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ABSTRACT

Identifying functional variants underlying disease
risk and adoption of personalized medicine are cur-
rently limited by the challenge of interpreting the
functional consequences of genetic variants. Pre-
dicting the functional effects of disease-associated
protein-coding variants is increasingly routine. Yet,
the vast majority of risk variants are non-coding,
and predicting the functional consequence and pri-
oritizing variants for functional validation remains
a major challenge. Here, we develop a deep learn-
ing model to accurately predict locus-specific sig-
nals from four epigenetic assays using only DNA
sequence as input. Given the predicted epigenetic
signal from DNA sequence for the reference and
alternative alleles at a given locus, we generate a
score of the predicted epigenetic consequences for
438 million variants observed in previous sequenc-
ing projects. These impact scores are assay-specific,
are predictive of allele-specific transcription factor
binding and are enriched for variants associated with
gene expression and disease risk. Nucleotide-level
functional consequence scores for non-coding vari-
ants can refine the mechanism of known functional
variants, identify novel risk variants and prioritize
downstream experiments.

INTRODUCTION

Genome-wide association studies (GWAS) have identified
thousands of loci associated with risk to human diseases

(1). Yet progress in understanding the molecular etiology
of disease and the development of novel therapies has been
limited by the fact that these studies are often not able to
identify a specific functional variant and mechanistically
relevant gene due to linkage disequilibrium (LD) (1–4). In-
tegrating independent biological knowledge has the poten-
tial to increase the resolution of the associated region and
improve the interpretation of GWAS results (5–7). Most
notably, risk variants are enriched in non-coding regula-
tory regions (8–10). While interpreting the functional con-
sequences of protein coding variants has been remarkably
successful and improved the understanding of the biology
of human disease (11–14), the rules governing the func-
tional effects of variants in non-coding regulatory DNA
have been more challenging to decipher. Novel approaches
are needed to interpret non-coding variants from ongoing
whole genome sequencing projects, for example, of somatic
variants in cancer (15) and de novo variants in autism (16).

Recent work has sought to better understand the regu-
latory genome by characterizing the epigenetic differences
in transcription factor (TF) binding, chromatin accessibil-
ity and histone modifications between tissues and cell types
(17–19). Yet, these epigenetic tracks can cover a substantial
portion of the genome, even though polymorphisms at only
a fraction of sites are presumed to have a functional con-
sequence. Moreover, these efforts have generally not inte-
grated genetic variation. Other efforts have focused on the
effects of genetic variation on gene expression (20–22) as
well as multiple epigenetic assays (23–26). Yet, these molec-
ular trait QTL studies are subject to the same challenges
with linkage disequilibrium as GWAS so they generally can-
not pinpoint the functional variant, or predict the func-
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tional consequence of a rare variant not observed in the
dataset.

Recent progress in developing computational models able
to predict TF binding, chromatin accessibility, and histone
modifications from only the genome sequence in the sur-
rounding region offers a novel paradigm to interpret the
functional consequences of non-coding variants (27–31).
These models leverage advances in deep learning (32) to
use DNA sequence context in the predictive model of func-
tional consequences. Yet with few exceptions (28), these
computational approaches consider only the discrete ab-
sence versus presence of an epigenetic signal (27,29–31).
Moreover, these methods rely on the sequence of the ref-
erence genome so they do not model the contribution of
genetic variation driving the epigenetic signal. Based on
the extensive contribution of genetic variation to molecu-
lar phenotypes (20–26), and the increasing availability of
epigenetics datasets from multiple individuals paired with
genetic data (23–26,33), integrating genetics into model
training has the potential to improve prediction accuracy
and increase power of variant impact predictions. Finally,
although these methods are trained jointly across many
datasets, they only consider a single experiment from a given
cell type and assay.

Here we introduce a deep learning framework for
functional interpretation of genetic variants (DeepFIGV).
Our approach extends the method of Kelley et al. (28)
by (i) performing model training on many epigenetic ex-
periments for a particular assay and cell type instead
just a single representative sample, (ii) integrating whole
genome sequencing to create a personalized genome se-
quence for each individual, and (iii) modeling quantitative
variation in the epigenetic readout rather than dividing the
genome into two classes. We develop predictive models of
quantitative epigenetic variation in chromatin accessibil-
ity from DNase-seq and histone modifications (H3K27ac,
H3K4me3 and H3K4me1) from 75 lymphoblastoid cell
lines (LCL) (23,26). By training the models on many exper-
iments from the same cell type and assay, integrating whole
genome sequencing, and modeling quantitative variation in
the epigenetic signal, we identify genetic variants with func-
tional effects on the epigenome.

MATERIALS AND METHODS

Epigenomic data from lymphoblastoid cell lines

The dataset comprises ChIP-seq experiments for 3 his-
tone modifications (H3K27ac, H3K4me1 and H3K4me3)
for 75 individuals (23) and DNase I hypersensitivity ex-
periments for 69 individuals (26). All individuals are of
Yoruban ancestry from the 1000 Genomes Project (34). Pro-
cessed data was downloaded from the ChromoVar3D web-
site (chromovar3d.stanford.edu). Peak coordinates and sig-
nal intensities for each sample and each DNase peak were
extracted from DNase removeBlacklist Log10PvalueThre
shold 5 DATA MATRIX.gz, and corresponding files were
used for the 3 histone modifications. VCF of variants from

whole genome sequencing was obtained from the same web-
site.

Deep learning with a convolutional neural network

An extended version of the basset software (30) was used
to learn parameters in a predictive model mapping from
genome sequence as input to epigenetic signal as output.
The analysis was customized to take advantage of this
particular dataset by (i) integrating genetic variation from
whole genome sequencing, (ii) modeling the quantitative
variation in the epigenetic signal and (iii) combining many
experiments from the same cell type into a large single-task
learning application. This customized analysis enables a fo-
cus on genetic variants with relatively small effects on the
quantitative signal value, rather than the strong effect re-
quired to completely lose or gain a binding or histone mod-
ification event. Each of the four assays was analyzed sepa-
rately using a single-task learning approach.

Constructing DNA sequence as input to neural network

Personalized genome sequences were constructed using the
GRCh37 reference genome with sites modified according
to biallelic SNPs in the whole genome sequence using the
bcftools consensus command. At homozygous alternate
sites the reference allele is simply replaced by the alterna-
tive allele. Heterozygous sites are represented using the IU-
PAC nucleotide codes (35), so that for example an A/C het-
erozygote is indicated with the characters ‘M’. Only biallelic
SNPs are considered, so there are 6 additional characters,
one for each pair of nucleotides.

Homozygous sites are one-hot coded as a matrix of
mostly 0’s with 4 rows corresponding to ‘A’, ‘T’, ‘C’ and
‘G’. Coding a 1 in the ‘T’ row indicates the presence of that
nucleotide in the corresponding position in the genome se-
quence. Heterozygous sites are encoded with a value of 0.5
in the two corresponding rows. Thus the training data does
not explicitly include any information about phasing of the
SNPs or allele-specific signals.

For each peak interval called in the processed data, the
genome sequence within a specified distance from the center
of the peak was extracted and matched to the corresponding
signal value. Peaks exceeding an assay-specific width cutoff
were excluded from the analysis (Supplementary Table S1).
An assay-specific window size (DNase: 300 bp, H3K27ac:
2000 bp, H3K4me3: 2000 bp, H3K4me1: 1400 bp) was used
to extract regions from the personalized reference genomes
(Supplementary Table S1). Larger window sizes have been
shown to increase prediction performance (27), and we used
the largest window size where encoding the DNA sequence
from all peaks and all individuals to one-hot coded format
could be computed on a machine with 256 Gb RAM. This
high memory usage is a limitation of the current basset im-
plementation (30).

Model training and testing

The default model architecture from Basset (30) was used to
train a 3 layer deep neural network and 300 convolutional

file:chromovar3d.stanford.edu


Nucleic Acids Research, 2019, Vol. 47, No. 20 10599

filters each 19 bp wide. The model included rectified linear
unit (ReLU) and max pooling in order to learning a non-
linear function mapping from DNA sequence to epigenetic
readout (Supplementary Table S2). A 30% dropout was ap-
plied to avoid overfitting. All training was performed on
NVIDIA Tesla K20X GPU. Training on a single assay took
between 14 and 45 GPU hours. We observed that chang-
ing the number of filters between 100 and 400 and chang-
ing the filter width between 10 and 20 bp did not produce a
substantial change in prediction accuracy. Multiple restarts
gave similar prediction accuracy.

The dataset was divided into training, validation and test-
ing sets. In order to avoid overfitting, an early stopping ap-
proach was used where the parameter values in the model
were learned from the training set, but the final values were
selected to minimize the squared prediction error in the val-
idation set. Training was stopped after 10 epochs with no
decrease in error in the validation set. The prediction per-
formance for each assay was reported based on the test set.

The training, validation and testing sets were specially
constructed using a conservative approach in order to en-
sure independence of the three sets. Since the signal values
at a given peak are relatively similar across individuals, in-
cluding the same peak region, albeit from different individ-
uals, in both the training and testing sets could overstate
the prediction performance. Similarly, peaks from the same
individual are generated under the same experimental con-
ditions and are subject to technical batch effects. Thus, in-
cluding peaks from the same individual in both the training
and testing set could also overstate the prediction perfor-
mance. In order to avoid this issue, the test set is composed
of peaks on chr1–chr8 from 60% of individuals, the valida-
tion set is composed of peaks on chr9-chr15 from the next
20% of individuals, and the test set is composed of peaks on
chr16-chr22 from last 20% of individuals. Thus, the three
sets have no overlap in either peaks or individuals (Supple-
mentary Table S1, Figure S1) to ensure a conservative esti-
mate of prediction performance.

We describe the analysis workflow with numbers from
DNase data; numbers for other assays are shown in Sup-
plementary Table S1. There were 681 990 total DNase peak
intervals from 69 individuals. In order to focus on peaks
of approximately equal size, peaks exceeding 250 bp were
excluded. This left 463 094 peaks (67.9% of total) with a
mean width of 150.7 bp. Multiplying the number of remain-
ing peaks by the number of individuals gives a dataset of 31
953 486 examples. Since DNase and histone modification
ChIP-seq are not strand specific-assays, the reverse com-
plement sequence gives the same epigenetic signal as the
original sequence. Augmenting the dataset by including the
reverse complement of each example doubles the number
of sequence-signal pairs. Constructing the training set from
peaks on chr1–chr8 from the first 60% of individuals gives
229 421 unique peak regions and 18 812 522 total examples.

Genomic correlates

Minor allele frequency across populations were obtained
from gnomAD r2.0.2 (11). Transcription factor binding
motifs were obtained from the JASPAR 2018 database
(36) and genomic location of bindings sites were identified

with FIMO (37). For genome-wide summaries, a TFBS
score cutoff of 500 was used, correspond to a P-value
cutoff of 1e–5. For specific lookups (i.e. Figures 4F and
6C), a more liberal cutoff of 400 (i.e. P-value of 1e–4)
was used. Genomic locations from ChIP-seq experi-
ments for transcription factors in LCL GM12878 (18)
were downloaded from http://egg2.wustl.edu/roadmap/
src/chromHMM/bin/COORDS/hg19/TFBS/gm12878/.
List of genes expressed in LCLs were obtained
from http://egg2.wustl.edu/roadmap/src/chromHMM/
bin/COORDS/hg19/expr/gm12878/. ChromHMM
tracks (17) for LCL GM12878 were downloaded
from http://egg2.wustl.edu/roadmap/data/byFileType/
chromhmmSegmentations/ChmmModels/core K27ac/
jointModel/final/E116 18 core K27ac dense.bed.gz.
Genome annotation of sites were obtained from VEP v85
(38) provided by gnomAD (11). CpG islands were obtained
from Annotatr (39).

Comparison to canonical motifs

Each convolutional filter in the first layer of the neural net-
work reads in 19 bp at a time and uses a weight for each
of the four nucleotides to transform the DNA sequence to
the next layer of the neural network. Each filter is a 19 × 4
matrix of continuous values that can be treated as a posi-
tion weight matrix (PWM) (30). Each PWM learned in the
current dataset were then compared to PWM’s of transcrip-
tion factors from the JASPAR 2018 database (36). We ap-
plied the widely used software tomtom (40) to query a our
new set of PWM’s against a know database of PWM and
generate p- and q-values. Since a given filter can show high
similarity to multiple JASPAR motifs, only the best match
is reported. Motifs were visualized using ggseqlogo (41).

Evaluating variant effects

Coordinates and alleles of SNPs were obtained from mul-
tiple public resources (Supplementary Table S3) and com-
bined into a non-redundant list comprising 413 223 060 sites
and 437 960 283 variants (due to multi-allelic sites). The
delta between the predicted signal from the reference and
alternative alleles was evaluated for each of the four epi-
genetic assays. The median and standard deviation of the
delta values for each assay were obtained for 208 million
biallelic SNVs from whole genome sequencing (WGS) from
gnomAD r2.0.2 and were used to compute z-scores for the
entire set of variants for the corresponding assay. This ap-
proach used sites distributed across the genome that were
identified independently of their predicted functional con-
sequence and avoids double counting multiallelic sites. The
standard deviation was computed using a robust method
(i.e. winsorized) where delta values below the 1st percentile
or above the 99th percentile were set to the value at the cor-
responding cutoff. This approach reduced the effect of vari-
ants with extreme scores. Changing the cutoff values had a
very minimal effect of the resulting z-scores.

Evaluating all variants for the four assays took 5929 GPU
hours using 10 NVIDIA Tesla K20X GPUs.

http://egg2.wustl.edu/roadmap/src/chromHMM/bin/COORDS/hg19/TFBS/gm12878/
http://egg2.wustl.edu/roadmap/src/chromHMM/bin/COORDS/hg19/expr/gm12878/
http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/core_K27ac/jointModel/final/E116_18_core_K27ac_dense.bed.gz
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Integration with molecular trait QTLs

We downloaded QTLs for gene expression, DNase and hi-
stone modifications on Yoruban individuals (23), QTLs for
gene expression on LCLs from multiple European popu-
lations (21). Enrichment was evaluated by comparing the
DeepFIGV absolute z-cores from the lead QTLs to the
scores for to variants ranked between 5th and 10th. Statisti-
cal fine mapping results were obtained from multiple cell
types (42). Rare variants associated with gene expression
outliers from multiple tissues were obtained from GTEx
(43). Enrichments are evaluated based on 2113 rare vari-
ants associated with outliers and 67 044 not associated with
outliers.

Chromatin accessibility QTLs from brain homogenate

Raw ATAC-seq (44) data from 189 human post mortem
brains (45) of European ancestry was aligned to GRCh38
with STAR aligner (46). To create a final peakset,
we subsampled and merged BAM-files separately for
schizophrenia-case and control samples. We subsequently
called peaks separately on these two merged BAM files with
MACS2 (47) at q-value < 0.01, and merged these two peak-
sets into a single consensus peakset. For each sample, the
reads in each consensus peak were quantified by feature-
Counts (48). Only peaks with 1 counts per million in at least
10% samples were retained for QTL analysis on the TMM
normalized log2 counts per million values (49). QTL analy-
sis was performed with QTLtools (50) using 5 ancestry PC’s
and variants with MAF > 5%. Covariates also included 10
PEER components (51) gender, and GC content of reads for
each peak for each sample. QTL analysis was performed on
variants within 2 kb of each peak boundary.

Cancer somatic variants driving gene expression

We downloaded somatic variants in tumors that were iden-
tified by whole genome sequencing and results from an
eQTL analysis combining nearby variants and testing the
association with proximal genes (15). We considered the 569
genes with cis-eQTLs at FDR < 30% and evaluated the
DeepFIGV z-score for each of four epigenetic assays for the
2309 somatic variants in the proximal regions. The enrich-
ment analysis compared these variants to somatic variants
in this dataset that were not associated with gene expression
changes and which were matched for distance to transcrip-
tion start site.

Prediction of allele specific binding (ASB)

DeepFIGV scores were used to predict the presence and
direction of ASB using sites identified from transcrip-
tion factor ChIP-seq and DNase I hypersensitivity ex-
periments in LCLs (52,53) and HeLa-S3 cells (53). For
AlleleDB (52), the ASB status for 42 ChIP-seq targets
across 14 individuals totaling 77 experiments were re-
ported at a total of 276,589 sites with sufficient read
coverage (accB.auto.v2.1.aug16.txt.gz). Shi et al. (53) re-
ported ABS for 36 targets across 7 LCL and HeLa-S3 cells

across 51 518 total sites (ASB GM12878 HeLa 1based.txt,
ASB other GMs 1based.txt). Sites from the two databases
were combined to produce a non-redundant set, so sites
identified for the same target and individual in both
databases were not double counted. Sites were considered
as ASB or non-ASB based on a Benjamini-Hochberg cor-
rected P-value (beta-binomial for AlleleDB and binomial
for Shi et al.) <0.05, or >0.99, respectively. Only assays with
at least 20 ASB examples were considered.

Precision-recall (PR) curves and area under the PR curve
(AUPR) were used to evaluate the classification perfor-
mance since the ASB vs non-ASB class counts were very im-
balanced. PR curves and AUPR of empirical and random
classes classifiers were evaluated with the PRROC package
(54).

No allele-specific signal was used in the training of Deep-
FIGV and no re-training was performed for the ASB anal-
ysis. The DeepFIGV z-scores for each of the 4 assays in the
training set were extracted for each site, and the PR and
AUPR were computed by the intersecting these scores with
the combined ASB dataset. Classifying ASB sites from non-
ASB sites used the absolute value of the z-scores, while clas-
sifying the direction of ASB used the z-score itself. ASB
magnitude was encoded as the number of alternative reads
at a site divided by the total number of reads at that site.
Thus, a positive ASB magnitude corresponds to a positive
DeepFIGV z-score indicating that the alternative allele is
predicted to increase signal compared to the reference al-
lele.

Computing disease enrichments: LD-score regression

Publicly available GWAS summary statistics were obtained
for immune diseases as well as other representative diseases
and traits. We performed a partitioned heritability analy-
sis with LD-score regression (LDSC) (8) in order to quan-
tify the contribution to the trait heritability of variants with
high absolute DeepFIGV z-scores. The per-SNP heritabil-
ity was computed after accounting for the other genomic
annotations. Annotations included 28 provided with LDSC
baseline model (i.e. TFBS, TSS, UTR, intron, promoter, en-
hancer, superenhancer, epigenetic assays multiple sources
(H3K27ac, H3K4me1, H3K4me3, H3K9ac, DNase)) in ad-
dition to peak regions from the four assays in LCLs used by
DeepFIGV. DeepFIGV was the only annotation with nu-
cleotide level resolution; other annotations were 10s or 100s
of bases wide.

This analysis was restricted to common variants outside
of the MHC region. The per-SNP heritability was evaluated
for site exceeding absolute z-score cutoffs for 1, 2, 3, 4 and 5.
There was not a sufficient number of sites with larger scores,
since only common variants were considered.

Computing disease enrichments: Candidate causal variants

Candidate causal SNPs identified from finemapping anal-
ysis of autoimmune diseases were obtained from http://
www.broadinstitute.org/pubs/finemapping (10). The Deep-
FIGV z-scores were obtained for the 8741 candidate causal

http://www.broadinstitute.org/pubs/finemapping
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SNPs for 39 traits. Enrichments for each trait were eval-
uated by comparing the number of candidate causal sites
with a DeepFIGV absolute z-score exceeding a given cut-
off to the expected value from a random set of sites from a
null distribution. This null was constructed for each site by
drawing 10 000 sites from across the genome matching the
MAF, gene density, distance to nearest genes and number
of sites within LD of 0.5 of the original site (55).

Comparison to other variant scoring methods

Variant-level scores were obtained from DeepSea (27) eval-
uated on 17 DNase datasets and deltaSVM (29) evaluated
on 35 DNase datasets, and CAPE (56) evaluated on two
datasets. In addition we included CADD (57) and LIN-
SIGHT (58). Scores were obtained from: https://www.ncbi.
nlm.nih.gov/research/snpdelscore/rawdata/

For DeepSea and deltaSVM the reported delta values for
the predicted signal from the reference and alternative alle-
les were transformed to a z-score using the observed stan-
dard deviation. Analysis was performed on a shared set of
12 million variants.

Analysis of LCL MPRA results

Results were downloaded from Tewhey et al. (59) and vari-
ants were divided into three classes: (i) expression modu-
lating variants that showed significant difference in expres-
sion between reference and alternative alleles, (ii) variants
that drove expression but did not show allelic differences,
and (iii) variants whose sequence did not drive expression
in this assay. Enrichment of expression modulating variants
(i.e. class 1) were compared to the other two classes as a
function of high predicted epigenetic signal or DeepFIGV
z-scores for each assay.

Predicting pathogenic from benign variants in ClinVar

ClinVar variants were downloaded on April 22, 2019. Vari-
ants labeled as ‘Pathogenic’ or ‘Likely pathogenic’ was con-
sidered as the positive class and variants labeled ‘Benign’
or ‘Likely benign’ were considered the negative class. Vari-
ants were then stratified based on variant consequence (i.e.
missense, 3′ UTR, etc) and the performance of each pre-
diction (DeepFIGV, CADD (57), GWAVA (60)) were eval-
uated in each strata. Due to the high degree of class im-
balance, performance of each predictor was reported as the
area under the precision recall curve (AUPR). We note that
performance of a random prediction varied across variant
consequence since it depends on the class ratios.

Evaluation of CAGI5 regulation saturation data

Since DeepFIGV predictions were learned on a different
dataset, we evaluated concordance between DeepFIGV and
CAGI5 relative expression values on the combined training
+ test set from CAGI5. Data was obtained from genomein-
terpretation.org.

RESULTS

Deep learning maps from genome sequence to epigenetic sig-
nal

DeepFIGV combines the quantitative signal from epige-
netic experiments across multiple individuals with whole
genome sequencing into a single machine learning task
(Figure 1). While standard molecular trait QTL analyses
rely on the correlation between the epigenetic signal and a
given genetic variant (Figure 1A, B), deep learning using
a convolutional neural network explicitly models the DNA
sequence context to train a predictive model (Figure 1C, D).
Evaluating the predicted effect of each variant produces a
large database of nucleotide-level scores (Figure 1E, F) that
can be integrated with other analyses to refine the mecha-
nism of known functional variants, identify novel risk vari-
ants and prioritize downstream experiments (Figure 1G).

Datasets from each of four epigenetic assays (DNase-seq
and H3K27ac, H3K4me3, and H3K4me1 histone marks)
were analyzed separately (Figure 2). Previous quantifica-
tions using liberal peak calling thresholds were used in order
to capture a wide range of quantitative variation (23,26).
The parameters of the convolutional neural network were
chosen to minimize the least squares prediction error. Ex-
tensive steps were taken to avoid overfitting, and all predic-
tion results are reported on a set of individuals and chro-
mosomes that were excluded from the training set (see Ma-
terials and Methods, Supplementary Figure S1). Increasing
the number of individuals in the training set and including
genetic variation in the genome sequence of each individual
decreased prediction error on withheld test data (Supple-
mentary Figure S2). Although the model uses only DNA se-
quence in the predictions, the predicted DNase signal shows
strong concordance in the test set with the observed sig-
nal in peak regions (Spearman rho = 0.485, Pearson R =
0.707) (Figure 2A). Focusing on the more robust (i.e. rank
based) Spearman correlation metric shows that these pre-
dictive models give substantial accuracy for all four assays
for the quantitative epigenetic signal (Figure 2B). Genomic
intervals corresponding to ENCODE blacklisted regions
were already excluded and removing additional genomic in-
tervals based on low sequence uniqueness/mappability (61)
did not change the results (Supplementary Table S4). Ex-
amining the predicted signal for DNase for a representative
example in the test set along a segment of chromosome 22
shows notable concordance with the observed signal in peak
regions (Figure 2C).

Functional impact scores from the predicted difference in
epigenetic signal for the reference versus the alternate allele
were evaluated for 438 million variants observed in previ-
ous sequencing projects (Supplementary Table S3). Subse-
quent analysis was performed on 208 million biallelic SNPs
from the gnomAD database of 15 000 whole genome se-
quences (11). The delta value for each variant is defined
as � = SALT – SREF with terms representing the predicted
epigenetic signal from the alternative and reference alleles,
respectively. Thus, a positive delta value indicates that the
alternative allele increases the epigenetic signal compared
to the reference allele. As expected, the mean and median
delta values for all assays were very close to zero (Figure

https://www.ncbi.nlm.nih.gov/research/snpdelscore/rawdata/
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Figure 1. Computational workflow for Deep Functional Interpretation of Genetic Variants (DeepFIGV). (A) Quantitative signal from epigenetic assay
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matrix of mostly zeros with a 1 (i.e. a dark box) indicating the presence of a particular nucleotide at that position. Heterozygous SNPs are encoded as a 0.5
for each allele. Convolutions are local matrix operations with parameter values learned from the data. A neural network uses the convolutions to predict
the epigenetic signal from the DNA sequence. (D) Training the computational model links DNA sequences from many individuals to the epigenetic signal
in each region. (E) The epigenetic signal is estimated for a query sequence with the reference and the alternate allele. The difference between the estimated
signal values (i.e. delta) indicates the predicted effect of the variant. (F) In silico mutagenesis evaluates the delta value for every possible single nucleotide
substitution. (G) DeepFIGV delta values are used to predict allele specific binding of transcription factors and identify candidate functional variants.
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Figure 2. Evaluating DeepFIGV model and interpreting variant scores. (A) Predicted DNase signal compared to observed DNase signal evaluated on the
test set. (B) Spearman correlation between predicted and observed epigenetic signal on the test set for four assays. (C) Predicted and observed DNase signal
for peaks in a 300 kb segment on chr22 in the test set. (D) Mean, median and standard deviation of the delta scores for 208 million biallelic SNPs for each
assay. (E) Density plot of z-scores for four assays. Dashed line indicates the null distribution of the z-scores, which is the standard normal distribution.

2D). Transforming these delta values to a standard scale
(i.e. z-score) by dividing by the standard deviation for each
assay shows an excess of variants with scores near zero com-
pared to the standard normal distribution (Figure 2E). This
is consistent with the vast majority of variants having no
functional effect on the epigenome. Yet, there is an excess of
variants with large effects on all four epigenetic assays, with
DNase showing the highest excess followed by H3K27ac,
H3K4me3 and finally H3K4me1.

Genomic correlates of predicted variant effects

Although no prior biological information is included in
training the model, DeepFIGV recovers multiple aspects of
known regulatory biology (Figure 3). The predictive model
learned by the convolutional neural network is composed
of a set of local sequence features called filters. Although
learned de novo, the predictive sequences features extracted
by these filters are often similar to known transcription fac-
tor bindings site (TFBS) motifs. Some filters have a direct
correspondence to a known motif, but other filters model
only a portion of a motif so that multiple filters combine

to capture the signal encoded by the sequence (Figure 3A).
Variants in TFBS motifs are enriched for the alternative
allele decreasing the DNase signal (Figure 3B). TFBS nu-
cleotides with high information content (i.e. high weight)
in the position weight matrix have an even stronger enrich-
ment for decreasing the DNase signal, consistent with vari-
ants being more likely to weaken rather than strengthen the
affinity of a TFBS motif (Supplementary Figure S3). The
TFBS enrichments are consistent with the biology of these
assays: variants predicted to affect the open chromatin as-
say DNase are most enriched for TFBS motifs, followed by
the H3K4me3 promoter mark and the H3K27ac active pro-
moter and enhancer mark (Figure 3C). H3K4me1 is an en-
hancer mark that tags active or primed sequences and is not
enriched for strong variants in TFBS.

The role of TFBS in regulating gene expression and epi-
genetics is well established, and consequences of variants in
TFBS motifs are more interpretable than variants in other
genome annotations (18,36,62). Yet despite notable enrich-
ment in TFBS motifs, variants in these motifs account for
a minority of variants with strong DeepFIGV scores. Only
30.1% of sites with an absolute z-score between 9 and 10,
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Figure 3. Genomic enrichments of predicted functional variants. (A) Canonical transcription factor binding motif along with the motif representation of
convolutional filters learn from the DNase dataset. P-values indicate the probability of concordance this high between a canonical motif and convolutional
filter occurring by chance given the motif database. Q-values correct for multiple testing since 300 convolutional filters were queried. (B) Ratio indicating
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indicates an depletion of variants where the alternative allele increases the DNase signal, corresponding to an excess of variants where the alterative allele
decreases DNase signal. (C) Fraction of variants in transcription factor binding sites that exceed a DeepFIGV absolute z-score of 10 for each of four assays.
(D) Fraction of sites that are in a transcription factor binding site motif, or in the flanking 5 or 10 bp, for a range of DeepFIGV absolute z-score cutoffs
for DNase. (E) Enrichment of variants near a TFBS motif exceeding four z-score cutoffs for DNase. Black box indicates median size of TFBS motif. (F)
Enrichment of sites with absolute z-scores greater than 5 near the transcription start site of genes stratified by whether the genes are expressed in LCLs.
Sites with absolute z-scores less than the genome-wide mean are used as the baseline for the enrichment. (G) Fraction of sites with absolute z-scores for
DNase greater than 10 within 7 minor allele frequency bins based on non-Finnish Europeans from gnomAD. Dashed line indicates genome-wide fraction
of sites. P-value is based a logistic regression where the response is a binary variable indicating if the absolute z-scores is >10 and the log minor allele
frequency is the predictor. Error bars show 95% confidence intervals.

and 44.4% with an absolute z-score between 29 and 30 for
DNase fall in a TFBS (Figure 3D, Supplementary Figure
S4). Including flanking nucleotides within 5 or 10 bp in-
creases these percentages, but for most z-score cutoffs, vari-
ants in or proximal to known TFBS motifs are a minor-
ity. While variants in TFBS motifs are enriched for vari-
ants predicted to affect DNase signal, the enrichment is
not observed when expanding beyond these proximal nu-

cleotides (Figure 3E for DNase, Supplementary Figure S3C
for ChIP-seq). We note that these enrichments are not be-
ing driven by biases in peak location since variants located
within peak intervals for each assay show a similar enrich-
ment profile as variants not located within the peak inter-
vals (Supplementary Figure S3D). Therefore, the majority
of variants with strong predicted effects on all four assays
do not fall in nor are they proximal to these known TFBS,
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indicating that DeepFIGV models a more complicated rela-
tionship between genetic variants in epigenetic signal than
is encoded by TFBS motifs alone.

Variant effects show a degree of cell type specificity as
variants with strong predicted effects on DNase, H3K27ac
and H3K4me3 are more enriched around the transcription
start site (TSS) of genes expressed in LCLs, compared to
genes not expressed in LCLs (Figure 3F, Supplementary
Figure S5). Variants with strong predicted effects are also
more enriched around the TSS of LCL-specific genes, com-
pared to tissue-specific genes from each of 52 additional
GTEx tissues (Supplementary Figure S6). Moreover, vari-
ants with strong predicted effects on DNase, H3K27ac and
H3K4me3 are enriched in CpG islands, and ChromHMM
tracks from LCLs (Supplementary Figures S7 and S8).
Finally, variants with large predicted effects are depleted
among common variants (minor allele frequency > 1%) and
are enriched in rare variants across multiple human popu-
lations, consistent with negative selection against variants
that disrupt the epigenome (Figure 3G, Supplementary Fig-
ure S9).

Concordance with molecular trait QTLs

Lead cis-QTL variants (i.e. the local variant with the small-
est P-value) for multiple assays are enriched for having
strong predicted effect on the epigenome (Figure 4, Supple-
mentary Figure S10). Variants that are lead cis-QTLs for
DNase from the current dataset (23,26) are particularly en-
riched for having a strong predicted effect on DNase and
H3K4me1, compared to variants ranked 5th–10th in the
cis-QTL analysis (Figure 4A). Similarly, variants that are
lead cis-QTLs for gene expression in an independent dataset
of LCLs from European individuals (21) are most enriched
for variants with a strong predicted effect on DNase (Fig-
ure 4B). In addition, variants that are lead cis-QTLs chro-
matin accessibility assayed by ATAC-seq in post mortem
homogenate of human brain tissue from European individ-
uals (45) are also enriched for variants with a strong pre-
dicted effect on DNase (Figure 4C). Rare variants associ-
ated with expression outliers in multiple tissue types (43)
are enriched for variants with strong predicted effects on
DNase (Figure 4D), but not ChIP-seq, compared to rare
variants not associated with expression outliers. Moreover,
somatic variants in cancer that drive changes in expression
of nearby genes are enriched for variants with strong pre-
dicted effects on DNase, H3K4me3 and H3K27ac, com-
pared to somatic variants matched for distance to tran-
scription start site that were not associated with expression
changes (15) (Figure 4E). Furthermore, candidate causal
variants for expression QTLs identified by statistical fine
mapping (42) are enriched for variants with strong predicted
effects on DNase, compared to cis variants that have lower
posterior probability (Figure 4F).

For example, rs11547207 is identified as an eQTL in
LCLs from European individuals, but this SNP is in link-
age disequilibrium with many nearby variants (Figure 4G).
Statistical fine mapping indicates that this SNP has a high
probably of being the causal variant in this region driving
gene expression variation. Although analysis of the DNase
signal from LCLs does not identify this SNP as a QTL,

DeepFIGV directly models the sequence context of this
variant and predicted a strong effect of the epigenetic sig-
nal in this region. In silico saturation mutagenesis in this re-
gion gives predictions at nucleotide-resolution and indicates
that variants within ∼5 bp are also predicted to decrease
the DNase signal while falling just upstream of a TFAP2A
TFBS (36).

DeepFIGV variant scores predict allele specific binding

The predicted functional effect of genetic variants on each
of the four epigenetic assays analyzed in DeepFIGV can
identify allele-specific binding (ASB) of TFs in indepen-
dent ChIP-seq experiments in LCLs (52,53) (Figure 5).
Heterozygous variants can be divided into three categories
based on ASB: (a) no allele specific effect, (b) ASB favoring
the reference allele and (c) ASB favoring the alternative al-
lele (Figure 5A). We evaluated the ability of DeepFIGV to
distinguish between these categories even though no allele-
specific information is included in model training. The pre-
dicted effect on the DNase signal can classify variants show-
ing ASB versus no ASB for CCCTC-binding factor (CTCF)
with an area under the precision recall (AUPR) curve of
0.202 while a random classifier gives an AUPR of 0.0493
(Figure 5B, C). This gives an AUPR increase of 0.202 –
0.0493 = 0.1527 compared to random. Given a variant with
an allele-specific effect, the predicted effect on DNase signal
is able to classify the direction of the effect (i.e. favoring ref-
erence versus alternative) for CTCF with an AUPR of 0.704
compared to a random classifier of 0.36 (Figure 5D, E). This
gives an AUPR increase of 0.344. Since the number of sites
in each category varied substantially across TFs, we con-
sider the increase in AUPR from the DeepFIGV score com-
pared to a TF-specific baseline. DeepFIGV scores show an
AUPR increase compared to random classifiers for predict-
ing ASB events and predicting ASB direction for variants
from independent assays of multiple transcription factors in
LCLs (Figure 5F) and HeLa S3 cells (Supplementary Fig-
ure S11).

Concordance with large-scale functional experiments of vari-
ant impact

Scalable experimental approaches to measure the func-
tional consequence of non-coding variants have recently
been proposed (59,63–66). These massively parallel reporter
assays (MPRA) couple thousands to millions of nucleotide
sequences to a molecular readout that can be quantified
by short read sequencing. Tewhey et al. (59) performed an
MPRA of 32K variants in LCLs by inserting 150 bp se-
quences centered at the variant into an episomal vector.
Based on experimental readout, sequences were divided
into three classes: (1) expression modulating variants that
showed significant difference in expression between refer-
ence and alternative alleles, (2) variants that drove expres-
sion but did not show allelic differences, and (3) variants
whose sequence did not drive expression in this assay. Ap-
plying predictions from the DeepFIGV models is concor-
dant with experimental readout for sequences and vari-
ants from these experiments (Figure 6). Evaluating each se-
quence based on predicted signal magnitude for the four
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Figure 4. DeepFIGV scores predict results of molecular trait QTL analysis. (A–C) Lead variants from molecular trait QTL analysis from lymphoblastoid
cell lines are enriched for SNPs with DeepFIGV absolute z-score exceeding a range of cutoffs. Enrichments are evaluated using (A) DeepFIGV scores
for 4 assays for DNase-QTLs from LCL’s of Yoruban ancestry, (B) expression QTLs from LCL’s of European ancestry, and (C) chromatin accessibility
QTL’s assayed by ATAC-seq in human post mortem brain homogenate of European ancestry. Shaded regions indicated 95% confidence intervals. (D)
Rare variants associated with gene expression outliers are enriched for DeepFIGV absolute z-score for DNase compared to rare variants not associated
with outliers. Shaded regions indicated 95% confidence intervals. (E) Enrichment of somatic variants in cancer that drive gene expression changes (15) for
strong DeepFIGV scores. (F) Candidate causal variants for expression QTLs with higher posterior probability are enriched for exceeding a DeepFIGV
absolute z-score of 10 for DNase. Enrichments are shown for skin and LCL samples from TwinsUK, and LCL samples from GEAUVIDIS (21). Shaded
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the same data identifies the same candidate causal variant identified by statistical fine mapping. In silico mutagenesis of 50bp around rs11547207 indicates
that variants at nearby positions are predicted to decrease the DNase signal. Size of letters in DNA sequence is proportional to the maximum absolute
delta at that position. Bottom panel shows TFBS motifs.

epigenetic assays shows that sequences with higher pre-
dicted signal are strongly enriched for driving expression in
this experiment compared to sequences that do not drive
expression (Supplementary Figure S12). As expected, vari-
ants with a high DeepFIGV z-score are enriched in variants
with allelic effect (i.e. class 1) compared to variants that are
in sequences that do not drive expression in this assay (i.e.
class 3) (Figure 6A). Yet, despite the challenge of small ex-
perimental effect sizes between two alleles of a variant (59),
variants found to drive changes in gene expression (i.e. class
1) are enriched for having strong predicted effects on DNase
by DeepFIGV compared to variants that do not show an
allelic effect (i.e. class 2) (Figure 6B).

Enrichment for disease risk variants and interpreting causal
variants

Integrating DeepFIGV scores with large-scale genome-
wide association studies shows that risk variants for com-
mon disease are enriched for variants predicted to impact
the epigenome (Figure 7). We applied stratified LD-score
regression (8) to evaluate the contribution of variants with
different genomic annotations to disease risk. Analysis of
19 traits identified a contribution of variants passing mul-

tiple DeepFIGV z-score cutoffs to trait heritability, even
after accounting for a baseline set of 32 genomic anno-
tations (see Methods) (Figure 7A, Supplementary Figures
S13,S14). Immune traits show the strongest contribution of
DeepFIGV variants to trait heritability since the model was
trained in LCLs (a B-cell lineage), yet there are also cell
type autonomous effects and a contribution to non-immune
traits. Further investigation of the impact of immune traits
shows that candidate causal variants identified by statisti-
cal fine mapping (10) are enriched for variants with strong
DeepFIGV effects (Figure 7B, Supplementary Figure S15).

DeepFIGV scores can elucidate the molecular mecha-
nism of a causal variant and prioritize downstream experi-
ments. Integrating DeepFIGV scores with candidate causal
variants for inflammatory bowel disease (67) shows that for
rs10748781, which has 99% posterior probability of being
the causal variant in this region and is in a Stat4 TFBS, the
alternative allele is predicted to decrease the DNase signal in
this region in LCLs (Figure 7C). This result gives a specific
cell type and biological assay to design a validation experi-
ment. Moreover, this variant disrupts a CpG site, is a known
DNA methylation QTL, and the methylation at nearby sites
is predicted to mediate the effect of the variant on disease
risk (68) (Supplementary Figure S16).
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Figure 5. DeepFIGV scores predict allele specific transcription factor binding in LCLs. (A) Diagram illustrating 3 categories of allele specific binding
(ASB): (i) no ASB, (ii) ASB favoring the reference allele, and 3) ASB favoring the alternative allele. (B) Precision-recall curve indicating performance
of absolute DeepFIGV z-score for DNase in predicting ASB of CTCF. AUPR indicates the area under the precision-recall curve. Dashed line indicates
the performance of a random predictor. (C) Density plot showing absolute DeepFIGV z-score for variants in (B) in the ABS or no ASB classes. (D)
Precision-recall curve indicating performance of DeepFIGV z-score for DNase in predicting the directionality of ASB (reference versus alternative) for
CTCF. AUPR indicates the area under the precision-recall curve. Dashed line indicates the performance of a random predictor. (E) Plot of ASB magnitude
versus DeepFIGV DNase z-score from (D). (F) Increase in AUPR of predicting ASB status for DeepFIGV scores for four epigenetic assays compared to
a TF-specific random predictor. Increase in AUPR is shown for predicting ASB versus no ASB (left) and predicting the directionality of ASB (reference
versus alternative) (center). Right panel shows the number of ASB SNPs considered in each analysis.
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Figure 6. Variants with large DeepFIGV z-scores are enriched for activity in experimental massively parallel reporter assay. (A) Variants that modulate
gene expression in this assay are enriched for having large DeepFIGV z-scores compared to variants in sequences that do not drive expression. (B) Variants
that modulate gene expression in this assay are enriched for having large DeepFIGV z-scores for DNase compared to variants that have no allelic effect in
this experiment. Shaded regions indicate 95% confidence intervals.
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Figure 7. Disease risk variants are enriched for large DeepFIGV scores. (A) Linkage-disequilibrium score regression (LDSC) (8) partitioned heritability
estimates for diseases in 4 categories. Heritability per SNP is computed for variants that exceed 5 cutoffs for DeepFIGV absolute z-score for DNase.
Error bars indicate 2 standard deviations. (B) Enrichment of candidate causal variants for autoimmune disease (10) are variants exceeding six cutoffs
DeepFIGV absolute z-score for DNase. Error bars indicate 2 standard deviations. (C) DeepFIGV elucidates molecular function of candidate causal
variant for inflammatory bowel disease (67). GWAS identifies many correlated variants associated with disease risk, but statistical fine mapping identifies
a single SNP (shown in red) as the candidate causal variant. This variant, rs10748781, disrupts a CpG site and is predicted to decrease the DNase signal
in this region. In silico mutagenesis of 50bp around this SNP indicates that variants at nearby positions are predicted to decrease the DNase signal. Size
of letters in DNA sequence is proportional to the maximum absolute delta at that position. Bottom panel shows TFBS motifs. Disease abbreviations:
AD (Atopic dermatitis), ALZ (Alzheimer’s), AS (Ankylosing spondylitis), ASD (Autism spectrum disorder), AT (Autoimmune thyroiditis), BMD (Bone
mineral density), BMI (Body mass index), CAD (Coronary artery disease), CD (Crohn’s disease), CKD (Chronic kidney disease) HbA1c (HbA1c protein
level in blood), HDL (High-density lipoprotein), IBD (Inflammatory bowel disease), JIA (Juvenile idiopathic arthritis), LDL (Low-density lipoprotein),
Liver enz (gamma glutamyl transferase), MI (myocardial infarction), MS (Multiple sclerosis), PBC (Primary biliary cirrhosis), PSC (Primary sclerosing
cholangitis), PSP (Progressive supranuclear palsy), PS (Psoriasis), RA (Rheumatoid arthritis), SLE (Systemic lupus erythematosus), SWB (Subjective
well-being), T1D (Type 1 diabetes), T2D (Type 2 diabetes), TC (total cholesterol), TG (Triglycerides), UC (Ulcerative colitis).

DISCUSSION

Translating findings of genetic studies to a molecular un-
derstanding of disease etiology and then to novel therapies
has been hindered by the challenge of interpreting the func-
tional consequence of genetic variants. There is a widely rec-
ognized need for accurate computational predictions of the
functional impact of non-coding regulatory variants (69).
Genomic annotations of the non-coding regions have gen-
erally taken one of four approaches. Evolutionary conser-
vation or selection can identify functional regions of the
genome, but consecutive nucleotides often have very sim-
ilar scores and this approach does not give cell type- and
assays-specific functional consequences (58,70,71). Epige-
netic maps across multiple cell types, tissues and assays pro-
vide a functional interpretation, but peaks from these as-
says cover millions of nucleotides (17,18). Molecular trait
QTL studies correlate genetic variants with gene expres-
sion or epigenetic signals, but interpretation of this corre-

lation analysis is limited by linkage disequilibrium and is
only applicable to variants observed in the dataset (20–22).
Most recently, deep convolutional neural networks have
been used to develop predictive models linking the genome
sequence to splicing (72), protein binding (73), and epi-
genetic signals (27,29–31). Although these deep learning
methods have been promising, their biological application
has so far been limited.

Here, we present a deep learning framework that learns
a predictive model linking DNA sequence to quantita-
tive variation in epigenetic signal and evaluates the pre-
dicted functional impact of genetic variants on multiple as-
says. This framework models quantitative variation in the
epigenome, integrates whole genome sequencing to create
a personalized genome sequence for each individual, and
trains on many experiments from the same cell type and as-
say. Because this framework fits a predictive model based
on sequence context, it is less susceptible to issues of link-
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age disequilibrium and can predict the functional impact of
variants even if they are not observed in the training dataset.

Application to epigenetic assays of open chromatin
(DNase-seq) and histone modifications (H3K27ac,
H3K4me3 and H3K4me1) from 75 lymphoblastoid cell
lines (LCL) (23,26) produces functional consequence
scores that are concordant with other genomic annotations
while capturing sequence context information beyond
known TFBS motifs. We note that potential mechanisms
of variants outside these motifs include affecting local
DNA shape, DNA methylation or nucleosome positioning
(74,75), but interpretation remains an open challenge (76).
We demonstrate that these functional consequence scores
inform molecular mechanism, are concordant with molec-
ular trait QTL analysis, are predictive of allele-specific
binding, and inform interpretation of risk variants for
common disease. Moreover, these scores can prioritize
variants for downstream experiments and indicate the
appropriate cell type and functional assay. DeepFIGV
scores are complementary to other non-coding variant
scores, and compared to DeepSea (27) identifies more
variants with extreme z-scores. (Supplementary Methods,
Supplementary Figure S17).

Yet computational prediction of functional variants re-
mains a challenging problem. DeepFIGV z-scores for
DNase are correlated (spearman rho = 0.0802, P = 5.32e–
16) with relative expression from an MPRA from the
regulation saturation challenge from the Critical Assess-
ment of Genome Interpretation (CAGI5, genomeinterpre-
tation.org) (Supplementary Figure S18). But there is sub-
stantial room for improvement. Moreover, CADD (57)
and GWAVA (60) show better performance in classifying
pathogenic from benign variants in ClinVar (77) (Supple-
mentary Figure S19). This result underscores that predict-
ing the ‘proximal’ relationship between DNA and epigenet-
ics is different that predicting the more complex relationship
between DNA and higher-level disease phenotypes.

The differing performance of the prediction and biolog-
ical enrichments across the four epigenetic assays is at-
tributable to both biological and technical factors. These
assays differ in the biological processes they measure.
DNase measures open chromatin with high signal repre-
senting protein interacting with the DNA within a nar-
row region of ∼150 bp. Thus DNase signal is largely de-
termined by the proximal DNA sequence and especially
TF binding. Histone modification ChIP-seq is more com-
plex readout of chromatin state with H3K4me3 at active
promoters, H3K27ac at active promoters and enhancers,
and H3K4me1 at active or primed enhancers. Due to spa-
tial chromatin spreading, the role of trans-factors, and
the increased width of these marks (300 bp to 1 kb),
sequence-based prediction is known to be less accurate (27).
Since genetic variants conferring disease risk or regulating
gene expression can act through a number of mechanisms
(9,20,23,26,67,69), the value of additional epigenetic assays
depends on the accuracy of a predictive model as well as the
regulatory mechanism of interest.

We note that since the current method is trained on the
continuous epigenetic signal within peak regions learned
from each assay, the method is dependent on the set of
peaks. Moreover, there is likely meaningful epigenetic vari-

ation outside of strictly defined peak regions and, indeed,
there is much interest in performing basepair-level predic-
tions rather than summarizing the epigenetic signal for
each peak (28,78). Thus although our predictions are peak-
centric, and we observe that for DNase SNPs within DNase
peaks are certainly associated with the observed basepair-
level signal (P = 6.5e–22), SNPs outside peaks are still as-
sociated with basepair-level signal P = 6.2e–5) (Supplemen-
tary Figure S20).

Despite the remarkable experimental throughput of re-
cent massively parallel report assays, these assays are lim-
ited to cell culture and they assay the function of the query
sequence either in an episomal vector or through random
insertion into the genome (59,63–66). Thus the degree to
which results from MPRAs recapitulate function in the dis-
ease relevant cell type and natural genomic context remains
unclear (65,79,80). In contrast, predictive models based on
sequence context use natural genetic variation, are extensi-
ble to multiple biological assays, and evaluate sequences in
their native chromosomal context. Moreover, they are ap-
plicable to cell culture, as well as cells from post mortem,
biopsy or blood draws to more precisely target the relevant
cell type.

The growth of large-scale resources pairing quantitative
epigenetic assays with genetic data offers an opportunity to
train rich predictive models on disease relevant cell types
(25,33,81). Finally, we have developed a public resource of
the DeepFIGV predicted functional scores for 438 million
variants observed in previous sequencing projects available
at deepfigv.mssm.edu.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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