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The recent breakthrough in the field of protein structure prediction shows the relevance of using
knowledge-based based scoring functions in combination with a low-resolution 3D representation of
protein macromolecules. The choice of not using all atoms is barely supported by any data in the litera-
ture, and is mostly motivated by empirical and practical reasons, such as the computational cost of
assessing the numerous folds of the protein conformational space. Here, we present a comprehensive
study, carried on a large and balanced benchmark of predicted protein structures, to see how different
types of structural representations rank in either accuracy or calculation speed, and which ones offer
the best compromise between these two criteria. We tested ten representations, including low-
resolution, high-resolution, and coarse-grained approaches. We also investigated the generalization of
the findings to other formalisms than the widely-used “potential of mean force” (PMF) method. Thus,
we observed that representing protein structures by their B carbons—combined or not with Ca—provides
the best speed-accuracy trade-off, when using a “total information gain” scoring function. For statistical
PMFs, using MARTINI backbone and side-chains beads is the best option. Finally, we also demonstrated
the necessity of training the reference state on all atom types, and of including the Ca atoms of glycine

residues, in a CB-based representation.
© 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1. Introduction

The protein folding ranks among the most important unsolved
problems in science [1]. For fifty years, since the Nobel Prize-
winning work of C. B. Anfinsen for demonstrating the thermody-
namic spontaneity of this process, researchers have wondered
how to predict the three-dimensional conformation of the
polypeptide chain, based on the sole amino acid sequence. This sci-
entific question could even be dated ten years earlier, since the X-
ray crystallographic study of the structure of myoglobin, by M. F.
Perutz and J. C. Kendrew, also awarded with a Nobel Prize in Chem-
istry. The critical nature of the problem arises from the facts that (i)
protein function results from the 3D structure, through dynamical
features and interactions with other biomolecules, and (ii) the
experimental determination of native conformations remains chal-
lenging, despite the recent advances in cryogenic electron micro-
scopy techniques. Therefore, the development of a computational
method that could accurately predict protein fold would have a
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profound impact across all areas of biology, from fundamental to
applied research.

The prediction of protein structure from sequence requires
sampling the conformational space, using an algorithm guided by
a scoring function. Exploring all possible conformations is not
computationally feasible, as their number would be ~103° for an
average size protein of 100 residues [2]. Thus, different sampling
approaches have been employed [3]: optimization and heuristic
algorithms, in ab initio modeling; the detection of experimental
structures used as templates compatible with the sequence, in
comparative modeling; and the assembly of structural fragments
in de novo modeling. For all methods, the objective is to find a
structure that minimizes a cost function. The latter is designed to
approximate Gibbs free energy, which is supposed to be minimal
for the native conformation—by Anfinsen’s hypothesis [4]. The
impossibility of an exhaustive conformational sampling prevents
any rigorous calculation of the entropy change of the system
(protein chain and solvent) during the folding reaction. As a result,
physical energy functions rarely meet success, most likely
because they account for the entropic contribution to the protein
folding (e.g. [5,6]) in a way that is either too approximate or
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computationally inefficient. Statistical potentials, as opposed to
physical potentials, are scoring functions obtained from statistics
on native (i.e. experimental) protein structures—thus also referred
to as knowledge-based potentials. Initially devised by R. L. Jernigan
and S. Miyazawa [ 7], this type of scoring functions was later devel-
oped by M. J. Sippl, with the now widely-used “potential of mean
force” (PMF) method [8]. Being irrelevant to Boltzmannian statisti-
cal mechanics, this method should be understood as a consequence
of Bayesian probability theory [9-12]. Statistical PMFs have contin-
uously proven useful in numerous applications, which all boil
down to predicting the lowest-energy conformations: protein fold-
ing [13], molecular docking [14], protein stability [15,16] or, most
recently, protein solubility and aggregation [17,18]. Thus, over the
past three decades, statistical PMFs have been successfully used, be
it directly or included among the terms of so-called “physics-
based” energy functions, such as that of the fragment-based pre-
diction method Rosetta [19].

With the advent of machine learning techniques, composite
scoring functions have been created by combining statistical PMFs
based on different structural features (e.g. interatomic distances,
dihedral angle values, or solvent accessibility), the weight of each
component being determined by methods such as support-vector
machines [20,21]. Artificial neural networks have also been used
to optimize single-feature statistical PMFs [22]. Most recently,
researchers have proposed AlphaFold, a deep learning-based
method capable of predicting protein structure from sequence
more accurately than do the research groups competing in the Crit-
ical Assessment of Structure Prediction (CASP) experiment [23].
The scoring function of AlphaFold is a statistical PMF—which
depends on interatomic distances and torsion angles—built by
training a convolutional neural network on both native protein
structures and multiple sequence alignments (MSAs). In this way,
the generated the scoring function is improved by incorporating
evolutionary information.

A key factor in predicting protein folding is the structural repre-
sentation of the problem. Interestingly, AlphaFold uses a low-
resolution one, by only considering B-carbon atoms of the protein
molecule. This could be justified by the need for a scoring function
that would be fast enough for a sufficient sampling of the confor-
mational space, while maintaining high accuracy. Nevertheless,
this choice is not explained within the article, nor connected to
any published reference. It appears that D. T. Jones, one of the
AlphaFold authors, has previously published a CB-only statistical
PMFs used for positioning transmembrane domains within the
lipid bilayer [24]. Still, such examples are too scarce and specific
for accepting the advantage of this representation as common
knowledge. As far as we know, there is no work in the literature
that compares the performance of low- and high-resolutions in
building statistical scoring functions. In this report, we address this
question of the structural representations for exploring the config-
uration space of protein chains, by generating multiple distance-
dependent statistical PMFs and studying their differences in terms
of speed and accuracy.

2. Methods
2.1. Representations of protein structure

A total of 10 structural representations, including both low- and
high-resolutions, were tested (Table 1). We also tested coarse-
grained models, as defined for the MARTINI force field [25,26].
The latter represents protein structures with backbone beads
(BB) and side-chain beads (SC), the number of which varies
depending on the residue type.
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Table 1

The selected representations of protein structure, categorized according to their
resolution. The third column presents the number of atom pairs counted for all the
native structures of the training dataset.

Category Atom type Total pairs
Low-resolution Cal 7,467,788
CB 7,204,580
Ca + CB 27,421,952
backbone 119,826,211
backbone + CB 180,909,149
High-resolution all-atom 440,201,439
side-chains 104,858,474
Coarse-grained BB 7,545,600
Ne 12,820,176
BB + SC 35,001,152

For the sake of completeness, we included an unusual “side-
chain-only” representation, so that the information content of
the side-chain atoms can be assessed in a direct manner, rather
than by deduction—ie. by comparing the all-atom- and
backbone-based results. Fig. 1 illustrates the different representa-
tions, with a protein from the testing set described below. For
the CB-only representation, the glycine residues were represented
by their Co. Therefore, the difference between the Co and CP rep-
resentations regarding the number of atom pairs may stem from
missing CB atoms and/or a threshold effect: for a “XXX” residue,
the “XXX-Ca to GLY-Co” distance may be below the upper limit,
while the “XXX-CB to GLY-Ca” distance may exceed the threshold
and, thus, be discarded. A CB-only representation that excludes
glycines has also been used in this study and its number of atom
pairs was 6,275,363.

2.2. Scoring functions: Functional forms

To evaluate the different structural representations, we built
interatomic statistical potentials following a Bayesian formulation
of Sippl’s PMF, similar to that described in AlphaFold [23]—minus
the deep learning on MSAs. Thus, two distance distributions were
derived from a set of native structures: one is conditioned on the
residue types of the atom pair (conditional model, M;), whereas
the other is not (background model, M>, the so-called “reference
state”). The score of a protein conformation is then calculated as
the negative log-likelihood ratio of the distances under the statis-
tical models M; and M, summed over all pairs of atoms i, j:

o)

lj l?éj

where P(d;|M;) and P(d;;|M,) are the observed probabilities for two
atoms i and j to be separated by a distance d, with and without con-
sideration of the atom types, respectively. Often improperly labeled
“energy”, the score actually measures the relative support of the
statistical models M; and M5, by the distances observed in the pro-
tein conformation evaluated. Thus, the more negative the score, the
more the assessed structure supports a native distribution of inter-
atomic distances (M;), over a random one (M,). This means that the
score does not estimates the free energy of the protein fold, but it
can be roughly interpreted as such (i.e. the lower the better). Rather
than distance histograms, we used kernel density estimations to
compute these frequencies. The bandwidths of the Gaussian kernels
were selected using Scott’s rule-of-thumb [27]. The distances were
then discretized into bins of 0.5 A. Residues separated by less than 3
positions in the sequence were not processed, and distance cutoffs
of 17.0 A and 15.0 A were applied for the training and scoring pro-
cedures, respectively.

du‘Ml)

P(d,{M) (1)
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Fig. 1. Structure of the peptidoglycan hydrolase RipA, from Mycobacterium tuberculosis H37Rv (PDB code: 3ne0), in increasing-resolution order: (A) Ca, (B) CB, (C) Ca. + CB, (D)
backbone, (E) backbone + CB, (F) side-chains, (G) all-atom. The MARTINI coarse-grained model (H) is represented with backbone beads in black and side-chain beads in white.

(I) Cartoon representation of the protein.

Recently, we have challenged the statistical and physical valid-
ity of such logarithm-based scoring functions [28]. In this previous
work, we presented a new method named “total information gain”
(TIG) and demonstrated both its theoretical and practical advan-
tage over the statistical PMFs. Here, to verify whether our conclu-
sions about the different representations can generalize to
alternative equations, the benchmark also includes the TIG score,
which simply consists of replacing the log-likelihood ratio in Eq.
(1) by a relative difference calculated as:

P(d;j|M1) — P(dj|M>)  P(dy|M;)

P(dy|M>) -

- -1
P(dy|Ma)

(2)

This scoring function was implemented by modifying the
MyPMFs algorithm [29] and by using the same parameters and
dataset as for the statistical PMFs.

2.3. Training and testing datasets

The scoring functions have been trained on a non-redundant
(sequence identity < 20%) set of 1917 protein chains, which was
selected for our previous work [28]. All the native structures were
determined by X-ray crystallography, with a resolution < 1.6 A and
a R-factor < 0.25. Importantly, this dataset was filtered by using
PISCES [30,31] (also with a 20% identity cutoff), to ensure indepen-
dence from the testing dataset. The latter is the 3DRobot bench-
mark [32], which contains 300 models for 200 single-domain
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proteins. With the native conformations, this represents a total of
60,200 structures. This dataset has been specifically designed for
benchmarking purposes and ensures a balanced evaluation of the
performance, as (i) it is made of non-homologous proteins, and
(ii) each of the 200 native structures has been uniformly altered
to generate 300 decoys [32]. Four subsets of the 3DRobot dataset
have been defined, based on the structural similarity with the
native conformation, as measured by the TM-score [33]. Thus,
“near-native”, “good”, “medium”, and “poor” quality models are
defined by three TM-score thresholds at 0.8, 0.6, 0.4, respectively.
Finally, the protein structures of both the training and testing data-
sets were converted into MARTINI coarse-grained models, by using
the Python script “martinize.py” (version 2.6) [34]. It ran success-
fully for the all the decoys of 3DRobot. For some native structures,
however, the program threw an error due to missing atoms in the
PDB file. This was corrected by using re-refined and rebuilt struc-
tures from the PDB-REDO database (https://pdb-redo.eu/) [35,36].

2.4. Performance assessment

The performance of each structural representation was assessed
by the capacity of the corresponding scoring function to rank pro-
tein models according to their true quality (“ground truth”), the
latter being measured by the TM-score to the native conformation.
Thus, three evaluation procedures have been implemented. For the
first one, all pairs of models from the 3DRobot set were ranked by
each scoring function, and the accuracy was calculated as the
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proportion of correct rankings. As trying to distinguish between
very similar models would be meaningless, a minimum difference
in terms of similarity to the native structure was set to 0.1 TM-
score. For the second evaluation procedure, the correlation
between the predicted and the true model qualities—i.e. the corre-
lation between the scoring function and the TM-score—was mea-
sured for each set of 300 decoys from 3DRobot. The Pearson,
Spearman’s rank, and Kendall’s rank correlation coefficients were
computed and averaged over the 200 proteins. It should be noted
that this second evaluation allows comparison with results
obtained independently for other state-of-the-art model quality
assessment programs [21]. Finally, the third procedure concerns
the average ranking (as predicted by the scoring function) of struc-
tures belonging to the ‘“near-native” and “good” models, as
described above. For these two categories, the higher the rank,
the better. This test was also applied to the “poor” models, for
which the lower the rank, the better. The statistical significance
of the observed differences between accuracies was determined
by com- paring the distributions of correct and wrong rankings,
using the Wilcoxon signed-rank test, with an o error of 0.05.

Along with accuracy, speed is the other performance criterion
for selecting a representation of protein structure. Therefore, for
each scoring functions, the time taken to score the 60,200 models
from 3DRobot was measured. The computations were performed
on a personal computer with an Intel® Xeon™ Silver 4116 CPU at
2.10 GHz and 16896-KB cache size, running the Linux Ubuntu
20.04 LTS operating system. The Bash command “time” was used
to measure the CPU time used, which is the sum of the “sys” and
“user” output values.

3. Results and discussion
3.1. Accuracy benchmark

When devising a scoring function to evaluate the folds found by
sampling protein conformational space, accuracy is the primary
criterion. Here, we have compared the accuracy of statistical
potentials based on 10 different representations of protein struc-
ture, and following 2 different formalisms (Table 2). For the near-
native and good models, the statistical PMF performed the worst
with the Co. The use of CB resulted in a dramatic improvement
(near-native = +15.1%; good = +5.5%) and the Ca + CPB further
increased the accuracy significantly. Using the four backbone
atoms (N, Co, C and O) placed the scoring function in between
the Ca- and CB-based ones. For the near-native category, the addi-
tion of CB to the backbone representation did not outperform the
Cp-only one, but it did for the good models. For both categories,
the exclusive use of side-chains ranked second among the seven
atomic representations, while the all-atom one ranked first—with
88.0% and 85.8% of correct rankings, for the near-native and good

Table 2
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categories, respectively. The MARTINI backbone beads “BB”, which
are approximately as numerous as the Co and CB atoms (Table 1),
performed only slightly better than the Ca. However, the side-
chains beads “SC” equaled the CB-only representation. Finally,
the statistical PMF using of all MARTINI beads ranked second out
of ten, only topped by the all-atom representation.

By looking at the four model qualities, three observations can be
made about statistical PMFs: (1) the accuracy decreases with the
model quality; (2) the accuracy increases with the number of
atoms and beads in the structural representation; (3) observations
1 and 2 do not apply to the Ca, backbone, backbone + CB, and back-
bone beads representations. The first observation is simply due to
the training on native protein conformations, which made the
resulting statistical potentials best adapted to near-native predic-
tions. Assessing poor models would have required interatomic dis-
tance distributions derived from protein structures of the proper
quality (see also Section 2.2). The second observation is also intu-
itive, as it shows that using a larger amount of informative data
makes the quality assessment more accurate. The third observa-
tion is related to the strong correlation between the spatial coordi-
nates of backone atoms. Thus, their interatomic distances carry
more redundancy than information, which deteriorates the perfor-
mance of the scoring functions. Compared to Sippl’s PMF, the TIG
formalism has been developed as a better quantification of Baye-
sian information [28]. Strikingly, we see here that TIG’s accuracy
suffers more than PMF’s from the low information content of the
backbone representation—thus producing the two worst accura-
cies of the entire benchmark, for the backbone and backbone beads
(55.7% and 54.3%, respectively). Moreover, Ca, CB, and Ca + CB
yielded better results with the TIG score, as it better incorporates
the information of these atoms. However, this formalism seems
incompatible with the amount of information carried by protein
side-chains, as the side-chain-only and all-atom representations
displayed poor performance. These conclusions were confirmed
by the results of the rank prediction test (Table 3).

To investigate whether the accuracy of each structural repre-
sentation depends on the secondary structure content, we have
divided the 200 proteins of 3DRobot into three subsets, based on
CATH (version 4.3.0) [37] classes: “Mainly Alpha” (n = 60), “Mainly
Beta” (n = 53), and “Alpha Beta” (n = 86)—the decoys of PDB 3a38A
have been discarded, as this structure belongs to the “Few Second-
ary Structures” class. Thus, it appears that the structural class has
some influence on the order by which the ten representations rank,
for both PMF and TIG formalisms (Fig. 2). This is particularly true
for the backbone, backbone + CB, and backbone beads representa-
tions, which perform poorly with the Mainly Alpha structures,
while being substantially more accurate with the Mainly Beta ones.
Given that the secondary structure elements are assigned based on
backbone atoms, observing the most important differences on
these backbone-based representations was not unexpected. The
present results indicate that the backbones of Mainly Beta proteins

Accuracy in ranking models pairwise (n = 60,200) of the different protein structure representations. A random ranking would yield a 50.0% accuracy. A model quality labeled
“near-native”, “good”, “medium”, or “poor” corresponds to TM-score intervals [1.0, 0.8[, [0.8, 0.6[, [0.6, 0.4[, or [0.4, 0.0], respectively.

Accuracy (%)

Model quality Scoring Co Cp Co + CB backbone backbone + CB side-chains all-atom BB SC BB + SC
Near-native PMF 67.8 829 84.7 70.9 79.4 85.7 88.0 70.8 82.7 86.5
Good 70.6 76.1 80.6 75.5 80.1 82.5 85.8 71.4 77.5 83.5
Medium 71.2 67.8 74.5 71.9 74.6 751 78.2 59.3 72.0 751
Poor 68.4 66.4 70.0 68.8 70.6 69.3 721 65.2 65.8 69.1
Near-native TIG 71.6 85.2 86.5 55.7 64.8 59.5 63.1 54.3 62.2 66.1
Good 75.1 80.8 833 62.5 68.8 61.5 66.0 69.0 67.1 72.5
Medium 75.2 74.0 77.8 65.3 69.4 58.3 64.5 65.6 64.7 69.9
Poor 70.6 71.6 72.5 63.6 67.4 60.9 64.9 67.4 63.7 67.2
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Ranks predicted by using different structural representations, averaged for three categories of models. For the “near-native” and “good” models, the lower the value (i.e. the higher
the rank), the more accurate the scoring function; for models of “poor” quality, however, the lower the rank, the better.

Average predicted rank

Model quality Scoring Co CB Ca + CB backbone backbone + CB side-chains all-atom BB SC BB + SC
Near-native PMF 68.1 53.2 50.2 65.0 55.5 48.7 471 71.6 53.2 48.6
Good 1234 131.3 125.6 1239 123.8 1264 1246 139.6 128.2 126.2
Near-native TIG 61.9 50.6 49.1 100.6 80.6 104.7 84.2 84.1 84.2 71.6
Good 121.9 125.9 1241 128.2 126.2 141.0 131.9 125.5 130.6 125.6
Poor PMF 222.9 220.9 230.5 2244 229.8 230.5 2349 203.6 2254 2313
Poor TIG 2293 230.0 234.2 202.8 2153 186.3 207.0 2121 207.8 220.1
All Mainly Alpha
Near-native Near-native
Good o Good T
< <
Medium m Medium n
Poor Poor
Near-native Near-native
Good - Good -
Medium ® Medium ®
Accuracy (%)
Poor Poor +915
+86.5
+81.5
+76.5
+71.5
Mainly Beta Alpha Beta +66.4
Near-native Near-native +61.4
Good ) Good T +56.4
< <
Medium m Medium m +51.4
Poor Poor +46.4
Near-native Near-native +41.4
Good - Good -
Medium ® Medium ©

Poor

Poor

Fig. 2. Color maps of the accuracies obtained for the different subsets of 3DRobot, as defined by he three main CATH classes. The exact values are provided in the

Supplementary material.

contain considerably more information than those of Mainly Alpha
ones. This may be explained by the fact that backbone atoms of
adjacent beta strands often form hydrogen bonds which intercon-
nect them into beta sheets, whereas interactions between alpha
helices rather involve side-chain atoms. This higher information
content makes easier the quality assessment of Mainly Beta mod-
els, except for those belonging to the “Poor” category. Interestingly,
the CB representation also shows an increase in accuracy for
Mainly Beta proteins, but to a lesser extent than the backbone-
based ones. Although they are part of the side-chain, CB atoms
are directly connected to the backbone and, therefore, may benefit
from its aforementioned higher information content. Finally, it
seems logical that the “Alpha Beta” subset shows only few differ-
ences with the whole 3DRobot set. From all these secondary

structure-specific results, we can assume that dividing the training
dataset based on the three main CATH classes could improve the
accuracy of the scoring functions, although this requires further
study.

Taken as a whole, these data led to the following top ranking:
PMFall—atom- TIGCO&CB: PMFall—beadv PMFside—chainSv TIGCB: and PMFCOHCB-
Interestingly, the complexity of the second and third best repre-
sentations, as measured by the number of atom pairs (Table 1), is
one order of magnitude lower than that of PMF,j_atom. Therefore,
unlike PMF;ge_chains, they appear to be good compromises between
speed and accuracy. The notable absence of TIG yj_atom from this top
ranking—as its accuracy reached only 63.1% for the near-native
models—may be a consequence of the redundancy (as opposed to
information) content of the non-CB side-chain atoms, to which
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TIG is more sensitive, due to its very design. The TIG score performs
best when using Co + CB atoms, most likely because this represen-
tation optimally concentrates information about both backbone
positioning and side-chain orientation. Additional use of any other
atom type would then be redundant, thus degrading TIG perfor-
mance. Finally, the relevance of the presented performances was
shown by comparison with an external standard: the GOAP statis-
tical potential [38], which relies on an all-atom representation of
protein structures. In our previous work, it yielded accuracies of
91.5%, 86.8%, 80.8, and 76.2%, for the near-native, good, medium,
and poor models, respectively. Its slight, yet significant, superiority
over PMF,j_acom iS presumably due to its double dependence on
distances and angles, as for each heavy atom in interacting pairs,
GOAP uses the relative orientation of the corresponding planes.
For each of the five best scoring functions built here, the other val-
idation was the measure of the correlation between the predicted
quality and the TM-score, and its comparison with other methods,
namely GOAP, SVMQA [21], OPUS-PSP [39], RWplus [40], and
dDFIRE [41,42] (Table 4). This last test showed that the results pro-
duced here for studying protein structure representations are com-
parable to the performance of current methods. Noteworthily,
these data are consistent with the above accuracy ranking, except
that PMFgj.atom €quals GOAP.

3.2. Speed benchmark

Besides accuracy, the other valuable criterion for selecting a
scoring method is its speed, as the prediction of protein folding
requires assessing thousands of conformations generated by the
sampling algorithm. Here, we have measured the time taken by
the five most accurate statistical potentials built for this work;
GOAP was kept as an external standard method (Table 5). The
results are no surprise, as the complexity of each representation
can be estimated by the number of possible atom pairs (Table 1).
Thus, PMF,j1-atom is the slowest method, while TIGc¢g is the fastest.
For comparison purposes, we have included PMFc; in the bench-
mark, as the time complexity of the PMF and TIG algorithms could
be different. Indeed, depending on the processor architecture, the
log function can be taken in either one or two assembly instruc-
tions, the latter case making the PMF algorithm more complex.
However, both methods processed the 60,200 inputs at the same
rate, while running on the same CPU. Finally, it is interesting to
observe that the all-atom GOAP is ~2.5 faster than PMF,j_atom,
which could be due to a suboptimal C++ implementation of our
algorithm.

Table 4

Correlation between the TM-score and the predicted quality, for different assessment
programs. First column is the Pearson correlation coefficient (CC); second and third
columns are the Spearman’s (p) and Kendall's (1) rank correlations coefficients,
respectively. 'Values from [21].

SCOl’ng Ccrank Prank Trank

SVMQA! 0.910 0.882 0.713
OPUS-PSP! 0.807 0.752 0.570
GOAP' 0.883 0.849 0.671
RWplus' 0.834 0.806 0.624
DFIRELoap 0.840 0.808 0.627
dDFIRE! 0.785 0.763 0.585
PMFEai1_atom 0.886 0.851 0.668
TIGcoscp 0.876 0.836 0.651
PMF,j1-bead 0.864 0.826 0.637
PMFiide-chains 0.864 0.821 0.633
TIG¢g 0.851 0.811 0.623
PMFcyqcp 0.851 0.813 0.623
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Table 5
Time taken by the most accurate scoring functions for assessing 60,200 predicted
structures. Each program ran on a single CPU.

Scoring CPU time
(minutes)

PMFall—atom 348

TIGcoscp 17

PMFaji-bead 24

PMFside—chains 83

TIGcg 5

PMFcyscp 17

PMF¢g 5

GOAP 140

3.3. Glycine and reference state representations

In the literature, distance-dependent statistical potentials are
often misinterpreted as genuine interatomic potentials, with the
idea that the inter-residue interaction profiles can find a direct
physicochemical explanation. As a consequence, the fact that
low-resolution statistical potentials are actually built from all the
atom types found in the native structures may raise questions. If
the observed frequency is derived from a Co-only representation,
why should the reference state be calculated using an all-atom
one? In other respects, for a CB-only representation, is it valid to
include glycine residues through their o carbons? Of note, the sec-
ond question is relevant to the speed problem, as removing a resi-
due would reduce the number of Cf atom pairs from 210 to 171.
The answers lie in the Bayesian view of these scoring functions,
according to which (i) the reference frequency P(d;;|M>) of having
two atoms of any type at a dj; distance is called the prior, and (ii)
the observed frequency P(d;|M;) of having two atoms of specific
residue types at a dj; distance is called the posterior. Thus, statistical
PMFs actually measure the amount of information incorporated
into the background model M, for updating the prior to the poste-
rior. Moreover, the log-likelihood ratio in Eq. (1) can be alterna-
tively written as an information gain AI, where the definition of
information is that of Shannon “surprisal”:

Al(du) = Iprior - Iposterior = *log(P(dij|M2)) - [*log(P(dlj‘Ml))]
3)

For a posterior trained on o carbons, an all-atom-based prior
will result in a greater Al than a Ca-based one. This is because
the information added for the Bayesian updating will be that of
the atom type, rather than that of the sole residue type; e.g.
“UNK-xxxx — ALA-Co”, rather than “UNK — ALA”, where UNK
and xxxx are unknown residue and atom types, respectively.
Therefore, this greater information gain shall result in a more accu-
rate PMF scoring function. This also works for the TIG formalism,
except with a generalized definition of information [28]. To sup-
port this theory, we built alternative C8 PMF and TIG scoring func-
tions, based on a reference state calculated from CB atoms only
(Table 6).

With the PMF method, the disadvantage of using a CB-only ref-
erence state was confirmed for the near-native and poor models.
However, accuracies were similar for the good category and, sur-
prisingly, higher for the medium models. For the TIG method, the
expected effect was dramatic for all types of models, with accuracy
differences up to 22.3% for the near-native category. Similarly to
what was observed in the accuracy benchmark section, the fact
that TIG suffers more than PMF from the lower information gain
of a CB-only reference state is due to its design based on informa-
tion theory [28]. The Bayesian interpretation of the statistical
potentials also explains why it is perfectly valid to include glycine
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Table 6

Accuracy in ranking models pairwise (n = 60,200) based on p carbons, depending on the exclusion of either other atoms in the reference state (‘CBcg rer.’), Or glycine residues (‘CBpo-

iy )-

Accuracy (%)

Model quality Scoring CBep ret. CBno-cly CB
Near-native PMF 78.4 77.3 829
Good 76.6 77.0 76.1
Medium 721 723 67.8
Poor 62.2 62.7 66.4
Near-native TIG 62.9 79.3 85.2
Good 68.3 78.9 80.8
Medium 66.4 78.5 74.0
Poor 60.7 69.3 71.6

Coa in a CB-only protein structure representation. We verified this
by training CB-only PMF and TIG scoring functions that do not pro-
cess the glycine residues. This led to lower accuracies for both PMF
and TIG, except for the medium quality models. However, as
shown by the TIG results, including glycine in a CB representation
is not as important as training the reference state on all atom

types.
3.4. Comparison with previous work

To this day, the choice of a protein structure representation was
based either on results obtained by previously published methods,
or on intuitions, such as that using all atoms is more accurate than
lower resolutions, or that Cp atoms carry more information than
Co ones. Indeed, for the past twenty years, the only comprehensive
study researchers could rely on was the landmark article by F. L.
Melo, R. Sanchez and A. Sali [43]. However, this work did not
address the question of the speed and used a Z-score algorithm
of higher time complexity than simple PMFs, thus restricting the
possible representations to backbone atoms and B carbons. More-
over, limitations related to the then “knowledge” (i.e. data) of pro-
tein structures could now vindicate some of the conclusions drawn
from these knowledge-based scoring functions. These limitations
affect the training set, testing set, and metric: (i) the training set
only contained 760 chains, although the sequence identity and
X-ray resolution cutoffs were 30% and 2.5 A, respectively; (ii) there
was no large and balanced test set available, such as the
benchmark-oriented 3DRobot; (iii) there was no TM-score nor
GDT_TS, so that the assessment consisted of discriminating good
and bad comparative models, which were labeled as such based
on their template structures. Remarkably, despite these critical dif-
ferences, we converged on the same conclusion that the combina-
tion of Co. and CP is the most accurate representation—among
those tested by the authors—for a distance-dependent scoring
function. Our study show that the then observed accuracies could
have been further enhanced with the TIG score, or with side-chain
atoms.

4. Conclusions and perspectives

In this work, we showed that, unsurprisingly, inter-residue
interactions within protein structures are most accurately repre-
sented by using all heavy atoms. However, a better speed-accuracy
trade-off was achieved with a Ca + CB representation and our
recent TIG scoring method. Analogous to this is the MARTINI
coarse-grained modeling, in which the protein backbone and
side-chains are represented by BB and SC beads, rather than Co
and CB atoms, respectively. Although promising, it did not emerge
here as the best option, as it ranked third in both accuracy and
speed. Finally, the other best trade-off for protein structure predic-

tion was that of the Cp representation. Indeed, using only one atom
for each residue optimizes speed, at the cost of a small decrease in
accuracy, by comparison with high resolutions. Interestingly, this
decrease was only observed for scoring functions built with the
widely-used PMF method, as TIG showed best performances with
the CB and Ca + CP representations. The sensitivity of the TIG
method to the information and redundancy content of the input
data further demonstrates its superiority over statistical PMFs. This
is also supported by results obtained from training the reference
state using only Cp atoms.

The successful AlphaFold method also uses a CB representation.
However, its statistical PMF combines interatomic distances and
torsion angles. As the respective weights of these two types of
structural features in the accuracy of AlphaFold’s scoring function
remain unknown, future investigations will focus on processing
dihedral angle values, as well as other descriptors, such as solvent
accessibility or local conformations. We also showed that using o
carbons of glycine residues was necessary for a CB representation.
This raises the possibility of weighting the contribution of each
residue type to the accuracy of the scoring function. Further efforts
will concentrate on developing the MyPMFs tool in this direction.
Finally, it should be brought to readers’ attention that knowledge-
based scoring functions, now legitimized by AlphaFold, are applica-
ble to RNA 3D structure [44]. Although the required experimental
data might be currently too scarce for a deep learning approach,
the simpler methods presented here are not specific to proteins
and could be transposed to the RNA folding problem—which
includes coarse-grained modeling, as the MARTINI force field has
been recently extended to RNA macromolecules [45].
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