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Abstract

Background: Glioma rates vary by demographic factors and geo-political boundaries and this variation suggests higher
glioma rates in groups of higher socioeconomic position. The primary goal of this analysis is to investigate the relationship
between glioma and county socioeconomic position using U.S. Surveillance Epidemiology and End Results (SEER) data.

Methods: Cases were individuals 25+ years diagnosed with glioma between 2000 and 2006 and residing within the SEER-17
catchment area. County-, sex-, race-, age-specific rates were created in order to investigate individual-level associations
(population data from U.S. Census 2000). A Bayesian hierarchical Poisson spatial conditionally autoregressive (CAR) model
was utilized to simultaneously estimate individual- and county-level associations while controlling for county spatial
dependence.

Results: Those residing in counties of the second, third, and fourth highest quartiles of socioeconomic position have glioma
incidence rates that are 1.10 (95% CI: 1.02,1.19), 1.11 (95% CI: 1.02,1.20), 1.14 (95% CI: 1.05,1.23) times that of the first
quartile, respectively. A CAR model properly controlled for error spatial dependence. Investigated lag times suggest year
2000 census data yields superior model fit.

Conclusion: Demographically adjusted rates of glioma are elevated in counties of higher socioeconomic position. More
well-grounded theory concerning the glioma-socioeconomic position association along with socioeconomic data collected
at multiple levels is recommended for future studies investigating this relationship.
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Introduction

Glioma comprise approximately 80% of all primary malignant

brain and central nervous system tumors in the U.S. [1]. The five-

year survival probability of individuals diagnosed with glioma

varies by subtype, but is as low as 4.7% [1]. Little is known about

the etiology of glioma, with ionizing radiation and family history

being the only identified non-genetic risk factors [2].

Data from cancer registries in the U.S. suggest that rate

differences exist across socio-demographic groups and geopolitical

boundaries [1]. The 2005–2009, average annual, age-adjusted

incidence rate of glioma was 7.2 (per 100,000 person-years) among

males and 5.1 among females, and the rate varied considerably by

race (at least two fold increase comparing whites to blacks across

several glioma subtypes) [1]. A study of glioblastoma multiforme,

the dominant and largely fatal glioma subtype, revealed similar sex

and race differences while also demonstrating higher rates among

those residing in high socioeconomic areas (rate ratio (RR) = 1.3,

95% confidence interval (CI) 1.2,1.4), even after statistical

adjustment for confounding factors [3]. A recent Swedish study

reported an increased odds of glioma among those with a higher

family income (odds ratio (OR) 1.5, 95% CI: 1.1, 2.1), adjusted for

sex, age, and geographic region [4].

Previous studies note possible associations between brain tumor

risk and occupations related to certain levels of individual

socioeconomic position (SEP); however, the direction and magni-

tude of these associations vary greatly. Grayson reported an

increased odds of glioma among U.S. Air Force officers compared

to enlistees (OR=2.1 95% CI: 1.5, 3.0) [5]. In another study,

although adult glioma risk was not associated with most white-

collar occupations, physicians, and legal and social service workers

had increased odds of glioma; OR and 95% CIs for physicians and

legal/social service workers, respectively, 3.4 (1.1, 11.1) and 2.4

(1.0, 6.0) [6]. However, blue-collar occupations were more

frequently associated with increased glioma odds.

This analysis is designed to study the relationship between

glioma and indicators of socioeconomic well-being in the U.S. A

multilevel framework is utilized to enable the proper estimation of

group-level – together with individual-level – associations with

glioma in a single model [7]. The primary aim is to assess the
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glioma burden across race, sex, and age groups while determining

whether or not glioma risk is associated with area-based SEP.

Materials and Methods

Data Description
Data were gathered from the Surveillance Epidemiology and

End Results (SEER) Program of the National Cancer Institute,

which, for the time period of these analyses, collected information

on all invasive tumors diagnosed among residents of 17 U.S.

regions [8]. These regions covered 28% of the U.S. population.

Glioma diagnoses were classified by histology codes into

groupings using the International Classification of Disease –

Oncology – Version 3 (ICD-O-3) [9]. ICD-O-3 histology di-

agnostic codes ‘9380’ thru ‘9489’ were identified as glioma (see

Table 1 for detailed histologic groupings and codes). Cases were

defined as individuals 25+ years diagnosed with glioma between

2000 and 2006 and residing within the SEER 17 catchment area.

County-, sex-, race-, age-specific rates were created to investigate

individual-level associations nested within counties (population

data from U.S. Census 2000). Alaskan registry cases were excluded

because of the vast difference in spatial scale between Alaska and

other SEER counties. Louisiana registry cases were not reported

from July through December 2005 due to hurricane Katrina;

therefore, all Louisiana cases were excluded because of this

temporal mismatch. Subgroupings registering zero population

during the study period were also excluded (N= 237). The final

subgroup sample size was 7,035 (404 counties, 2 sexes, 3 races

[white, black, other], and 3 age groups [‘‘young adult’’/25–44 yrs,

‘‘middle-age’’/45–64 yrs, ‘‘Elderly’’/65+ yrs]). (Too few cases

among non-white, non-black cases prohibited analyses of specific

additional race groups.).

County-level SEP data were obtained from SEER (as included

in SEER*Stat software and as originally collected from U.S.

censuses of population, 1990 and 2000) and linked to the county-

and demographic-specific rates. SEP data included: median

household income, percent of population with less than a high

school education by age 25 years, percent of population below

100% of the federal poverty level (FPL), percent of population

unemployed, percent of population foreign born, and percent of

population residing in urban portions of a county. These six

county-level demographic variables were gathered for both 1990

and 2000 U.S. census years.

Statistical Analysis
Principal Component Analysis (PCA) of the SEP-related

variables was utilized to reduce data dimensionality and eliminate

possibility of collinearity between county covariates [10]. PCA

analysis proceeded using a data correlation matrix and only

components with Eigenvalues greater than 1.0 were considered in

subsequent modeling. ‘Varimax’ (orthogonal) rotation was chosen

ensuring zero correlation between factors [11]. Post hoc natural log

transformation was performed for all variables except percent

urban to improve normality of the resulting score distribution.

These standardized components were used in subsequent model-

ing.

A Bayesian multilevel framework with random intercept

parameters was used to allow for differences in subgroup glioma

rates between counties. This also enabled the ability to model the

county-level random effects as a function of the SEP components

in a second level. Subgroup rates were assumed to conditionally

follow a Poisson distribution. The response was related to the

explanatory variables through a log link function (see Equation S1

for model notation).

Two basic models were sequentially built – one including

individual-level subgroupings and county random intercepts with

SEP components as covariates in a second level (hereafter, referred

to as ‘Model 1’), and another following model 1 while spatially

structuring the county random intercepts following a conditionally

autoregressive (CAR) prior distribution (hereafter, referred to as

‘Model 2’) [12,13]. Estimates of the county variables involved in

the creation of the SEP composite were also independently

examined to allow comparisons to previous literature. The

assumption of conditional independence was examined for each

model by analyzing county rate error using Moran’s I. Type-I

error of 0.05 was a priori chosen for Moran’s I, while estimate’s

Table 1. Histologic breakdown of glioma cases diagnosed within the SEER Program (17 registries), 2000–2006.

Histology (ICD-O-3 Histology Codea) Column %

Glioblastoma (9440, 9441, 9442/3) 51.0%

Astrocytoma, NOS (9400) 7.9%

Glioma, NOS (9380) 7.1%

Anaplastic astrocytoma (9401, 9411) 7.0%

Pilocytic astrocytoma (9421) 5.4%

Oligodendroglioma (9450) 5.4%

Ependymoma/anaplastic ependymoma (9391–9394) 4.2%

Embryonal/primitive/medulloblastoma (8963, 9363, 9364, 9470, 9471, 9472, 9473, 9474, 99501, 9502, 9503, 9508) 3.6%

Mixed glioma (9382) 3.1%

Anaplastic oligodendroglioma (9451, 9460) 2.4%

Diffuse astrocytoma (protoplasma, fibrillary) (9410, 9420) 1.4%

Not Brain 0.7%

Unique astrocytoma variants (9383, 9384, 9424) 0.4%

Neuroepithelial (9381, 9423, 9430, 9444) 0.3%

Choroid plexus (9390) 0.2%

aInternational Classification of Disease – Oncology – Version 3 [9].
doi:10.1371/journal.pone.0060910.t001
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95% CIs and model Deviance Information Criterion (DIC) were

used in decision making for the Bayesian model-building. Those

covariates with 95% CIs including the null (H0: bn = 0), or not

resulting in DIC decreases (compared to a model containing

everything except the examined covariate) were excluded from the

final model.

Time lag between SEP and glioma was investigated by

constructing separate models using PCA derived components

from 1990 and 2000 census variables [14,15]. Appropriate lag was

informed by comparing model fit via the DIC of the two models.

Cross-level SEP effect modification was assessed by stratifying the

final dataset (N= 7,035) on SEP quartiles and running separate

models within each stratum. Changes in individual-level median

coefficients were inspected visually and 95% CIs were compared

across strata. An individual-level covariate was deemed a con-

founder if the following two conditions were met: 1) there was

a change of at least 10% in the SEP coefficients resulting from

removal of the potential confounder from the model, and 2) the

potential confounder was associated with both glioma and SEP.

Flat prior distributions were assigned to fixed-effect regression

coefficients [i.e., coefficients , Normal (0, 1210)] and the variance

of the random effect parameter [random effect parameter variance

, gamma (0.001, 0.001)]. Relative to the precision of the data,

specifying small precisions for these prior distributions allowed the

resulting estimates to be minimally influenced by these priors (see

Gelman for details) [16]. Markov Chain Monte Carlo (MCMC)

simulation was used to obtain a stationary distribution estimating

the joint posterior distribution. Parameter convergence was

assessed visually by trace plots tracking the iterations of the

MCMC simulations.

Data management was conducted in SAS (SAS Institute Inc.,

version 9.2, Cary, North Carolina). SPSS was utilized for PCA

analysis (SPSS Inc., version 17.0.0, Chicago, Illinois). Spatial data

management and visualization took place in ArcGIS (Environ-

mental Systems Research Institute, Inc. ArcMap 9.3, Redlands,

California). Moran’s I calculations were conducted using GeoDa

(Luc Anselin, version 0.9.5-i5), and R statistical software (R

Development Core Team, version 2.9.1, Vienna, Austria) with the

BRugs package (version 3.0.3) were utilized for all Bayesian

analyses.

Results

A total of 24,230 adult (ages 25+ years) glioma cases were

diagnosed in the 17 SEER regions from 2000 through 2006 (see

Table 1 for proportions of glioma histologic subtypes). White

males had the highest observed average annual, age-adjusted

glioma incidence rate (10.47 per 100,000; hereafter, rates are

average annual, age-adjusted and are expressed as per 100,000).

White females, black males, other race males, black females, and

other race females followed with rates of 7.01, 5.21, 4.58, 3.43,

and 3.01, respectively. Glioma rates ranged from a low of 1.12 in

Socorro County, New Mexico to a high of 24.90 in Pocahontas

County, Iowa, with 7.78 as the overall rate for the study region. It

appears as if county glioma rates may geographically cluster as

high rates tended to be adjacent to one another (Figure 1).

PCA of the county SEP-related variables for both the 1990 and

2000 censuses resulted in two factors (Table 2). The factors

accounted for 84.4% (factor 1:44.0% and factor 2:40.4%) and

85.6% (factor 1:48.1% and factor 2:37.5%) of the total 1990 and

2000 county variable variation, respectively. Variables loading

most heavily on factor 1 were: percent below 100% FPL; percent

less than a high school education; median household income; and

percent unemployed. Percent foreign born, percent urban, and

median household income loaded heavily on factor 2. Factor 1 is

referred to as ‘SEP’ in subsequent analyses because variables

loading most heavily were traditional area-based socioeconomic

measures (bold variables in table 2) [17,18]. Factor 1 and factor 2

had zero correlation with one another, as noted above. Factor 2

was excluded in modeling because of its inability to confound SEP

[19]. Figure 2 provides visual evidence suggesting that PCA-

derived SEP values (year 2000) may geographically cluster.

Comparing county maps to one another suggests that county

SEP may be associated with county glioma rates as both follow

similar geographic distributions.

Estimates of the two basic models, model fit statistics, and

applicable Moran’s I results are shown in Table 3. Model 1

included individual-level covariates with county-specific random

intercepts and county SEP covariates. The model 1, year 1990

estimated rate among young adult, black, females within a typical

county was 1.56 (95% CI: 1.45, 1.68) (a typical county is one with

an estimated random intercept = 0, or a county with a glioma rate

that is similar to that of the overall rate for the entire dataset).

Estimated glioma RRs comparing SEP quartiles 4, 3, and 2 to

quartile 1 were all statistically insignificant; median estimate and

95% CI: 1.01 (0.95, 1.08), 0.96 (0.90, 1.02), and 1.01 (0.96, 1.05),

respectively. The DIC value of model 1, 1990 county SEP, was

11650. County rate error analysis yielded a Moran’s I P=0.017,

indicating statistically significant spatial dependence.

Model 1, year 2000, estimated a typical intercept of 1.40 (95%

CI: 1.30, 1.51). Individual level RR estimates differed negligibly

between both decennial census models. Those individuals residing

in counties of the fourth, third and second SEP quartiles had

estimated rates that were 1.19 (95% CI: 1.13, 1.25), 1.15 (95% CI:

1.09, 1.21), and 1.13 (95% CI: 1.08, 1.19) times that of individuals

in the first quartile of SEP, respectively, adjusting for age, race,

and sex. Model 1, year 2000, DIC was 11620. Moran’s I of county

rate error yielded P=0.021.

Model 2 followed the framework of model 1 while spatially

structuring the random intercepts according to a CAR prior

distribution. As in model 1, individual-level RRs did not change

between models using the two census years. The estimated

intercept of model 2, year 1990 SEP, was 1.76 (95% CI: 1.43,

2.02). Each of the SEP quartiles had 95% CIs that included the

null; median estimate and 95% CI: 0.85 (0.73, 1.00), 0.83 (0.69,

1.08), and 0.81 (0.61, 1.20), for rate comparisons between quartiles

4, 3, and 2, with quartile 1, respectively. Model 2, year 1990 DIC

was 11630. Moran’s I of county rate error yielded P=0.357,

suggesting spatial independence.

Model 2, year 2000 county SEP, estimated a typical intercept of

1.42 (95% CI: 1.30, 1.55). Those individuals residing in counties of

the fourth, third and second SEP quartiles at time of diagnosis had

estimated rates that were 1.14 (95% CI: 1.05, 1.23), 1.11 (95% CI:

1.02, 1.20), and 1.10 (95% CI: 1.02, 1.19) times that of individuals

in the first quartile of SEP, respectively, adjusting for age, race,

and sex. Rate ratios of the first, second and third quartiles (versus

fourth) for percent unemployed, percent less than a high school

education, and percent impoverished were generally similar in

magnitude, trend and statistical significance to the SEP compo-

nent (between 1.17 to 1.05, respectively). Rate ratios of the second,

third and fourth quartiles (versus first) for median household

income were lower compared to the SEP component, did not

follow a clear pattern, and were not statistically significant

(between 0.95 to 1.05, respectively) (results not shown in tables).

Model 2, year 2000 model DIC was 11620. Moran’s I of county

rate error yielded P= 0.117.

Due to superior fit, year 2000 census data was used for

confounding and effect modification evaluation. There was only

Area-Based Socioeconomic Position and Glioma
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slight (,7%) confounding of the SEP-glioma relationship by

individual-level factors. Cross-level effect modification was exam-

ined by stratifying counties on SEP quartiles and refitting models

including individual-level covariates with county random inter-

cepts. All 95% CIs overlapped across SEP strata. Glioma RRs for

whites monotonically increased with increased SEP strata; median

and 95% CI: 1.86 (1.68, 2.05), 2.02 (1.80, 2.27), 2.14 (1.84, 2.51),

and 2.24 (1.92, 2.61) for SEP quartiles 1, 2, 3, 4, respectively. RR

estimates comparing middle-aged to young adults stratified by SEP

quartiles were 2.52 (2.36, 2.68), 2.35 (2.19, 2.52), 2.43 (2.26, 2.60),

and 2.24 (2.10, 2.40). RRs for males, other races, and elderly

overlapped appreciably between SEP strata, suggesting no effect

modification.

Figure 3 is a visual summary of estimates derived from model 2,

year 2000, enabling the simultaneous examination of the

explained individual-level and total county-level sources of

variation. Random intercepts were chosen based on their rank-

ordered position among all 404 county random intercepts. Each of

the 10 example counties represented the median random intercept

value among each of the 10 random intercept deciles (D) (e.g.,

20th, 61st, 101st, …, 384th, for D1, D2, D3, …, D10). Bars were

shaded according to county SEP quartile. The majority of

variation explaining glioma rates occurred among the demo-

graphic subgroups, as indicated by the larger range of log rate

values across the X-axis. The increase in glioma rates as a function

of increased county random intercept was less pronounced, but

still appreciable.

Discussion

These analyses demonstrate a modest, yet statistically signifi-

cant, association between county-level SEP and individual glioma

incidence within the large and heterogeneous group of 17 SEER

cancer registries. The best fitting model demonstrated a glioma

incidence rate among those living in respective counties of the

fourth, third and second highest quartiles of SEP that was 1.14,

1.11, and 1.10 times the rate of those living in first quartile

counties. These estimates were statistically adjusted for individual

sex, race, and age, despite no appreciable confounding by these

factors. Despite relatively small variability in county glioma rates,

this variability was statistically significantly associated with county

SEP.

Results from three reports of glioma risk associated with

similarly measured SEP constructs are consistent with results from

the present analyses. Recently, Wigertz, et al. reported that those

with family incomes in the highest quartile had 1.5 times the odds

of glioma (95% CI: 1.1, 2.1) compared to those in the lowest

quartile, adjusted for sex, age, and geographical region [4].

Although the confidence limits of ORs reported by Wigertz, et al.

Figure 1. Age-adjusted County Glioma Incidence Rates per 100,000 Within the SEER-17 Study Area, 2000–2006.
doi:10.1371/journal.pone.0060910.g001

Area-Based Socioeconomic Position and Glioma

PLOS ONE | www.plosone.org 4 April 2013 | Volume 8 | Issue 4 | e60910



overlap with those reported here, the difference in magnitude may

be due to differences in SEP characterization accuracy; our county

SEP measures are less accurate than are those based on individual

income and education. Chakrabarti, et al. estimated glioblastoma

mutliforme RRs that are similar to those estimated here; those

living in census tracts of the highest SEP tertile had 1.3 times (95%

CI: 1.2, 1.4) the rate compared to those in census tracts of the

lowest tertile [3]. However, despite the use of area-based measures,

a single-level regression framework was employed, underestimat-

ing standard errors associated with census tract-based SEP

estimates [7].

Both models utilizing 1990 decennial census information

resulted in null associations between SEP and glioma as well as

lower estimates of model fit compared to analogous models

utilizing data from the 2000 census. Models utilizing the 2000

census data demonstrated monotonic relationships between

county SEP and glioma. If these associations are true, insight

could be gathered into the mechanisms giving rise to the perceived

associations between glioma incidence and area SEP.

Temporally, the mechanism driving the association between

year 2000 county SEP and individual glioma diminishes when

county SEP from a decade earlier is used. This can be explained

by a number of processes taking place, each providing a different

picture of the SEP-glioma relationship. First, a specific latency

period may explain the results. Attempts to model glioma by the

identical construct at latencies greater than 10 years may result in

null effects because the window of heightened risk due to exposure

Figure 2. Socioeconomic Scores (2000 U.S. Census Bureau) for Counties Within the SEER 17 Study Area.
doi:10.1371/journal.pone.0060910.g002

Table 2. PCA Factor Loadings of Six SEP Measures of
404 SEER-17 Counties, 1990 and 2000.

Factor 1 (‘‘SEP’’) Factor 2

1990 2000 1990 2000

% Variance Explained 44.0 48.1 40.4 37.5

% ,100% Federal Poverty Linea 0.855 0.936 20.411 20.219

%,High School Educationa 0.748 0.816 20.453 20.328

Median Household Incomea 20.672 20.721 0.669 0.617

% Unemployeda 0.922 0.898 0.081 0.183

% Foreign Borna 20.157 20.090 0.906 0.925

% Urban 20.150 20.111 0.881 0.908

aLog transformed prior to PCA analysis.
Bold: Variables loading heavily on respective factors.
Abbreviations: PCA, Principal component analysis; SEER, Surveillance
Epidemiology and End Results; SEP, Socioeconomic position.
doi:10.1371/journal.pone.0060910.t002
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has passed. Second, the window of heightened risk relating county

SEP to glioma could indeed be present for periods longer than 10

years, but the length of time between the cross sectional exposure

measure and glioma diagnosis may lead to exposure misclassifi-

cation bias, due to factors such as migration of glioma cases across

counties of varying SEP. Assuming that this misclassification was

non-differential (i.e., a similar pattern of glioma cases moved from

high to low counties as did those moving from low to high) and

that the county SEP represents an integral or structural construct,

estimates would then be biased towards the null (models 1 and 2,

1990 census data) [20,21]. The magnitude of this possible bias is

clearly immeasurable without knowledge of residential histories of

glioma cases. A third situation may arise in which county SEP

ranks change from the 1990 to 2000 census. Indeed, counties did

move in and out of SEP quartiles comparing 1990 and 2000

census data. Approximately 15.5% of the 404 counties moved

from a higher to lower SEP quartile, 71.0% remained in the same,

and 13.5% moved from lower to higher SEP quartiles. Moreover,

differential misclassification may exist as counties with positive

random intercepts have patterns of SEP change that differ from

those with negative random intercepts. Of negative random

intercept counties, 12.4%, 80.9% or 6.7% increased, stayed the

same, or decreased SEP quartiles, respectively, from the 1990 to

2000 census. Comparatively, 16.5%, 68.3%, or 15.2% positive

intercept counties increased, stayed the same, or decreased SEP

quartiles. This type of exposure misclassification may be biasing

the 1990 county SEP model estimate either direction from the null

[19]. Therefore, one of the conditions for differential misclassifi-

cation of 1990 county SEP has been demonstrated to exist.

However, assessment of magnitude and direction of this bias are

not possible with these data.

Cross level effect modification may be occurring, as some race-

and age-related glioma RRs varied when stratified by county SEP

quartile. For example, RRs comparing whites to blacks increased

monotonically from 1.86 to 2.02, 2.14, and 2.24 for the respective

stratifications of counties in SEP quartiles 1, 2, 3, and 4, albeit,

with moderate overlap of confidence intervals. This may suggest

that the rate of glioma comparing whites to blacks varies

depending on county SEP, with a widening of the glioma disparity

between whites and blacks in counties with higher SEP. Similarly,

the glioma RRs vary appreciably comparing middle-aged adults to

young adults when stratified on SEP quartile; however, the trend

was not monotonic (glioma RR for SEP quartiles 1–4; 2.52, 2.35,

2.43, and 2.24, respectively) and confidence intervals of the 1st and

4th SEP quartiles slightly overlapped, suggesting that the ratio of

glioma incidence rates comparing middle-aged to young adults

among counties of the lowest SEP quartile is larger than the same

comparison in counties of the highest SEP quartile, adjusting for

Table 3. Estimated coefficients, 95% credible intervals, model fit statistics, and Moran’s I values for the two basic models
estimating glioma risk using 1990 and 2000 census data.

Model 1a Model 2b

1990 2000 1990 2000

Parameter RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI)

Individual level

Interceptc 1.56 (1.45,1.68) 1.40 (1.30,1.51) 1.76 (1.43,2.02) 1.42 (1.30,1.55)

Sex

Female Reference Reference Reference Reference

Male 1.49 (1.46,1.53) 1.50 (1.46,1.53) 1.50 (1.46,1.53) 1.50 (1.46,1.53)

Race

Black Reference Reference Reference Reference

White 2.01 (1.89,2.14) 2.00 (1.88,2.13) 1.99 (1.87,2.12) 1.99 (1.86,2.11)

Other 0.89 (0.82,0.97) 0.88 (0.81,0.96) 0.89 (0.82,0.97) 0.89 (0.81,0.96)

Age

25–44 yrs Reference Reference Reference Reference

45–64 yrs 2.38 (2.30,2.46) 2.38 (2.30,2.46) 2.37 (2.29,2.46) 2.37 (2.29,2.46)

65+ yrs 4.87 (4.71,5.04) 4.87 (4.71,5.04) 4.86 (4.69,5.02) 4.86 (4.69,5.03)

County level

Socioeconomic Quartile

Lowest Reference Reference Reference Reference

2nd Lowest 1.01 (0.95,1.08) 1.13 (1.08,1.19) 0.85 (0.73,1.00) 1.10 (1.02,1.19)

2nd Highest 0.96 (0.90,1.02) 1.15 (1.09,1.21) 0.83 (0.69,1.08) 1.11 (1.02,1.20)

Highest 1.01 (0.96,1.05) 1.19 (1.13,1.25) 0.81 (0.61,1.20) 1.14 (1.05,1.23)

DIC 11650 11620 11630 11620

Moran’s I (P-value) 0.073 (0.017) 0.066 (0.021) 0.010 (0.357) 20.041 (0.117)

aIndividual level covariates with a county random intercept+socioeconomic county covariates in a second level.
bModel 1+ conditionally autoregressive prior on random intercepts.
cModel intercepts may be interpreted as estimated rates per 100,000 among the young adult, black, female subgroup for a ‘typical’ county (a county with estimated
random intercept = 0).
Abbreviations: CI, Credible Interval; DIC, Deviance Information Criterion; RR, Rate Ratio.
doi:10.1371/journal.pone.0060910.t003
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sex and race. Further analyses are needed to confirm the

possibility of cross-level modification as these estimates may be

too unstable and were conducted as part of secondary analyses.

Group-level factors that are contextual can be described as an

‘‘aggregate of attributes measured at the individual level.’’ [21]

County-level SEP is a construct that has origins in the

measurement of another set of lower-level attributes. Discussions

on the topic are rooted in ecologic fallacy and have noted that the

group construct – and association with the outcome – is rarely

simply an aggregate of the individual analogs and its association

with that outcome [22–25].

Conclusions based on a true effect would be more tenable had

information on individual-level SEP been available and included

in the present analysis. After statistical adjustment for individual-

level SEP, significant county-level SEP estimates arguably could

not be the result of SEP relationships occurring at the individual-

level. Our results may have been due to a direct psychosocial effect

[26] or an integral/structural [21] phenomenon which county

SEP proxied such as healthcare accessibility. It is also possible that

our results are related to previous literature demonstrating links

between glioma risk and occupation. Higher county SEP may be

related to higher percentages of employment in white-collar and

professional occupations. Support for this may be found in the

positive associations between education, employment and glioma

rates. However, lack of individual-level data and any substantial

theory mechanistically explaining these observed associations

between SEP gradients – individual or group – and glioma,

precludes any conclusions pertaining to the true magnitude and

public health significance of these associations.

Our case definition included many glioma subtypes which

exhibit disparate characteristics. Glioma researchers have noted

flaws with heterogeneously classifying disease [27–29]. The

inability to examine specific glioma subtypes may be a slight

weakness; however, the low incidence of glioma and Poisson

nature of these analyses prohibited division of glioma into more

homogenous histologic subtypes. It should be noted that the

estimated glioma associations may have arisen from a process

similarly affecting all glioma subtypes, or a representation of the

associations belonging to the most dominant glioma subtype

within this group (i.e., glioblastoma).

The relatively small proportion of explained variability due to

county effects underscores the possibility that the observed SEP-

glioma association could be due to unmeasured individual-level

confounding. This finding was previously suggested by other

researchers who noted the relatively small between group

variability of brain tumor rates [28,30]. Ionizing radiation and

genetic mutations are the only definitive ‘‘causes’’ of glioma [27–

29]. Including all available individual factors that could possibly

confound the glioma-SEP relationship attenuated the county SEP

estimates between 2.6%–6.5%. The relatively tight confidence

Figure 3. Bar Chart Summary of Estimated Log Rates by Subdemographic and County Random Intercept Decilea,b. aUnstandardized
rates produced from model 2, year 2000 estimates. bDeciles (D1–D10) represent the median random intercept values within each decile of random
intercepts.
doi:10.1371/journal.pone.0060910.g003
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bounds of these estimates about the posterior median value were

widened close to the null when proper control of error spatial

dependence was made. Despite this preponderance towards the

null with adjustment, one must keep in mind that if the

associations between SEP (either individual or area-based) and

glioma result from confounding, the confounder must satisfy the

conditions of a confounder: 1) be related to glioma incidence, 2) be

related to SEP, and 3) not mediate the SEP-glioma relationship

[19]. Moreover, this confounding association would seemingly cut

across multiple geographic scales as the SEP-glioma association

has been reported at the national [28–30], postal code [31], census

tract [3], individual [4,32], and now county levels.

The leading candidates serving as a common confounder to

these multi-scale associations are differential diagnosis and

reporting of glioma [27–30,33,34]. Glioma may be associated

with SEP due to increased access to healthcare; those individuals

of higher SEP are able to access healthcare more readily, leading

to increased incidental diagnoses of glioma. The lack of individual-

level information on health insurance status, healthcare utilization,

or other measures related to healthcare access limits the ability to

ascribe causal inference to the SEP-glioma relationship. One study

identified the disproportionate diagnoses of glioblastomas in

Connecticut compared to other SEER registries [35]. Diagnostic

bias due to incidental tumor discovery has also been noted for

diagnoses of meningioma [36], a tumor that does not appear to be

associated with SEP [4,27,31,37]. It should be noted, however,

that there has been no rigorous analysis of SEP and meningioma

rates, and such an analysis may further inform the differences

between meningioma and glioma in terms of association with SEP.

Ascertainment bias caused by a lack of universal standards in

cancer diagnosis and reporting strategies by both physicians and

registries is another possible explanation of the SEP-glioma

association. However, as Surawicz [34] points out, this bias may

have less of a detrimental effect on cancers like glioma. Malignant

glioma are characterized by high case completion percentages

compared to other cancer types [38,39]. Percent of complete cases

is a measure routinely calculated by cancer registries that estimates

the number of unreported cases which have not been under-

reported as compared to national figures [38]. The high quality

and completeness of the SEER registry decreases the possibility of

ascertainment bias by cancer registries..

The strengths of this analysis lie in the methodologic rigor taken

to yield the least biased and most accurate estimates with the

available high quality SEER registry data. Much of the previous

research suggesting or reporting on similar SEP-glioma associa-

tions either did so using crude proxies [5,40,41], as a secondary

aim [4], or in a methodologically biased fashion by conflating data

of different geographic scales and making inference on the

individual level [3,31,37] – providing the possibility for ecologic

fallacy and/or underestimating standard errors [7,24]. This was

the first glioma-SEP study utilizing a multilevel model to explicitly

investigate the possibility of previously suggested between group

variability [28–30], investigating a time lag between SEP and

glioma, investigating error spatial dependence, and reporting on

possible cross-level effect modification.
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