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Abstract

Background: A new image-resizing method using seam carving and a Saliency
Strength Map (SSM) is proposed to preserve important contents, such as white blood
cells included in blood cell images.

Methods: To apply seam carving to cell images, a SSM is initially generated using a
visual attention model and the structural properties of white blood cells are then
used to create an energy map for seam carving. As a result, the energy map
maximizes the energies of the white blood cells, while minimizing the energies of
the red blood cells and background. Thus, the use of a SSM allows the proposed
method to reduce the image size efficiently, while preserving the important white
blood cells.

Results: Experimental results using the PSNR (Peak Signal-to-Noise Ratio) and ROD
(Ratio of Distortion) of blood cell images confirm that the proposed method is able
to produce better resizing results than conventional methods, as the seam carving is
performed based on an SSM and energy map.

Conclusions: For further improvement, a faster medical image resizing method is
currently being investigated to reduce the computation time, while maintaining the
same image quality.

Background
Peripheral blood cell differential counting provides valuable information for accurate

patient diagnoses, yet the microscopic review is labor intensive and requires a highly

trained expert. Current automated cell counters are based on laser-light scatter and

flow-cytochemical principles, nonetheless, 21% of all processed blood samples still

require microscopic review by experts [1]. Therefore, various efforts [1-5] have already

been made to develop automatic cell analysis systems using image processing. Blood

cell images consist of both white and red blood cells scattered across the entire image,

however, it is the white blood cells (WBCs) that provide the important information for

patient diagnoses, such as leukemia or cancer [2]. Thus, in most research, WBC

segmentation is the important procedure, where the ultimate goal is to extract all the

WBCs from a complicated background and then segment the WBCs into their

morphological components, such as the nucleus and cytoplasm.

Representative WBC analysis systems, such as Cellarvision Diffmaster Octavia [4] and

Cellarvision DM96 [5], scan the whole slide at a low magnification first to identify

potential WBCs using the specific characteristics of WBCs, such as their color, size, and
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shape, and then take digital images at a high magnification. Thereafter, pre-classification

is performed using only the cropped digital images. While this method is more efficient

than scanning WBCs from a high-resolution image of the whole slide, additional time is

required for the WBC search, especially when the image contains several WBCs.

Furthermore, additional storage is needed to save the individual potential WBCs and

extra time required to classify the WBCs, as the system has to check all potential WBC

images to analyze just one slide.

Meanwhile, other methods [2,3] use only an original high-resolution image for the

WBC analysis. However, analyzing WBCs from the whole image is time consuming,

since the size of blood cell images is normally at least 800 × 600. Therefore, an image-

resizing method is needed that retains all the WBCs without morphological distortion

in order to reduce the post-segmentation classification time. Furthermore, since resized

high-quality images require less storage, the post-image segmentation and classification

can be more accurate than with conventional image compression, such as JPEG.

Related work can be divided into two parts; image compression and image resizing.

First, various lossless compression techniques already exist that can preserve the

characteristics of an image, yet with a low compression rate. For example, several

researchers [6-8] have proposed transform coding schemes, such as a Principal Com-

ponent Analysis (PCA) and Discrete Cosine Transform (DCT), while Karras et al. [9]

used a discrete wavelet transformation (DWT) and fuzzy c-means clustering technique.

Plus, to achieve higher compression rates without detracting from the quality, region

of interest (ROI) methods with a DCT have also been investigated [6,10]. In particular,

Gokturk et al. [10] proposed a hybrid model, using lossless compression in regions of

interest and high-rate motion-compensated lossy compression in other regions in the

case of a sequence of CT images. Nonetheless, even though lossless compression pro-

duces a higher compression rate without distorting ROIs, the exact preservation of a

ROI is still difficult when the compression rate is above a specific limitation. Therefore,

a new algorithm is needed that can efficiently preserve ROIs, regardless of the com-

pression rate.

In addition to image compression methods that merely preserve the original image

size, some researchers have attempted to resize or crop [11,12] images according to

the image contents. Yet, as shown in Fig. 1-(b), standard resizing homogeneously

reduces the image size, thereby damaging all the image contents based on the ratio of

the resizing. Similarly, while cropping can be used to display the most important

region in an image, as shown in Fig. 1-(c), cell images contain many ROIs, making

cropping inappropriate for cell image compression.

Meanwhile, seam carving [13] changes the size of an image by subtly removing or

inserting a connected path of pixels from a different part of the image according to the

measured energy, as shown in Fig. 2-(b). However, even though seam carving can effi-

ciently remove non-ROI pixels, if the operation is applied too harshly (i.e. resizing an

800 × 600 image to 200 × 120), important ROIs can still be damaged, as shown in Fig.

2-(d). Furthermore, since seam carving was originally developed for nature images, its

application to medical images is somewhat limited. For example, the energy distribu-

tion of WBCs is not distinctive in blood images, making it hard to apply a seam car-

ving operator to blood cell images, which results in an inevitable removal or insertion

of pixels in WBCs.
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Accordingly, this paper presents a new method for resizing blood cell images while

preserving the size and shape of WBCs. In peripheral blood, WBCs are divided into

five classes according to their maturation stage, making it essential to preserve the size

and shape of the nucleus. Thus, to provide an efficient image-resizing method that

treats WBCs as ROIs, a Saliency Strength Map (SSM) is proposed using a visual atten-

tion model and the structural properties of WBCs to generate a new energy map. As

such, this map maximizes the energies of the WBCs, while minimizing the energies of

the red blood cells and background. Therefore, in contrast to previous algorithms, the

main contribution of this study is to improve the resizing performance with a lower

file size, while preserving the WBCs using the proposed SSM with an energy map.

Fig. 3 shows the architecture of the cell image resizing using the proposed SSM and

seam carving.

The remainder of this paper is organized as follows. Methods describes the algo-

rithms used to create the saliency strength map, an Ellipse Attention Window (EAW)

that removes useless regions from the image, and the seam removal using an energy

map based on the saliency strength. Results and Discussion evaluates the accuracy

Figure 1 Examples of different scaling-down methods.
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Figure 2 Example of seam carving: (a) original image, (b) energy map of (a), (c) reduced image using
seam carving that preserves shape of important contents (WBCs), (d) distorted image using harsh seam
carving, where shapes of WBC nuclei are distorted.

Figure 3 Architecture of proposed method.
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and applicability of the proposed resizing method based on experiments, and some

final conclusions and areas for future work are presented in Conclusions.

Methods
This paper proposes a new image-resizing method with a lower file size that can efficiently

preserve WBCs using a visual saliency map based on the following two assumptions:

▪ the nuclei of WBCs are nearly round.

▪ the nuclei of WBCs are highlighted in purple on a white background with mono-

chromatic red blood cells.

Using these characteristics, a Saliency Strength Map (SSM) is proposed using a visual

attention model, while the structural properties of WBCs are used to generate an

energy map.

Saliency map generation

In contrast to nature images, microscopic images, especially blood cell images, have

different characteristics with distinct diagnostic meanings, such as a varying color and

saturation according to fluorescence staining. For example, in the case of blood cell

images, the salient parts, the WBCs, tend to be highly saturated and purple in color,

while the remaining parts, the red blood cells, have a more monotonous appearance.

Thus, for semantic seam carving, knowledge of the exact positions of the relevant

WBCs is crucial. Therefore, to obtain the position of WBCs, a modified visual atten-

tion model is used, as proposed in our previous research [14].

The original saliency-based visual attention model was proposed by Itti et al. [15],

and uses color, luminance, and orientation. The most salient areas are then selected

based on a winner-take-all competition map. However, in this study, a saliency map is

used for the initial detection of Attention Windows based on a weighted linear combi-

nation of a color map, saturation map, and orientation map as shown in Fig. 4.

To produce the color map, this study uses a CIE Lab color model, where each a* and

b* image is down-sampled to half the size of the original image. Different sized filters s

Î {11 × 11,13 × 13} are then applied to the down-sampled a and b images. The filters

estimate the center-surround difference between the center point and the surrounding

points within the filter scale s using two colors c Î {a, b}, and this difference yields the

feature map, C(c, s). The size of the filters is typically chosen based on the number of

available observations. In this study, the size of s was set at 11 × 11 and 15 × 15 based

on several experiments using an 800 × 600 image size. Hence, the filter size can be

changed according to the image size, with a half value when using a 400 × 300 image

size and vice versa. In Eq. (1), the normalized color difference map C is estimated

from C(c, s)s.

C C c s
sc a b

=
∈ × ×∈

∑∑1
4

11 11 13 13

( ( , ))
{ , }{ , }

(1)

In parallel with the color feature map, the orientation feature map is produced using

a simple wavelet transform. After a one-level wavelet transform, horizontally (LH),

vertically (HL), and diagonally (HH) orientated sub-images are obtained from the
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wavelet subbands. The orientation feature map, O(c, s) is then produced from the three

sub-images c Î {HH, HL, LH} and two filters s Î {11 × 11,13 × 13} using the same

method as for the color feature map. In Eq. (2), the normalized orientation difference

map O is estimated from O(c, s)s.

O O c s
sc HH HL LH

=
∈ × ×∈

∑∑1
6

11 11 13 13

( ( , ))
{ , }{ , , }

(2)

The normalized saturation feature map S is processed in a similar way to the color

map using a saturation feature map, S(c, s) from HIS color space and two filters s Î
{11 × 11,13 × 13} based on the following Eq.

S S c s
c s s

=
∈ ∈ × ×

∑1
2

11 11 13 13

( ( , ))
{ } { , }

(3)

After the three feature maps are produced, they are combined into a saliency map.

However, since cell images have a higher contrast for color than for orientation and

saturation, as distinct from nature scenes, different weights need to be applied to each

feature map when they are combined into a saliency map. In the present study, the

most accurate Attention Windows were produced when the color weight was 0.6, the

orientation weight was 0.2, and the saturation weight was 0.2. Finally, the three feature

maps are normalized and summed into a single saliency map using their weights and

Eq. (4). After generating the saliency map Cm, it is up-sampled to the original size.

C w C x y w L x y w O x ym = ⋅ + ⋅ + ⋅1 2 3( , ) ( , ) ( , ) (4)

Figure 4 Flow diagram of saliency map: (a) source image, (b) orientation map, (c) color map, (d)
saturation map, and (e) saliency map.
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Saliency strength map generation

Based on the saliency map, Attention Windows (AWs) are then detected to remove

useless regions from the image, such as red blood cells and background, thereby

improving the quality of the resized image. To determine the proper location of the

AWs, optimal thresholding [16] of the saliency map is performed first (Fig. 5-(c)). This

thresholding method is known to produce the best performance when an image only

contains two principal regions (e.g. objects and background) and the distribution of

the gray-level values in each region follows a Gaussian distribution [16]. Morphological

closing is then performed to fill the holes in the nuclei of the WBCs (Fig. 5-(d)). Using

the resulting binary image, region labeling is performed and small regions are consid-

ered as noise and removed (Fig. 5-(e)). At the same time, the initial AW positions

(x, y) for each remaining region are estimated by X-Y projection. Also, since WBCs

tend to have a round shape, the elliptical shapes of the AWs (EAWs) are re-estimated

using a centroid and the radius of the initial AW (Fig. 5-(f)). Thereafter, a distance

transform using the Euclidean distance is performed to boost the intensity difference

between the central and boundary regions, termed the strength of the EAW (EAWS).

As shown in Fig. 5-(g), the intensity strength of the boundary is lower than that of the

central region in each nucleus.

The six steps for extracting the AW and estimating the EAWS are as follows:

Step1: Otsu [17]’s optimal threshold top is applied to the saliency map (Cm).

I x y
if C x y t

otherwise
m op( , )

( , )
=

>⎧
⎨
⎩

1

0
(5)

Figure 5 Saliency strength using EAWs and energy map: (a) original image (b) saliency map, (c)
optimal thresholding, (d) morphological opening, (e) removal of small regions, (f) EAWs, (g) strength of
EAWs, (h) Saliency Strength Map, (i) final energy map of (h), and (j) resized image.
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Step2: Morphological opening is performed to fill any holes in the cell nuclei.

Step3: After region labeling, small regions are removed if the size of a region is

below a predefined minimum threshold (3% of all image pixels). This predefined

minimum threshold was determined by analyzing the minimum cell region from

whole training cell regions.

Step4: The initial position of the AW in each region is estimated using an X-Y

projection.

Step5: The elliptical AWs (EAW) are re-estimated using the centroid and radius of

the initial AW.

Step6: A distance transform is performed and the strength of the EAW(EAWS)

estimated.

The saliency map and strength of the EAWs are then summed into a single saliency

strength map (SSM) and normalized into 0~255, as shown in Fig. 5-(h).

SSM x y g C x y EAW x ym S( , ) ( [ ( , ) ( , )])= ⋅ +1
2

(6)

where g represents a Gaussian smoothing operator to reduce minor noise.

Finally, the resized image based on the SSM and its energy map is shown in Fig. 5-(j).

Seam removal using energy map based on saliency strength map

A seam is a monotonic and connected path of pixels proceeding from the top of an

image to the bottom, or from left to right. Thus, when a seam is removed from an

image, the image size is reduced by one in either the horizontal or vertical dimension.

Likewise, seam carving uses an energy function defined based on the pixels to succes-

sively remove the minimum energy paths from an image [17]. Yet, as shown in 6-(b), an

energy map using only the gradient magnitude introduces visual artifacts, regardless of

the importance of the cells. Whereas the proposed energy maps in Figs. 5-(i) and 6-(c)

show only the highest energy, indicating the existence of WBCs without visual artifacts.

Seam carving uses two types of energy removal strategy: backward and forward.

Backward energy strategies are based on evaluating the energy, yet they introduce

visual artifacts due to their seam removal strategy. The seams containing the lowest

energy are removed one after another, however, the energy inserted into the new edges

created by previously non-adjacent pixels that become new neighbors is ignored after a

Figure 6 Energy map comparison: (a) original image (b) energy map using only gradient magnitude,
and (c) energy map using saliency strength of SSM.
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seam is removed. Thus, to reduce these visual artifacts, forward energy strategies [17]

substitute an energy evaluation that calculates three possible seam step costs and

defines the minimal amount of energy inserted by the removal of a seam.

In the seam removal procedure used in this study, the saliency strength of the SSM

is used to correspond to the computing energy for each pixel. Computing the cost of

the saliency strength then produces the same result as the forward energy strategy of

Rubinstein et al. [17]. As distinct from backward energy strategies, three possible cases

are then calculated to remove seams with forward energy strategies using the pixel

values of SSM(i, j) and the following formula:

( ) ( , ) | ( , ) ( , ) | | ( , ) ( , ) |a C i j SSM i j SSM i j SSM i j SSM i jL = + − − + − − −1 1 1 1

(( ) ( , ) | ( , ) ( , ) |

( ) ( , ) | ( , )

b C i j SSM i j SSM i j

c C i j SSM i j
U

R

= + − −
= + −

1 1

1 SSSM i j SSM i j SSM i j( , ) | | ( , ) ( , ) |− + − − +1 1 1

(7)

where SSM(i, j-1) is the new pixel that is replaced after removing SSM(i, j), SSM(i, j

+1) and SSM(i-1, j) are the new right and upper neighbors, respectively, and CL, CU,

and CR represent the costs of the three possible vertical seams.

A cost matrix M is then created to compute the seams.

M i j P i j

M i j C i j

M i j C i j

M i j

L

U( , ) ( , ) min

( , ) ( , )

( , ) ( , )

( ,

= +
− − +
− +
−

1 1

1

1 ++ +

⎧
⎨
⎪

⎩
⎪ 1) ( , )C i jR

(8)

where P(i, j)is the gradient value obtained from SSM(i, j), M(i-1, j-1) is the left upper

neighbor, and CL is its cost. The cost of the corresponding upper M(i-1, j) neighbors

CU and right upper M(i-1, j+1) neighbors CR are computed in the same manner to

determine the minimum energy of the new saliency strength after removing SSM(i, j).

Once the cost matrix is constructed, M(i, j) in a random position represents a pixel

(i, j) in a path crossing the image from top to bottom, and is connected to other adja-

cent pixels containing the minimal energy according to the saliency strength. Conse-

quently, the resizing is performed by iteratively creating a cost matrix after blending

the gaps arising from seam removal.

Fig. 7 shows a comparison of the results of seam carving when using a gradient-

based energy map and the proposed energy map. While the gradient-based energy map

Figure 7 Comparison of seam carving results: (b) resized image using original seam carving and (c)
resized image using proposed method.
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distorts the WBC nuclei due to a harsh reduction of the image size, the proposed

method is able to preserve the original shape of the WBC nuclei.

Results and discussion
The experimental tests used color peripheral blood images collected at the Severance

Hospital, Yonsei University. The 8 test images were based on a slide of a peripheral

blood smear and taken using a microscope, charge-coupled device (CCD) camera, and

24-bit digitizer with an 800 × 600 image size.

As there is no specific method for evaluating the performance of image resizing, the

Peak Signal-to-Noise Ratio (PSNR) was used first to evaluate the content preservation

of the proposed method. Plus, the Ratio of Distortion (ROD) was applied to evaluate

the geometric distortion of the resized images. Note that, the size of the source images

was 800 × 600 and the target size was automatically determined according to the size

of the EAWs to include all the nuclei without distortion.

PSNR (Peak Signal-to-Noise Ratio) comparison

An experimental comparison of seam carving is generally very difficult as there are no

standard criteria for performance tests. Thus, to validate the effectiveness of the pro-

posed approach, this study used the Peak Signal-to-Noise Ratio (PSNR).

The PSNR originally comes from electronics and represents the ratio between the

maximum possible power of a signal and the power of the noise that affects the fidelity

of its representation. However, in the field of image processing, the PSNR is used to

measure of the quality of an image or its compression. In the case of image processing,

the maximum value (MAX) of intensity level 255 is used instead of the maximum pos-

sible power. In Eq. (9), the MSE represents the mean square error between the original

image I(i, j) and the target image K(i, j).

MSE
mn

I i j K i j
j

n

i

m

= −
=

−

=

−

∑∑1 2

0

1

0

1

|| ( , ) ( , ) || (9)

Where m and n represent width and height of the image, respectively.

The PSNR is then estimated by computing the ratio of the maximum value to the

MSE using Eq. (10).

PSNR
MAXI
MSE

MAXI
MSE

= ⋅
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= ⋅ ⎛
⎝⎜

⎞
⎠⎟

10
2

2010 10log log (10)

For the performance test, gradient-based seam carving and the proposed method

were applied to the source images to create target images. The WBC nuclei were then

cropped manually from each image with a graphic tool and used for the PSNR

comparison.

Fig. 8 shows the image quality results when using a JPEG compression method,

image resizing with seam carving, and image resizing with the proposed method.

Clearly, the seam carving based on the gradient energy produced WBC nuclei with

distorted shapes and sizes, whereas the JPEG compression and the proposed method

preserved the shapes and sizes of the WBC nuclei.
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In addition, Fig. 9 shows a comparison of the PSNR results for the three methods. In

this case, since the seam carving based on the gradient energy produced severe distor-

tion and was unable to preserve the ROIs accurately, it had a very low PSNR ratio.

Meanwhile, the JPEG compression had a high average PSNR ratio at 29.6. However,

the proposed method produced an average PSNR ratio of 46.4, which was very close to

the original image quality.

Thus, although JPEG compression can produce the perception of identical results

with the original WBCs, there is a loss of image quality, as shown in Figs. 8-(b) and 9,

meaning the characteristics needed for WBC segmentation and classification are not

always preserved. In contrast, since the proposed method is able to preserve the origi-

nal image quality, better segmentation and classification results can be expected in the

post-processing steps. Therefore, the proposed image resizing algorithm can be very

useful for reducing the cell analysis and memory storage in the case of medical images,

especially blood cell images.

Figure 8 Results of image quality when using JPEG compression method, seam carving, and
proposed method.
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ROD (Ratio of Distortion) comparison

To evaluate the ratio of distortion (ROD) of the WBC nuclei after image resizing, a

new evaluation method was used based on the geometric properties of the objects.

First, three different users were asked to crop the WBC nuclei from the resized images

shown in Figs. 8(c) and 8(d) using a graphic tool, and only those WBCs where at least

two users were in agreement were then used for the comparison.

The distortion results for each method were compared with the manually cropped

WBC nuclei and the error ratio estimated using Eq. (11).

ROD
M M S

M
= − ∩Card( ( ))

(11)

where M represents the set of pixels in the WBC nuclei in the original image and S

represents the set of pixels in the WBC nuclei in the resized image when using seam

Figure 9 PSNR comparison of JPEG compression, seam carving, and proposed method.

Figure 10 ROD (Region of Distortion) evaluation criteria for image resizing performance.
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carving and the proposed method. The symbol Card (A) denotes the cardinality of set

A. Fig. 10 shows the ROD errors marked by arrows for the automatically extracted

WBCs when compared with the manually selected WBCs.

Table 1 shows the performance evaluation results when using Eq. (11), where the

proposed method showed a lower average ROD ratio of 0 when compared to that for

the seam carving at 0.65.

The seam carving results produced distortions of 0.5~0.8, whereas no distortion

occurred with the proposed method. As such, the seam carving was unable to preserve

the WBCs when the image was resized harshly. Since an energy map using the original

gradient magnitude of the WBCs is not distinctive in blood images, this makes it hard

to apply a seam carving operator to blood cell images, and the WBC contents are

inevitably affected during the pixel removal. In contrast, the proposed method was able

to preserve the WBCs exactly, as it used the SSM to maximize the energies of the

WBCs and minimize the energies of the red blood cells and background.

Conclusions
This paper proposed a new image compression method that uses a Saliency Strength

Map (SSM) and seam carving to preserve important contents, such as WBCs included

in blood cell images, with a lower file size. The SSM is constructed using a visual

attention model and the structural properties of WBCs to generate a new energy map.

Thus, the purpose of the map is to maximize the energies of the WBCs, while mini-

mizing the energies of the red blood cells and background.

In experiments, the proposed method was shown to improve the file compression

performance when compared to JPEG. Nonetheless, despite the improved performance

of seam carving based on an SSM, additional computation time is required depending

on the image resolution. Therefore, a faster cell-image resizing method is currently

being investigated to reduce the computation time, while maintaining the same image

quality.
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Table 1 ROD comparison of seam carving and proposed method

Image No. Seam carving Proposed method

1 0.89 0

2 0.53 0

3 0.47 0

4 0.89 0

5 0.59 0

6 0.58 0
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