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,is study develops an objective machine-learning classification model for classifying glaucomatous optic discs and reveals the
classificatory criteria to assist in clinical glaucomamanagement. In this study, 163 glaucoma eyes were labelled with four optic disc
types by three glaucoma specialists and then randomly separated into training and test data. All the images of these eyes were
captured using optical coherence tomography and laser speckle flowgraphy to quantify the ocular structure and blood-flow-
related parameters. A total of 91 parameters were extracted from each eye along with the patients’ background information.
Machine-learning classifiers, including the neural network (NN), näıve Bayes (NB), support vector machine (SVM), and gradient
boosted decision trees (GBDT), were trained to build the classification models, and a hybrid feature selection method that
combines minimum redundancy maximum relevance and genetic-algorithm-based feature selection was applied to find the most
valid and relevant features for NN, NB, and SVM. A comparison of the performance of the three machine-learning classification
models showed that the NN had the best classification performance with a validated accuracy of 87.8% using only nine ocular
parameters. ,ese selected quantified parameters enabled the trained NN to classify glaucomatous optic discs with relatively high
performance without requiring color fundus images.

1. Introduction

Glaucoma is a disease that causes progressive damage of the
optic nerves, and it is the leading cause of blindness in Japan.
,e neurodegeneration is irreversible, and patients may not be
aware of it until its later stages; thus, early diagnosis and
treatment are essential to prevent blindness. ,e optic disc is
the point of exit for all retinal nerve fibers to the brain, and
thus, it is important to observe the optic disc in glaucoma
management. Besides intraocular pressure, which is an evi-
denced and treatable influencing factor, glaucoma is consid-
ered to be a multifactorial disease; some of these factors are
myopia, ocular blood flow, and oxidative stress [1]. However,
there are no clear guidelines for the treatments. Nicolela
proposed a guideline for identifying a glaucomatous optic disc

based on its shape [2]. Nicolela’s classification contains four
types of glaucoma: local ischemic type (focal ischemic (FI)),
age-related hardening type (senile sclerotic (SS)), myopic type
(myopic (MY)), and generalized enlargement (GE) [2]. Many
studies have shown that this classification is helpful for un-
derstanding glaucoma pathogenesis [3–5]. Clinically, doctors
always diagnose glaucoma by reading color fundus photos and
subjectively identifying the specific optic disc type for glau-
coma management. Unfortunately, some doctors have re-
ported unmatched cases that make it difficult to decide further
glaucoma treatment.,us, accurate and objective methods are
required for classifying optic discs. Meanwhile, it is necessary
to reveal classificatory criteria because a comprehensive
classification result should be provided to the doctors for them
to accurately decide the course of the clinical treatment.
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Machine learning has been used increasingly in medical
applications such as computer-aided diagnosis. Because
machine learning can determine relationships among input
parameters and labels, many studies have used it for clas-
sifying glaucoma and healthy eyes [6–8]. However, relevant
studies for glaucoma management have not been conducted
yet, and more research efforts are required.

In this study, we aim to build a machine-learning classi-
fication model for objectively identifying glaucomatous disc-
type parameters; then, such disc-type parameters are clinically
discussed and compared with doctors’ criteria.

2. Materials and Methods

2.1. Materials. In this study, we recruited 163 eyes from 105
glaucoma patients under a protocol approved by the In-
stitutional Review Board (IRB) (Wako3 26-4). All these eyes
were reviewed and classified into four categories by three
glaucoma specialists according to Nicolela’s definition. With
the development of measuring techniques, many methodol-
ogies are available for observing the optic disc, such as shape
and eye circulation. Compared with color fundus, optical
coherence tomography (OCT) based on low-coherence in-
terferometry can image the tissue morphology with mi-
crometer resolution, and therefore, it is being used widely in
the ophthalmological field (Figure 1). By using integrated layer
analysis software (DRI OCT Atlantis FastMap version 9.30),
48 ocular parameters relevant to the circumpapillary retinal

nerve fiber layer thickness (cpRNFLT) and optic disc mor-
phology were quantified [9–11]. ,e evaluation result against
OCTsegmentation has been published online as a whitepaper
(available at http://www.topcon.co.jp/eyecare/handout) [12].

Laser speckle flowgraphy (LSFG) allows for the quan-
titative estimation of blood-flow-related parameters in the
optic nerve head by using the laser speckle phenomenon
(Figure 2). ,irty-six parameters quantified from its analysis
software were also extracted.

Seven demographic parameters, such as gender, age, and
spherical equivalent, were also extracted among the 91
quantified ocular parameters for each eye after rudimentary
judgement of various ocular parameters, as shown in Table 1.

2.2. Feature Selection. In machine learning, feature selection
(FS) helps to (1) improve the classification performance by
avoiding overfitting, (2) build a time-saving model, and (3)
make the built model more understandable to humans. FS
methods can be categorized into three types depending on
their selection mechanism: filters, wrappers, and embedded
types. Filters use general characteristics such as correlation
to remove irrelevant features without using any machine-
learning algorithms. Minimum redundancy maximum rel-
evance (mRMR), one type of a filter method, is based on
mutual information; it has been widely used recently because
it assesses the trade-off of maximizing the relevance between
each feature and label and minimizing the feature re-
dundancy [13]. Wrappers use classifiers to evaluate the
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Figure 1: Quantification from optical coherence tomography images. (a) Cross-sectional OCT image at a yellow line in (c), where green
lines in (a) show the detected layer information for calculating the retinal nerve fiber layer (RNFL) thickness; (b) RNFL thickness map, where
the number indicates the thickness in micrometers in 12 sectors around the optic disc and cyan and magenta circles show automatically
detected disc and cup boundaries; (c) a color fundus photo of the optic disc area.
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Figure 2: Laser speckle flowgraphy images. LSFG snapshot of (a) a healthy eye and (b) a glaucoma eye. LSFG uses the mean blur rate as an
indicator of blood flow. ,e colormap shows blood-flow-related information in the optic disc with the right-hand-side scale bar, where the
blue color indicates lower blood flow and the red color indicates higher blood flow.
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performance and to search for the best combination of
features. Embeddedmethods are quite similar to wrappers in
that they also use a machine-learning model; however, they
differ from wrappers in that they perform FS as a part of the
machine learning. In wrappers, a heuristic search shows
higher performance but is too time-consuming, especially
for a large number of features. ,us, instead of brute-force
selection, more efficient strategies have been developed, such
as genetic-algorithm-based feature selection (GAFS) using
randomness that mimics natural evolution [14]. Filters are

often used in combination with heuristic wrappers for
principal selection [15]. In this study, we used a hybrid FS
scheme that combines mRMR and a genetic-algorithm-
based method. We also applied gradient boosted decision
trees (GBDT), which is an embedded method, to compare
the effects of the FS schemes.

2.3. Machine-Learning Classifiers. Various classifiers have
been used to compare different FS schemes in detail. Näıve
Bayes (NB) is a simple probabilistic classifier based on Bayes’

Table 1: Extracted ocular parameters.

No. Quantification data Features
1

Patient’s background data

Gender
2 Age
3 Spherical equivalent
4 Mean deviation
5 Pattern standard deviation
6 Internal ocular pressure
7 Central corneal thickness
8

Optic disc shape parameters obtained from OCT

Disc area
9 Cup area
10 Rim area
11 Vertical disc diameter
12 Horizontal disc diameter
13 Vertical cup/disc diameter ratio
14 Horizontal cup/disc diameter ratio
15 Cup/disc area ratio
16 Rim/disc area ratio
17 Maximum cup depth
18 Average cup depth
19–24 Average rim/disc area ratio (six sectors)
25 Rim decentering area ratio
26 Horizontal disc angle
27 Disc height difference
28 Retinal pigment epithelium (RPE) height difference
29 Disc tilt angle
30

cpRNFLT average thickness obtained from OCT

Average cpRNFLT
31–34 cpRNFLT (quadrants)

35 Difference in cpRNFLT (superior and inferior in four
sectors)

36–41 cpRNFLT (six sectors)
42 Rim decentering cpRNFLT ratio

43 Difference in cpRNFLT (temporal superior and
temporal inferior in six sectors)

44–55 cpRNFLT (clockwise sectors)
56

Ocular blood flow parameters obtained from LSFG

Average in all (tissue)
57–60 Average in quadrants (tissue)
61 Skewness in all (tissue)
62–65 Skewness in quadrants (tissue)
66 Blowout score in all (tissue)
67–70 Blowout score in quadrants (tissue)
71 Blowout time in all (tissue)
72–75 Blowout time in quadrants (tissue)
76 Rising rate in all (tissue)
77–80 Rising rate in quadrants (tissue)
81 Flow acceleration index in all (tissue)
82–85 Flow acceleration index in quadrants (tissue)
86 Acceleration time index in all (tissue)
87–90 Acceleration time index in quadrants (tissue)
91 Average ratio of blood stream
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rule. NB considers all features to be independent of the
probability of a label. Support vector machine (SVM) is
a supervised machine-learning algorithm that transforms
the feature space to a much higher dimension by using
kernel functions and finds a linear boundary to achieve the
maximum margin between two classes. In this study, we
explored SVM with radial basis function (RBF) kernels. A
neural network (NN) models the neurons and synapse of the
brain, and it enables problems to be processed nonlinearly
by identifying the correlation between features and labels.

In this study, we explored the effect of FS on the above
three classification classifiers for GAFS. Separately, GBDT,
decision trees as the weak learner capable of calculating the
feature importance, are applied for comparison with the
GAFS schemes.

2.4. Proposed Approach. First, we divided all the eyes into
two groups: training data (n � 114) and test data (n � 49).
With training data, mRMR was first used to find the can-
didate features (15 features), and then, GAFS with NB, SVM,

and NN was applied to find the most valid features and
classifiers. To compare the performance of FS and machine-
learning classifiers, we used Cohen’s kappa of 10-fold cross-
validation (CV) for training data as the evaluation criteria
(Figure 3). GBDTwas trained with the training data without
using mRMR and also evaluated with Cohen’s kappa of 10-
fold CV. Finally, all the developed models were validated by
using the test data.

Table 2 lists the parameters used in GAFS.

3. Results and Discussion

Table 3 shows the top 10 contributing quantified parameters
ranked by GBDT. Cohen’s kappa of 10-fold CV is 0.83
(Figure 4).

,e best Cohen’s kappa of 10-fold CV for SVM, NB, and
CVwas 0.871, 0.852, and 0.902, respectively, which are better
than that of GBDT. Furthermore, Table 4 lists the results of
the selected features for each model. ,is table shows the
common parameters for three classifiers, such as age,
spherical equivalent, nasal rim/disc area ratio, horizontal
disc angle, average cup depth, and cpRNFLT (superior sector
in four sectors), which are the six most contributing features
calculated by GBDT. Our new classifier shows higher ac-
curacy for such a classification compared to the regression
model with Cohen’s kappa of 0.73 that was demonstrated in
a previous study [10]. Figure 5 shows the box-and-whisker
plot of the common features, and these features appear to
help discriminate different optic discs, consistent with
previous clinical findings. Generally, MY disc type has a low
spherical equivalent and tilts resulting in a high horizontal
disc angle; it is associated with the onset of glaucoma at
a younger age. On the contrary, GE discs generally have

Training data

Standardization
(0 mean and unit variance)

10-fold CV

Selected feature subset

mRMR-selected
feature subset

(n = 15)

Genetic
algorithmLoop = 1000

Cross-validation
training set

Cross-validation
testing set

Training set
with selected
feature subset

Test set
with selected
feature subset

Trained
classifier

Fitness
evaluation

Terminate?

Best feature
subset and
classifier

Figure 3: Flow chart of the proposed approach (GAFS).

Table 2: Parameters used in GAFS.

GAFS parameter Value
Population size 20
Crossover probability 0.7
Mutation probability 0.2
Selection type Tournament of size 2
Number of generations 1000
Early stopping Used

Table 3: Feature importance calculated by GBDT (top 10).

No. Features Feature
importance

1 Horizontal disc angle 1.000
2 Spherical equivalent 0.723
3 Average cup depth 0.427
4 Nasal rim/disc area ratio 0.284
5 Age 0.145

6 cpRNFLT
(superior sector in four sectors) 0.136

7 cpRNFLT (temporal superior
sector in six sectors) 0.127

8 Cup area 0.040
9 Maximum cup depth 0.038
10 Superior nasal rim/disc area ratio 0.038
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a thin nasal rim and a large average cup depth and cup area,
while SS discs have a small average cup depth and are as-
sociated with the onset of glaucoma at an older age. FI discs
showed thickening of the cpRNFL in the superior sector in
the four sectors [11].

,e NN with just a single hidden layer (number of units:
8) was the best classifier for this problem, in which the nine
most valuable ocular parameters were chosen by hybrid FS
(Figure 6). Seven parameters (horizontal disc angle, cup

area, cpRNFLT (temporal superior in six sectors), average
cup depth, nasal rim/disc ratio, maximum cup depth, and
cpRNFLT (superior in four sectors)) were extracted from
OCT, and two parameters (spherical equivalent and age)
pertained to patients’ demographic data. ,is shows the
possibility of performing this classification by using only the
OCT data set. ,e contribution of each selected parameter
was also calculated by using the weights for each unit in the
trained NN (Figure 6) [16]. Doctors can classify and check
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Figure 4: Performance change of classification using different numbers of features. (a) Support vector machine; (b) neural network;
(c) näıve Bayes.

Table 4: Selected features using different classifiers in GAFS.

SVM NB NN
Cohen’s kappa 0.871 0.852 0.902

Common features

Age
Spherical equivalent

Nasal rim/disc area ratio
Horizontal disc angle
Average cup depth

cpRNFLT (superior in four sectors)

Individual features

cpRNFLT (temporal superior
in six sectors) Disc horizontal diameter cpRNFLT (temporal superior

in six sectors)
Maximum height difference Cup area
Horizontal disc diameter Maximum cup depth
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optic disc types using these features along with their con-
tribution values and not just by reading the color fundus
images.

In this study, two additional experiments were per-
formed to validate the current classifier. First, the selected
features were investigated by comparing the results obtained
from the combination of mRMR and brute-force selection.
In brute-force selection, all possibilities are tried one after
another until the best accuracy is obtained. As a result, we

obtained the same classification parameters and perfor-
mance as those of the hybrid FS used in this study. Even
though the same results were obtained, it should be noted
that the calculation time of brute-force selection was ∼120
times that of the proposed method. Second, all data were
shuffled to regenerate the training data and test data ran-
domly. We found that the hybrid FS had the highest clas-
sification performance in the NN (Cohen’s kappa: 0.902)
with a different combination of features (n � 9) in which six
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Figure 5: Box-and-whisker plots of common features: (a) cpRNFLT (superior sector in the four sectors); (b) cup area; (c) age; (d) horizontal
disc angle; (e) nasal rim/disc area ratio; (f ) spherical equivalent.
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ocular parameters, namely, spherical equivalent, cup area,
maximum cup depth, average cup depth, cpRNFLT (superior
sector in four sectors), and horizontal disc angle, were the
common features before and after the shuffling of data. In-
stead of cpRNFLT (temporal superior sector in six sectors),
nasal rim/disc area ratio, and age, the hybrid FS found three
new features, namely, RPE height difference, superior nasal
rim/disc area ratio, and cup/disc area ratio. Because un-
selected features after shuffling have high correlations with
any feature in the new feature combination, the classification
performance did not decrease significantly; for example, the
correlation value of the nasal rim/disc area ratio and superior
nasal rim/disc area ratio was 0.864, whereas that of the
horizontal disc angle and RPE height difference was 0.804.

,e proposed model can calculate the confidence of the
prediction (Figure 7).When validating the prediction with the

test data by using the highest one as the prediction, the overall
accuracy was 87.8%. With regard to failure prediction ex-
amples, we found that the developed classification model
classified the correct answer as the second choice in most
cases (Figure 7(e)). If the second choice is also considered to
be correct, the accuracy was 95.9%. In some cases, specialists
also narrow down the answer to two or more, such as FI and
MY optic discs (Figure 7(e)) because FI optic discs clinically
always have myopic characteristics as do the MY type. ,us,
our machine-learning classification model might well reflect
the actual clinical problem, and the prediction calculated by
this approach can assist doctors in understanding the glau-
comatous optic disc shape among glaucomatous subjects.

,ere are some limitations in this study. First, we did not
use deep learning, which is widely used in classification of
affected and healthy eyes with clinical images [17–19]. Deep

No. Features Contribution

1
2
3
4
5
6
7
8
9

Horizontal disc angle
Spherical equivalent

Cup area
Age

cpRNFLT (temporal superior sector in six sectors)

cpRNFLT (superior sector in four sectors)

Average cup death
Nasal rim/disc area ratio

Maximum cup death

1.00
0.82
0.50
0.48
0.42
0.40
0.38
0.33
0.31

Figure 6: Contribution of each selected feature to Nicolela’s classification. Selected features (9 features) when using the NN were sorted by
the contribution calculated with the weights of each unit in the NN. ,e horizontal disc angle had the highest contribution for classifying
optic discs.
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Figure 7: Prediction examples obtained using the NN: (a) successful example of prediction for FI and color fundus photo, (b) successful
example of prediction for GE and color fundus photo, (c) successful example of prediction for MY and color fundus photo, (d) successful
example of prediction for SS and color fundus photo, and (e) failure example of prediction and color fundus photo.
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learning is being recognized as a powerful method for au-
tomatically designing effective features directly from the
images, when the data are sufficient, which could not be
accomplished in this study unfortunately. Second, a single
NN with just one hidden layer may not yield good per-
formance. In the future, we will try to combine features
learned by the deep learning approach from OCT, LSFG,
and color fundus images with the quantified parameters and
increase the hidden layers to improve the performance after
collecting more data.

4. Conclusions

,e results show that the proposed approach can objectively
classify the glaucomatous optic disc shape with FS and NN
by using quantified ocular parameters obtained from oph-
thalmic examination equipment. ,e confidence of each
predicted optic disc type and the obtained contributing
ocular parameters can assist in daily clinical glaucoma
treatment.
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