animal 
models fed a high-fat diet (HFD) have shown many adverse 
metabolic changes, such as hypertriglyceridemia, hyperinsu-
linemia and glucose intolerance [2]. In addition, a long-term 

HFD is associated with the risk of obesity. Obese animals 
have been shown to have increased levels of leptin, the hor-
mone encoded by the obesity (ob) gene. In physiological 
conditions, the plasma leptin concentration is proportional 
to the amount of adipose tissue in the body, and thus con-
centrations of this hormone are higher in obese individuals 
than in those with normal body weight [3]. Leptin has many 
functions in the organism, it decreases appetite and increases 
energy consumption, thereby acting as a long-term regula-
tor of body weight [3, 4]. The hyperleptinemia observed 
in obese humans and animals suggests that their organisms 
are not sensitive to endogenous leptin [5]. Ghrelin has the 
opposite effect on the organism to leptin. This hormone is 
secreted by the stomach and acts as a meal initiator. Ghre-
lin peripherally and centrally administered to rats increased 
food intake, induced weight gain, stimulated secretion of 
gastric juice, and improved gastric motility [6]. Olszanecka-
Glinianowicz et al. [7], in a study in obese women, noted a 
reduction in fasting ghrelin secretion, as well as an increase 
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in its levels as a result of weight loss. A high-fat diet also 
causes impairment of insulin secretion, i.e. insulin resist-
ance. Insulin increases expression of the ob gene, and thus 
the release of leptin from the adipocytes [8]. According to 
Posey et al. [9], diet-induced obesity involves the acquisition 
of functional resistance of the central nervous system (CNS) 
to insulin and leptin, which in turn leads to pathological 
body weight gain. Because insulin and leptin can use the 
same intracellular signalling pathways, neuronal resistance 
to these hormones may involve the same or similar mecha-
nisms [10].

Energy homeostasis is also regulated by neurotransmitters 
such as serotonin (5-HT) and dopamine [11, 12]. Changes in 
eating behaviour in obese individuals are due to changes in 
serotonin and dopamine secretion [13, 14]. Increased sero-
tonin levels cause a feeling of satiety and are conducive to 
a reduction in food intake. Research by Haleem and Khalid 
[15] showed that a high-fat diet reduces the level of 5-HT in 
the hypothalamus and increases levels of 5-HT and 5-HIAA 
(5-hydroxyindoleacetic acid) in the hippocampus of rats. 
Both inhibition and stimulation of serotonin and dopamine 
secretion are associated with differences in feeding behav-
iour, stimuli to eat, and energy expenditure [16].

A high-fat diet also indirectly affects mineral metabolism 
by disturbing normal hormone secretion. Iron is important 
for glucose-stimulated insulin secretion, but excessive iron 
induces oxidative stress and increases apoptosis in pancre-
atic β cells. The mechanisms whereby excess iron contrib-
utes to type 2 diabetes (T2D) are not fully understood but 
most likely involve insulin resistance and impairment of the 
function of pancreatic β cells [17]. On the other hand zinc 
increases uptake of 5-HT in the corpus callosum, cingulate 
cortex, and raphe nucleus of the brain of rats [18].

The adverse effect of a high-fat diet on the organism can 
be neutralised by adding chromium to the diet [19]. This 
element is involved in glucose metabolism, in part as a 
component of glucose tolerance factor (GTF). Chromium 
activates insulin receptor and increases insulin-dependent 
glucose uptake into cells. Furthermore, Cr reduces the lep-
tin level in the blood [20]. Thus, chromium is a popular 
dietary supplement in the treatment of type 2 diabetes and 
the promotion of weight loss [21]. The addition of Cr to the 
diet also increases secretion of neurotransmitters such as 
serotonin and noradrenalin [22].

Both absorption of Cr and its effects on the organism 
depend on its chemical form. Inorganic compounds of 
Cr(III) are poorly absorbed in the gastrointestinal tract, while 
the organic forms of Cr like chromium picolinate (Cr-Pic), 
chromium malate or complexes with various amino acids are 
much more easily digested [23, 24]. Not all organic forms of 
Cr are absorbed to the same degree. According to Anderson 
et al. [25], Cr in the form of amino acid complexes is bet-
ter absorbed than Cr in the form of Cr-Pic. This means that 

absorption of organic forms of Cr depends on the organic 
ligand. Cr nanoparticles are also becoming increasingly 
popular; this includes both metallic Cr nanoparticles and 
nanoparticles in the form of chemical compounds, such as 
nano-Cr-Pic. Owing to the small size of nanoparticles, Cr in 
nano-form may be more digestible than macro-forms. How-
ever, knowledge of both the absorption of Cr nanoparticles 
and their effects on the body is still inadequate. As different 
forms of Cr are absorbed in varying degrees, their effect 
on the body may vary as well. We hypothesised that the 
addition of chromium to a high-fat diet would reduce the 
negative effect of that diet on the secretion of hormones 
regulating carbohydrate metabolism and physiologically 
important neurotransmitters. It was additionally postulated 
that chromium in nanoparticle form will be more easily 
digestible and better retained in the body of rats than chro-
mium in organic form, and thus the regulatory effect of this 
form of Cr on hormonal metabolism will be more efficient. 
The aim of the study was to determine the how the admin-
istration of a high-fat diet supplemented with various forms 
of chromium to rats affects accumulation of this element in 
the tissues and levels of leptin, ghrelin, insulin, glucagon, 
serotonin, noradrenaline and histamine, as well as selected 
mineral elements.

Materials and methods

The present study is part of a larger experiment. Experi-
mental design and other physiological results have been 
published in Ognik et al. [26], Dworzański et al. [27] and 
Dworzański et al. [28].

Animals and diets

The experiment was conducted on 56 male Wistar outbred 
rats (Rattus norvegicus, Cmdb:WI). The animals were used 
in compliance with the European guidelines for the care 
and use of animal models [29]. The Animal Care and Use 
Committee in Olsztyn (Poland) approved the experimental 
protocol (approval no. 04/2019). All efforts were made to 
minimise the suffering of the experimental animals. At the 
start of the experiment the rats weighed 131 ± 4.33 g and 
were randomly assigned to one of eight groups of seven rats 
each. The animals were kept individually in metabolic cages 
(Tecniplast Spa, Buguggiate, Italy) under a stable tempera-
ture (21–22 °C), a 12-h light:12-h dark cycle, and a ventila-
tion rate of 20 air changes per hour. For 8 weeks the rats had 
free access to tap water and semi-purified diets, which were 
prepared and then stored at 4 °C in hermetic containers until 
the end of the experiment (Table 1). The diets were modifi-
cations of a casein diet for laboratory rodents recommended 
by the American Institute of Nutrition [30]. Two types of 
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diet were used in the experiment: a standard diet (diet S) 
containing 8% rapeseed oil and 5% cellulose as sources 
of fat and dietary fibre, respectively, and a high-fat, low-
fibre diet (HFD), which was a modification of diet S with 
17% lard added in place of maize starch and with cellulose 
content reduced to 3%. All diets had an identical amount 
of dietary protein originating from a casein preparation 
(Lacpol Co., Murowana Goslina, Poland) and DL-methio-
nine, comprising 20% and 0.3% of the diets, respectively. 
Different chromium sources, i.e. chromium(III) picolinate 
(Cr-Pic), chromium(III)-methioninate (Cr-Met), and chro-
mium nanoparticles (Cr-NP), were added to the standard and 
high-fat diets. Chromium picolinate (Cr-Pic; purity > 980 g/
kg) was purchased from Sigma-Aldrich Sp. z o.o. (Poznan, 

Poland). Chromium-methionine complex (Cr-Met) was pur-
chased from Innobio Co., Ltd. (Siheung, Korea). Chromium 
nanoparticles (Cr-NP) with 99.9% purity, size 60–80 nm, 
spherical shape, specific surface area 6–8  m2/g, bulk density 
0.15 g/cm3, and true density 8.9 g/cm3, was produced and 
purchased from SkySpring Nanomaterials (Houston, TX, 
USA).

The dosage of Cr administered to each rat was 0.3 mg/kg 
BW and was chosen in accordance with recommendations 
by the EFSA [31]. To ensure the safety of the individual 
preparing the experimental diets, the Cr-NP preparation, as 
well as the other Cr sources in order to maintain comparable 
conditions, was added to the diet not in a mineral mixture, 
but as an emulsion together with dietary rapeseed oil.

Sample collection

The feeding period was 8 weeks. Individual feed consump-
tion of rats were determined. All physiological measure-
ments were made for each animal separately (n = 7 for each 
group). Cr digestibility and utilisation tests (balance tests) 
were carried out during the study. After a 10 days prelimi-
nary period (days 8–17 of experimental feeding), faeces and 
urine were collected for 5 days (days 18–22) from all rats 
kept in the metabolic cages. The content of Cr in the diets, 
drinking water, faeces and urine collected in the balance 
period was assayed using the methods described below.

At the end of the experiment, the rats were fasted for 12 h 
and anaesthetized i.p. with ketamine and xylazine (K, 100/
kg BW; X, 10 mg/kg BW) according to recommendations 
for anaesthesia and euthanasia of experimental animals. 
Following laparotomy, blood samples were taken from the 
caudal vena cava into heparinized tubes, and finally the rats 
were euthanized by cervical dislocation. The blood plasma 
was prepared by solidification and low-speed centrifugation 
(350×g, 10 min, 4 °C). Plasma samples were kept frozen at 
− 70 °C until assayed.

Laboratory analysis

Chromium was determined colorimetrically by reaction with 
1,5-diphenylcarbazide (DPC) in acid solution. About 2 g of 
the sample was mineralized in a muffle furnace at 550 °C 
and dissolved in 3 mL of sulphuric acid (5 mol/L). To con-
vert trivalent chromium to its hexavalent state the dissolved 
ash was transferred from the crucible to a conical flask and 
heated to the boiling point with potassium permanganate. 
Potassium permanganate (0.1% in water) was added in 50 
µL portions until the oxidation process was completed (the 
slightly violet colour of the potassium permanganate disap-
peared until trivalent chromium was present in the solution). 
The mixture was allowed to cool to room temperature and 
then transferred to a 50 mL volumetric flask, to which 2 mL 

Table 1  Composition of diets fed to rats, %

a Casein preparation (LACPOL Co., Murowana Goslina, Poland), 
crude protein 89.7%, crude fat 0.3%, ash 2.0%, water 8.0%
b α-cellulose (SIGMA, Poznan, Poland), main source of dietary fibre
c AIN-93G-VM (Reeves, 1997), g  kg−1 mix: 3.0 nicotinic acid, 1.6 Ca 
pantothenate, 0.7 pyridoxine–HCl, 0.6 thiamin-HCl, 0.6 riboflavin, 
0.2 folic acid, 0.02 biotin, 2.5 vitamin  B12 (cyanocobalamin, 0.1% in 
mannitol), 15.0 vitamin E (all-rac-α-tocopheryl acetate, 500 IU  g−1), 
0.8 vitamin A (all-trans-retinyl palmitate, 500,000 IU g-1), 0.25 vita-
min  D3 (cholecalciferol, 400,000 IU g-1), 0.075 vitamin  K1 (phyllo-
quinone), 974.655 powdered sucrose
d Mineral mix, g  kg−1 mix: 357 calcium carbonate anhydrous 
 CaCO3, 196 dipotassium phosphate  K2HPO4, 70.78 potassium cit-
rate  C6H5K3O7, 74 sodium chloride NaCl, 46.6 potassium sulphate 
 K2SO4, 24 magnesium oxide MgO, 18 microelement  mixturee, starch 
to 1 kg = 213.62
e Microelement mixture, g  kg−1 mix: 31 iron (III) citrate (16.7% Fe), 
4.5 zinc carbonate  ZnCO3 (56% Zn), 23.4 manganese (II) carbon-
ate  MnCO3 (44.4% Mn), copper carbonate  CuCO3 (55.5% Cu), 0.04 
potassium iodide KI, citric acid  C6H8O7 to 100 g
f Corn starch preparation: crude protein 0.6%, crude fat 0.9%, ash 
0.2%, total dietary fibre 0%, water 8.8%
The experimental sources of dietary Cr, chromium(III) picolinate (Cr-
Pic), chromium(III)-methioninate (Cr-Met), and chromium nanopar-
ticles (Cr-NP), were added to the diet as an emulsion together with 
dietary rapeseed oil rather than in the mineral mixture (MX)

Ingredient Diet

Standard High-fat

Caseina 20.0 20.0
DL-methionine 0.3 0.3
Celluloseb 5.0 3.00
Sucrose 10.0 10.0
Rapeseed oil 8.0 8.0
Lard – 17.0
Vitamin  mixturec 1.0 1.0
Mineral  mixtured 3.5 3.5
Choline chloride 0.2 0.2
Cholesterol 0.3 0.3
Corn  starchf 51.7 36.7
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of sulphuric acid (5 mol/L) and 0.3 mL of phosphoric acid 
(98%) were added. Then 24 mL of acidified solution was 
transferred to a 25 mL volumetric flask containing 1 mL 
of DPC (0.25% in acetone). The contents were mixed and 
diluted to mark with distilled water. The absorbance was 
measured after 15–20 min at 546 nm using a GENESYS 20 
spectrophotometer (Thermo Fisher Scientific).

Kits produced by Cell Biolabs, Inc. (San Diego, USA) 
were used to determine the level of the hormones leptin, 
ghrelin, insulin, glucagon, serotonin, noradrenaline, and 
histamine. Content of minerals (Ca, Mg, Fe, and Zn) in the 
blood samples was determined by flame atomic absorption 
spectrometry (FAAS).

Statistical analysis

The results are expressed as means and pooled SEM (stand-
ard error of the mean). Two-way analysis of variance 
(ANOVA) was used to determine the effect of the Cr source 
(Cr: none, Cr-Pic, Cr-Met, or Cr-NP) and the diet type (D: 
standard or high-fat diet) and the interaction between these 
two factors (Cr × D). If the analysis revealed a significant 
interaction (P ≤ 0.05), the differences between treatment 
groups were then determined by Duncan’s post hoc test at 
P ≤ 0.05. The data were checked for normality prior to the 
statistical analyses. The statistical analysis was performed 
using STATISTICA software, version 10.0 (StatSoft Corp., 
Krakow, Poland).

Results

Effect of high‑fat diet

Administration of a high-fat diet to rats decreased feed 
intake (P < 0.001), Cr intake from the diet and total Cr 
intake (P < 0.001, both), Cr digestibility and Cr retention 
(P < 0.001, both) and increased Cr excretion in the faeces 
(P = 0.005) compared to the group receiving a standard diet 
(Table 2). Administration of a high-fat diet to rats decreased 
the levels of insulin (P = 0.017), ghrelin (P = 0.005), 
noradrenaline (P = 0.032) and histamine (P < 0.001) 
and increased those of leptin (P = 0.019) and serotonin 
(P = 0.048) compared to the group receiving a standard diet 
(Table 3). The plasma of rats receiving a high-fat diet had 
lower levels of Ca (P = 0.028), P (P < 0.001), Mg (P = 0.010) 
and Zn (P = 0.004) than the plasma of rats fed a standard 
diet (Table 4).

Effect of form of Cr

Cr content in the diet (P < 0.001), Cr intake from the diet 
(P < 0.001), total Cr intake (P < 0.001), and excretion of Cr 
in the urine and faeces (P = 0.033, P < 0.001, respectively) 
were all higher in the groups receiving a diet with added Cr, 
irrespective of its form. Cr % digestibility and Cr % retention 
were higher in the rats receiving a diet with added Cr-Pic 
or Cr-Met and lower in rats receiving Cr-NP (P < 0.001, all) 
than in rats receiving a diet without added Cr (Table 2).

The leptin level in the plasma of rats receiving a diet 
with the addition of Cr-Pic or Cr-Met was higher than in 
rats receiving a diet without added Cr or with the addition 

Table 2  Chromium excretion patterns in the digestibility and retention test

A Cr intake from diet calculated from feed intake data presented in Ognik et al. [26]
Feed intake: diet: standard—17.45 g/day, high-fat—16.17 g/day; Cr form: none—19.9 g/day, Cr-Pic—16.8 g/day, Cr-Met—16.8 g/day, Cr-NP—
16.7 g/day [26]
B Total Cr intake from diet and water (Cr concentration in water administered to rats 2.9 µg/L)
a,b,c,d Mean values within a row with unlike superscript letters were shown to be significantly different (P<0.05)

Item Diet (D) Cr form (Cr) SEM P value

Standard High-fat None Cr-Pic Cr-Met Cr-NP D effect Cr effect Interaction 
(Cr × D)

Cr content of diet (mg/kg) 3.31 3.34 1.24b 3.99a 4.02a 4.03a 0.161 0.067  < 0.001 0.057
Cr intake from diet (mg/5 day)A 0.282a 0.253b 0.100b 0.328a 0.322a 0.319a 0.013  < 0.001  < 0.001 0.082
*otal Cr intake (mg/5d)B 0.282b 0.253a 0.100b 0.328a 0.322a 0.319a 0.013  < 0.001  < 0.001 0.082
Excretion of Cr in urine (mg) 0.009 0.010 0.006b 0.010a 0.011a 0.013a 0.001 0.373 0.033 0.120
Excretion of Cr in faeces (mg) 0.128b 0.174a 0.062c 0.166b 0.164b 0.213a 0.012 0.005  < 0.001 0.071
Total Cr excretion (mg/5 day) 0.137b 0.185a 0.068c 0.176b 0.175b 0.226a 0.012 0.004  < 0.001 0.011
Cr digestibility (%) 52.23a 33.12b 39.32c 51.60a 47.97b 31.79d 2.329  < 0.001  < 0.001 0.052
Cr retention (%) 48.94a 28.43b 34.07b 48.47a 44.18a 28.04c 2.425  < 0.001  < 0.001 0.066
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of Cr-NP (P < 0.001). In the plasma of rats receiving Cr-Pic, 
the insulin level was higher (P = 0.034) and the noradrenalin 
level was lower (P = 0.009) than in the rats from the other 
groups. The plasma of rats receiving added Cr, irrespective 
of its form, had a higher level of serotonin (P = 0.037) and a 
lower level of histamine (P < 0.001) (Table 3).

The rats receiving a diet with added Cr-Pic or Cr-NP had 
a lower plasma Ca level than the rats receiving a diet with 
Cr-Met (P = 0.003) and a lower P level (P < 0.001) than the 
rats in the other groups. A higher Mg level (P = 0.019) was 
noted in the plasma of rats receiving Cr-Pic than in rats from 
the groups receiving a diet without added Cr. In the rats 
receiving Cr-NP, the Fe level was higher than in rats receiv-
ing Cr-Pic (P = 0.044). A higher Zn level (P < 0.001) was 
noted in the plasma of rats receiving Cr-NP than in those 
receiving Cr-Pic or Cr-Met (Table 4).

Discussion

The use of high-fat diet, especially for a long time, leads to 
impairment of carbohydrate and lipid metabolism and to 
obesity. Rats fed a HFD had higher body weight than rats fed 
a standard diet despite lower feed intake [26]. Obesity in rats 

fed a HFD may be due to the higher caloric value of the diet 
as well as to increased concentrations of leptin and reduced 
concentrations of ghrelin, as noted in our study. The decrease 
of ghrelin level in the plasma observed in obesity is most 
likely a physiological adaptation to the positive energy bal-
ance associated with obesity. Tschöp et al. [32], in a human 
study, found that the ghrelin level in the plasma is negatively 
associated with the degree of obesity. Beck et al. [33] and 
Beck and Richy [34], in a study in rats, also showed that 
an increase in the fat content of the diet results in reduced 
secretion of this hormone. Our study showed that the use 
of a HFD also increases leptin levels in the plasma. Ghre-
lin, known as the ‘hunger hormone’, and leptin, the ‘satiety 
hormone’, are negatively correlated. Low ghrelin levels are 
accompanied by high leptin levels, which is consistent with 
the results of the present study. Handjieva-Darlenska and 
Boyadjieva [35] also noted higher leptin levels and lower 
ghrelin levels in rats fed a high-fat diet than in the control 
group. Ghrelin can interact with leptin in the CNS, mainly 
at the level of the arcuate nucleus of the hypothalamus, in 
which both leptin and ghrelin receptors are present [33, 34]. 
Leptin is crucial in maintaining glucose homeostasis and 
is considered to be a factor inhibiting insulin secretion by 
pancreatic β cells [4, 36]. In our study, the use of a high-fat 

Table 3  Content of hormones in the blood plasma of rats

a,b,c Mean values within a row with unlike superscript letters were shown to be significantly different (P<0.05)

Hormone Diet (D) Cr form (Cr) SEM P value

Standard High-fat None Cr-Pic Cr-Met Cr-NP D effect Cr effect Interaction 
(Cr × D)

Leptin, ng/mL 1.163b 1.325a 1.035c 1.341b 1.611a 0.988c 0.057 0.019  < 0.001 0.074
Ghrelin, pg/mL 72.97a 62.54b 72.26ab 62.58b 75.67a 60.53b 3.743 0.005 0.010 0.126
Insulin, mIU/L 60.22a 55.48b 54.68b 61.49a 57.43ab 57.79ab 1.740 0.017 0.034 0.133
Glucagon, pg/mL 4679.7 5180.0 5201.6 4846.6 4587.5 5083.8 137.9 0.073 0.401 0.564
Serotonin, ng/ml 1987.6b 2180.7a 1859.9c 2161.7b 2065.7b 2249.3a 56.53 0.048 0.037 0.225
Noradrenaline, pg/mL 441.76a 427.96b 445.14a 396.19b 454.51a 443.58a 7.125 0.032 0.009 0.147
Histamine, ng/ml 484.46a 244.03b 568.43a 239.73c 240.76c 408.06b 33.76  < 0.001  < 0.001 0.305

Table 4  Content of minerals in the blood plasma of rats

a,b,c Mean values within a row with unlike superscript letters were shown to be significantly different (P<0.05)

Item Diet (D) Cr form (Cr) SEM P value

Standard High-fat None Cr-Pic Cr-Met Cr-NP D effect Cr effect Interaction 
(Cr × D)

Ca, mmol/L 2.287a 2.172b 2.297ab 2.113b 2.357a 2.150b 0.031 0.028 0.003 0.312
P, mmol/L 4.329a 3.218b 4.333a 2.981c 4.278a 3.503b 0.129  < 0.001  < 0.001 0.251
Mg, mmol/L 0.831a 0.782b 0.759b 0.841a 0.808ab 0.818ab 0.010 0.010 0.019 0.542
Fe, µmol/L 12.668 13.031 12.474ab 11.517b 13.199ab 14.208a 0.453 0.686 0.044 0.298
Zn, µmol/L 19.251a 17.860b 19.064ab 17.708b 17.313b 20.136a 0.319 0.004  < 0.001 0.126
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diet reduced the insulin level in the plasma of rats. This may 
be due to damage of pancreas. Our team's previous research 
[26] showed presence of extensive foci of steatosis in the 
pancreas of rats fed a high-fat diet. Tuzcu et al. [37] noted 
an increased insulin level (40 vs 33 pmol/l) in rats fed a HFD 
compared to rats receiving a standard diet. Sahin et al. [38] 
also report that a HFD increased the plasma insulin level.

Insulin secretion is additionally influenced by another 
hormone—serotonin. Paulmann et al. [39] noted that seroto-
nin regulates insulin secretion via serotonylation of GTPases 
in pancreatic β cells. In our study, rats fed a HFD had higher 
serotonin and lower noradrenaline levels. Studies by Kim 
et al. [40] and Bertrand et al. [41] also showed higher seroto-
nin levels in mice fed a HFD. Elevated levels of 5-HIAA, the 
main metabolite of serotonin, have also been observed in the 
plasma [42] and urine [43] of humans with obesity. Those 
two studies also showed a positive correlation between the 
fasting glucose concentration in the blood and 5-HIAA level. 
Rats fed a high-fat and high-cholesterol diet have higher 
expression of Tph1, and thus increased secretion of sero-
tonin from the small intestine [44]. In turn, noradrenaline 
inhibits gene expression and reduces the level of circulating 
leptin in the body [4]. Carbohydrate metabolism is affected 
by histamine as well [45, 46]. Our study showed a reduced 
histamine level in rats receiving a high-fat diet compared 
to rats receiving a standard diet. Ji et al. [47] found that 
administration of the fat emulsion Liposyn II (20%) into the 
duodenum of rats increased the release of histamine into the 
intestinal lymph.

The use of a HFD in rats affected not only hormonal 
metabolism, but also the level of mineral elements in the 
blood plasma. The high-fat diet in the present study reduced 
the plasma levels of Cr, Ca, P, Mg and Zn. The lower level 
of these elements in the plasma may have been due to lower 
feed intake by rats fed a HFD as well as to increased excre-
tion in the faeces. In addition, Ca, Mg and Zn ions combine 
with fatty acids to form water-insoluble calcium, magnesium 
or zinc soaps and are excreted in this form in the faeces [48].

One way to neutralise the negative effect of a HFD is to 
add Cr to the diet [24]. In the present study, a diet with added 
Cr, irrespective of its form, increased Cr intake from the diet 
as well as excretion of this element in the urine and faeces. 
Kottwitz et al. [49] noted that most of the Cr absorbed from 
 CrCl3 is excreted in the urine within the first 2 days after it is 
ingested. Actual intestinal absorption (retention in the entire 
body and excretion in the faeces) of Cr from Cr-Pic is twice 
as high as from  CrCl3, but a large proportion of absorbed Cr-
Pic is found in the transport pool directed to excretion by the 
kidneys. Only a small portion of absorbed Cr-Pic is metabo-
lised in the liver to the physiological form of Cr and stored 
in the body with a half-life of more than 100 days. For this 
reason, in the first 24 h after oral administration, most tissues 
(muscle, fat, bone and brain) show higher concentrations 

of 51Cr from  CrCl3 than from Cr-Pic. In the present study, 
the use of a diet with the addition of organic forms of Cr 
resulted in greater Cr retention than in rats fed a diet with 
Cr-NP. According to Lien et al. [24], both nanoparticles of 
Cr-Pic (55–100 nm) and Cr-Pic administered to rat at dose of 
300 μg  kg−1 show high % digestibility. The higher % reten-
tion of Cr from Cr-Pic or Cr-Met in our study suggests that 
Cr in these forms is more easily digestible than in the form 
of Cr-NP, and a larger pool of it is retained in the body.

The use of a diet with added organic forms of chro-
mium—Cr-Pic or Cr-Met—resulted in an increase in the 
plasma level of leptin in rats. Orhan et al. [1], who admin-
istered Cr-Pic and biotin or Cr-Hist and biotin to rats fed a 
HFD noted a reduction of the level of this hormone rela-
tive to rats fed a HFD without added Cr. Similarly, Inanc 
et al. [20] reported a decrease in leptin level in obese women 
who received chromium as Cr-Pic at 200 µg/day for 8 weeks. 
They did not, however, demonstrate an influence of Cr on 
the ghrelin or insulin level. Our study showed higher insulin 
level in the plasma of rats receiving Cr-Pic in their diet. Sim-
ilarly, rats receiving a diet with Cr-acetate or Cr-glycinate 
had increased level of insulin in the blood [38]. Accord-
ing to Tuzcu et al. [37], rats fed a HFD supplemented with 
Cr-His had higher serum insulin level than rats fed a HFD 
without added Cr, while administration of Cr-His in the con-
trol group did not affect the insulin level. The role of Cr 
in insulin secretion is multi-faceted [50]. Most importantly, 
Cr increases the activity of 5′AMP-activated protein kinase, 
which plays a key role in the response to insulin, and insulin 
receptor kinase, thus enhancing insulin signalling [51, 52]. 
Chromium also induces translocation of glucose transporter 
4 (GluT4) to the cell membrane, thereby promoting glucose 
metabolism [53].

The present study also showed that the addition of Cr to 
the diet of rats, irrespective of its form, increased the level 
of serotonin and reduced the level of histamine in the plasma 
of the rats. Franklin and Odontiadis [22], in a study on rats 
fed a diet supplemented with 100 mg/kg Cr in the form of 
Cr-Pic, also reported an increase in the serotonin level in 
the brain and increased sensitivity of central serotonin 2A 
receptors (5-HT2A). This is most likely linked to increased 
transport of the serotonin precursor tryptophan to the brain 
through the blood–brain barrier. This process is influenced 
by the level of tryptophan in the blood, its ratio to branched-
chain amino acids (BCAA), and the insulin level [54, 55]. 
By promoting insulin secretion, chromium may also cause 
a decrease in the level of histidine, a histamine precursor. 
Moreover, histamine influences carbohydrate metabolism in 
the body by regulating the glucose level in the blood [45, 
46]. In our study, only rats receiving Cr-Pic in their diet had 
a reduced level of noradrenaline. Franklin and Odontiadis 
[22] reported a higher level of noradrenaline in the brain of 
rats receiving 100 mg/kg Cr-Pic. Noradrenaline is one of the 
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hormones that regulates lipolysis. A reduced noradrenaline 
level and increased insulin level in the plasma of rats receiv-
ing Cr-Pic may indicate inhibition of lipolysis. The addi-
tion of Cr to the diet of rats in the form of Cr-Pic or Cr-NP 
resulted in a decrease in the level of P and an increase in the 
concentration of Mg in the plasma of rats. This mechanism 
is not fully explained and requires further research.

Conclusions

A high-fat diet was shown to negatively affect the level of 
hormones regulating carbohydrate metabolism (increas-
ing leptin level and decreasing levels of ghrelin and insu-
lin). Cr in organic forms was found to be better retained 
in the body of rats than Cr in nanoparticles form. How-
ever, Cr-Pic was the only form that increased the insulin 
level, which indicates its beneficial effect on carbohydrate 
metabolism. Rats fed a high-fat diet had an increased level 
of serotonin and a reduced level of noradrenaline. The 
addition of Cr to the diet, irrespective of its form, also 
increased the serotonin level, which should be considered 
a beneficial effect. Rats fed a high-fat diet had an unfa-
vourable reduction in the plasma concentrations of Ca, P, 
Mg and Zn. The reduction in P in the plasma induced by 
supplementation with Cr in the form of Cr-Pic or Cr-NP 
may exacerbate the adverse effect of a high-fat diet on the 
level of this element.
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