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Abstract

Double-zero-event studies (DZS) pose a challenge for accurately estimating the overall treatment
effect in meta-analysis. Current approaches, such as continuity correction or omission of DZS, are com-
monly employed, yet these ad hoc methods can yield biased conclusions. Although the standard bivariate
generalized linear mixed model can accommodate DZS, it fails to address the potential systemic differ-
ences between DZS and other studies. In this paper, we propose a zero-inflated bivariate generalized
linear mixed model (ZIBGLMM) to tackle this issue. This two-component finite mixture model includes
zero-inflation for a subpopulation with negligible or extremely low risk. We develop both frequentist and
Bayesian versions of ZIBGLMM and examine its performance in estimating risk ratios (RRs) against the
bivariate generalized linear mixed model and conventional two-stage meta-analysis that excludes DZS.
Through extensive simulation studies and real-world meta-analysis case studies, we demonstrate that
ZIBGLMM outperforms the bivariate generalized linear mixed model and conventional two-stage meta-
analysis that excludes DZS in estimating the true effect size with substantially less bias and comparable
coverage probability.

Keywords: bivariate generalized linear mixed models; double-zero-event studies; generalized linear
mixed models; meta-analysis; zero-inflation.

1 Introduction

Meta-analysis serves as an important tool for synthesizing evidence from multiple studies, providing a
systematic and comprehensive understanding of the overall treatment effect. However, double-zero-event
studies (DZS) — those with no events in both arms — present critical statistical challenges, leading to
potential numerical instability and bias in estimating treatment effects.1, 2 Such studies are particularly
prevalent in fields associated with rare events, such as surgical complications or adverse drug reactions.3–5

Various strategies have been proposed for handling single-zero-event or double-zero-event studies in
meta-analysis. For common effect size measures such as risk ratio (RR) and odds ratio (OR), there are
divergent views on how to handle DZS. When there are zero events in one arm, the continuity correction
with a fixed value of 0.5 is commonly added to each cell of a 2 by 2 table for those studies.1, 6 This approach
allows the calculation of effect sizes such as risk ratios and odds ratios without encountering division by
zero. If there are zero events in both arms, conventional practice omits these DZS from meta-analyses of
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OR and RR, arguing that they contribute no information to the magnitude of the treatment effect.1 Bayesian
approaches have also been proposed.7, 8 However, even with non-informative priors, selecting the right prior
distribution is crucial as it can significantly impact the analysis results, particularly in cases involving rare
events.9–11

If risk difference is of interest, Tian et al.12 developed an exact inference procedure to synthesize ev-
idence from DZS in a meta-analysis. Rücker et al.13 proposed to use the arcsine difference as a way to
define treatment effects in meta-analyses with double-zero studies. However, the limitation of the arcsine
difference method is that the practical usage and interpretation of this difference in the arcsine scale is
restricted.14

Notably, while continuity correction and omission are commonly used for handling DZS, these methods
can lead to biased conclusions.13 Both the statistical significance and the direction of intervention effect can
change after excluding DZS, as shown in both simulation studies and empirical data analyses.14–16 Though
the continuity correction method can avoid computational errors, it usually could bias study estimates to-
wards no difference and over-estimate variances of study estimates.4 In addition, using different continuity
corrections may result in different conclusions.1

Excluding DZS is straightforward to implement but may lead to misleading inference. Böhning and
Patarawan showed that double-zero studies do not contribute the conditional log likelihood when using one-
stage method using a Poisson regression model and a conditional binomial model to include the double-zero
studies.17 However, as Xu et al.3 pointed out, this may not hold true for some other models, such as the
multilevel logistic regression model,18 beta-binomial model.19 In addition, excluding DZS does not fully
utilize all the available evidence and can potentially lead to misleading inference if the excluded studies are
systematically different from the included studies.3, 20–22 Also, If the assumed underlying population event
probabilities are not zero, DZS contain information for inference on the parameters such as the common
odds ratio in meta-analysis and can contribute to the estimation of treatment effects and thus cannot be left
out in our analysis.23 Figure 1(A) illustrates how the effect sizes could change significantly depending on
whether we include or exclude double zero studies based on 1,111 meta-analyses from Cochrane Database
of Systematic Reviews (CDSR); see details in Section 5.

Generalized linear mixed models (GLMM) offer a flexible approach for modeling effect sizes and can
incorporate information from DZS without ad hoc continuity correction.18, 24 Bivariate generalized linear
mixed models (BGLMM) have been proposed to include random effects and potential correlation between
treatment groups.25–28 These models can handle studies with zero events by specifying an appropriate link
function and error distribution. For example, BGLMM has been applied to assess whether including DZS
impacts the conclusions in a recent systematic review on prevention measures for preventing person-to-
person transmission of COVID-19.29

Despite their utility, all the models mentioned above fail to address one potential key cause of DZS, that
is, non-exchangeable heterogeneity in the population. DZS may occur if the study involves subpopulations
with a negligible or extremely low probability of experiencing the event of interest. For instance, healthy
subjects less than 65 years old only have negligible risks of experiencing hospitalization or death due to
severe symptoms from COVID-19, compared to immunocompromised, unhealthy, or older subjects. The
study populations with negligible or extremely low risks are fundamentally different from the remaining
populations with low or moderate risks due to intrinsic differences in patient characteristics. Since the
BGLMM assumes study populations are exchangeable, the above heterogeneity cannot be modeled properly
with BGLMM.

To appropriately handle DZS and account for non-exchangeable heterogeneity in study populations, we
propose a zero-inflated bivariate generalized linear mixed model (ZIBGLMM). Zero-inflated models have
been commonly applied in other areas to model excess zero counts. Zero-inflated Poisson (ZIP) models have
been applied to random-effects meta-analysis.30 Beisemann et al.31 compared three models (random-effects
(RE) Poisson regression, RE zero-inflated Poisson regression, binomial regression) to the standard methods
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in conjunction with different continuity corrections and different versions of beta-binomial regression.
Our paper is the first to apply zero-inflated models in meta-analyses to address non-exchangeable het-

erogeneity across study populations. It assumes that a meta-analysis with a proportion of zero-event studies
potentially contains two subpopulations: one with a near-zero risk and another with a higher risk. The
ZIBGLMM can account for non-exchangeable heterogeneity as well as the correlation among studies in a
data-driven fashion. Further, it can properly estimate the overall effect size by avoiding the biases in ad hoc
solutions, and can accurately infer the proportion of the low-risk population in each meta-analysis study.

Our contributions in this paper are twofold. First, we introduce a novel method, ZIBGLMM, to in-
corporate DZS into meta-analyses. Our model takes into account potential population heterogeneity and
demonstrates its utility through both real-world and simulation studies. Second, we provide both frequen-
tist and Bayesian implementations of the model. SAS and R implementations are publicly available in the
GitHub repository.32

The rest of the article is organized as follows. Section 2 provides a motivating example that involves
numerous DZS with various sample sizes ranging from 22 to 144 to demonstrate the rationale behind
ZIBGLMM. Section 3 introduces the zero-inflated models and formulates both a frequentist and a Bayesian
version of the model. Section 4 reanalyzes the example case study in Section 2 to demonstrate the clinical
usefulness of the proposed method. Sections 5 and 6 present 1,111 real-world meta-analyses from CDSR
and 18,000 simulated meta-analyses to compare the performance of various methods for estimating the risk
ratios under various scenarios. Finally, Section 7 summarizes our key findings and limitations.

2 A Motivating Example

We explain the rationale behind the ZIBGLMM method using an example meta-analysis taken from
the CDSR. The study investigates whether misoprostol could help prevent or treat excessive bleeding and
reduce maternal deaths among women after birth.33 This review involves 19 studies, 5 of which are DZS.
These DZS, with sample sizes ranging from 100 to 900, were excluded from the meta-analysis. Table 1
displays the specific data for these studies. The original analysis suggests that when comparing misoprostol
using 600 g misoprostol or more versus placebo or other uterotonics, the results for ’maternal death or severe
morbidity’ is statistically non-significant (RR 1.67, 95% CI 0.80 to 3.45). In Section 4, we will revisit this
case study to illustrate how including these DZS could yield different clinical conclusions.

The rationale of the ZIBGLMM method is based on the observation that in a meta-analysis with a low
overall event probability, the probability of encountering large studies with double-zero events should be
low. For instance, given an event probability of 1%, the likelihood of a DZS with a sample size of 1,000
is approximately 0.991000 ≈ 4/100, 000. Thus, it is improbable that these large DZS belong to the same
population as the other studies included in the meta-analysis. This suggests that using the BGLMM method
to incorporate all DZS and treating them as exchangeable with other studies may be inappropriate. Con-
versely, some smaller DZS may have double-zero events by chance, which means that completely excluding
all DZS may not be the best approach either. The ZIBGLMM method addresses these issues by using a data-
driven approach to identify the proportion of populations with extremely low risks and model population
heterogeneity.

The proposed method is only intended to be used for meta-analyses with a moderate to large
size (≥ 10 studies). We acknowledge that most of the real-world meta-analyses are of smaller sizes.34, 35

However, the sophistication of the proposed statistical model, which includes a bivariate outcome, a 2x2
matrix of random effects, and a mixture distribution, might lead to convergence issues in more realistic
scenarios with fewer studies. Although this will potentially limit the broad impact of our method, we would
like to avoid misleading conclusions when applying sophisticated models like ours to a limited number of
studies.
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3 Methods

3.1 Notation

Let Nik be the number of subjects, and Pik be the probability of an event for the ith study (i =
1, 2, . . . , m) where k = 1 represents the treatment (or exposed) group and k = 0 represents the control
(or unexposed) group, respectively. Let Xijk denote a Bernoulli random variable with a value of 1 denoting
an event and a value of 0 denoting a non-event for the jth subject (j = 1, 2, . . . , Nik) of the ith study in the
kth treatment group. Let Yik = ΣNik

j=1 Xijk be the total number of events in the kth treatment group in the
ith study. The event counts Yik follow a binomial distribution, Yik ∼ Bin (Nik, Pik). Denote n as the total
number of studies within a meta-analysis. The notations are summarized in Table 2.

3.2 Zero-inflated models

The zero-inflated model proposed by Lambert (1992)36 has been widely applied to count data with
excess zeros in various scientific fields such as industrial manufacturing,36 biomedical horticulture,37 and
healthcare data.38 It is formulated as a mixture of a point mass at zero, which generates the excess zeros, and
a count distribution that generates the remaining values. The zero-inflated models are particularly useful for
data with a higher-than-expected number of zeros under standard count models. Besides commonly used
zero-inflated Poisson models, Ghosh et al.39 extend the models to include a broad class of distributions (e.g.
power series distributions). Böhning et al.30 apply the zero-inflated Poisson to random-effects meta-analysis.
To the best of our knowledge, this work is the first application of zero-inflated models for handling DZS in
the context of meta-analyses with two arms using BGLMM.

Zero-inflated models, by design, segregate observed zeros into two distinct categories. The first category,
often referred to as “structural” zeros, represents individuals who are not susceptible to a specific event,
thereby having no chance of a positive count. The second category, known as “at-risk” or “chance” zeros,
corresponds to a latent group of individuals who are at risk for an event but have a recorded count of zero.
The zero-inflated binomial model can then be formulated as follows:

Yik ∼

{
0, with probability π;

Binomial(Nik, Pik), with probability 1− π,

where π is the proportion of zero-inflation, i.e., the probability that a given subject belongs to the low-risk
subpopulation.

For instance, in our study examining the number of people experiencing adverse events for probiotics,
structural zeros might be indicative of patients in good health, resulting in experiencing no adverse events.
Conversely, the at-risk zeros could represent patients who are more susceptible to adverse events, due to
various circumstances and experienced no adverse events by chance. Consequently, zero-inflated models
can be interpreted as latent class models, where the classes are defined by these two types of zeros.40

Hall (2020)37 discusses classical statistical approaches that utilize the maximum likelihood estimation
(MLE) and the likelihood ratio (LR) test for zero-inflated Poisson regression. In the context of non-normal
data, classical inference often relies on approximation theory, which is based on large sample sizes and
may involve the application of nonstandard asymptotic theory.41 However, Ghosh et al.39 showed that the
classical procedure does not perform as well in estimating the zero-inflation probability when the sample
size is finite, and the zero-inflation probability is close to unity, but the Bayesian estimates performed very
well with respect to interval width and coverage probability.
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3.3 Bivariate generalized linear mixed models

To estimate the effect sizes using conventional two-stage meta-analysis, one needs to estimate the event
probabilities as P̂ik = Yik/Nik. For DZS, P̂ik are zero for both the treatment and control arms, creating
numerical difficulty in estimating the effect sizes using risk ratios or odds ratios due to division by zero.

One approach to include DZS is to use the BGLMM method to directly model the event counts Yik
with binomial likelihoods instead of estimating the effect sizes of individual studies. The BGLMM can be
specified as follows: let g(·) denote the link function that transforms event probabilities into linear forms.
We have

Yik ∼ Bin(Nik, Pik) (likelihood)

g (Pi0) = µ0 + νi0 (link function)

g (Pi1) = µ1 + νi1 (link function)

(νi0 , νi1)
⊤ ∼ N

(
(0, 0)⊤, Σ

)
, Σ =

(
σ2
0 rσ0σ1

rσ0σ2 σ2
1

)
(random effects).

To implement the natural constraint of −1 < r < 1, one can use Fisher’s z transformation as r = [exp(2z)−1]
[exp(2z)+1] .

We consider the logit link function for g(·). The parameters µ0 and µ1 are fixed effects and represent the
average risks in the control and treatment groups in the logit scale. Study-specific random effects in the logit
scale, νi0 and νi1, are assumed to follow a bivariate normal distribution with a covariance matrix Σ. The
parameters σ2

0 and σ2
1 are between-study variances for the control and treatment groups due to heterogeneity,

respectively, and r is the correlation between the two groups.

3.4 Zero-inflated bivariate generalized linear mixed models

One important limitation of the above BGLMM is its inability to account for excess DZS. This is be-
cause BGLMM ignores the intrinsic difference between DZS versus the others by treating all studies as
exchangeable, even if some studies may be conducted on different subpopulations.

To take into account the population heterogeneity, we introduce the ZIBGLMM method, which is a
two-component finite mixture model. Specifically, we assume that the event probability in a certain study
subpopulation, referred to as a “healthy population”, is extremely low, approximately equal to zero. In
contrast, we assume the other subpopulation, referred to as a “sicker population”, has a relatively high event
probability. We denote π as the proportion of studies with healthy populations representing individuals who
have approximately zero risk for the event of interest.

In the first stage, the ZIBGLMM combines two zero-generating processes for the number of events Yik.
The first process generates double zeros for both arms from extremely low-risk subpopulations. The second
process is governed by a binomial distribution that generates the numbers of events, some of which may be
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zero by chance. The mixture is described as follows:

Pr (Yi0 = 0, Yi1 = 0) = π + (1− π)
1∏

k=0

(1− Pik)
Nik ;

Pr (Yi0 + Yi1 > 0)× Pr (Yi0 = yi0, Yi1 = yi1 | Yi0 + Yi1 > 0)

= (1− π)
1∏

k=0

(
Nik

yik

)
(Pik)

yik (1− Pik)
Nik−yik ;

g (Pi0) = µ0 + νi0;

g (Pi1) = µ1 + νi1;

(νi0 , νi1)
⊤ ∼ N

(
(0, 0)⊤, Σ

)
;

Σ =

(
σ2
0 rσ0σ1

rσ0σ2 σ2
1

)
.

Of note, Dong et al.42 proposed a zero-inflated binomial (ZIB) model for meta-analysis with sparse
binary outcomes. However, they allowed for different proportions of zero-inflation for different treatment
arms, which might not be the case for randomized control trials (RCTs), where the proportion of zero-
inflation for the two treatment arms should be the same. In contrast to their approach, we restrict the
proportion of the healthy subpopulation to be equal across two treatment arms, which is more realistic given
the setting of RCTs.

In this article, we focus on the overall treatment effect in the at-risk population measured by the marginal
risk ratio as suggested by McCullagh,43, 44 which is defined as RR = E(p0)

E(p1)
. The marginal event probabilities

can be obtained through a well-established approximation formula: E (pk) ≈ expit

(
µk√

1+C2σ2
k

)
for k =

0, 1, with C = 16
√
3

15π for the bivariate logit random effects model.45

Our formulation of ZIBGLMM leverages zero-inflated models to account for subpopulations with an
extremely low risk of experiencing the studied outcome. It uses a data-driven approach to capture the
heterogeneity in the population, leading to improved model fitting and more reliable results in meta-analyses.

3.5 Bayesian formulation

This section introduces a Bayesian formulation of the ZIBGLMM method. It is based on the Bayesian hi-
erarchical model formulation of the random effects meta-analysis model46, 47 and the Bayesian zero-inflated
models.40

Specifically, the Bayesian model can be formulated as follows, using the notations in Table 2:

Yik ∼ (1− γi)Bin (Nik, Pik) , i = 1, . . . , n, k = 0, 1;

logit (Pik) = Θik;

γi ∼ Bernoulli(π);

Θi ∼ multivariate normal (µ,Σ) ;

µ,Σ, π ∼ priors.

Here, logit(Pi1) − logit(Pi0) is the log odds ratio. Adopting the same approach, an equivalent model on
the risk ratio replaces the logit function with the log function. That is, log(Pi1) − log(Pi0) is the log risk
ratio. We employ a general procedure of data augmentation by including latent variables γ to the data Y
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such that Yik = (1 − γi)Vik + γiWik, where Wik is the random variable with point mass distribution at 0,
Vik ∼ Bin(Nik, Pik),48 i.e., γi is a latent variable indicating whether the study is coming from the extremely
low-risk population.

The Bayesian approach requires specifying prior distributions for µ,Σ, and π. Given the parametrization
on logit scale, the event probabilities Pik are forced to be between 0 and 1, and θik can range over the whole
real line. A natural class of prior distributions for θik is the class of multivariate normal distributions. We
assign the inverse-Wishart distribution, which is a multivariate analog of the gamma distribution, as the
semi-conjugate prior distribution for the covariance matrix Σ and the multivariate normal distribution as the
prior for µ. We use weakly informative priors for the parameters of µ and Σ that are weakly centered around
estimates derived from the observed data, i.e. the population mean and covariance of µ0 and µ1. These are
commonly specified in normal hierarchical models.46 We use a beta prior for π, i.e., π ∼ Beta(a, b). Note
that a = b = 1 gives the uniform prior on (0, 1) for π.

The joint posterior distribution is given by:

p (Θ,µ,γ,Σ | Y ) ∝ p (Y | Θ,γ) p (Θ | µ,Σ) p (µ) p (Σ) p(γ | π)p(π),

and

Pr(Yi0 = yi0, Yi1 = yi1 | Θi, π) = πI{Yi0=0,Yi1=0} + (1− π)

1∏
k=0

(
Nik

yik

)
(Pik)

yik (1− Pik)
Nik−yik ,

where Pik = expit(Θik).
We use the Gibbs sampling approach49 for the estimation of our full posterior distribution of µ,Σ,γ, π

by sampling them from their full conditional distributions:

1. p(µ|Σ,Θ, γ, π, Y ) ∝ MVN (µn,Λn), where

Λn = (Λ−1
0 + nΣ−1)−1,µn = (Λ−1

0 + nΣ−1)−1(Λ−1
0 µ0 + nΣ−1θ̄)

and µ0 and Λ0 are the prior mean and variance of µ, respectively, and θ̄ is the vector of treatment-
arm-specific averages θ̄ = ( 1n

∑n
i=1Θi,1,

1
n

∑n
i=1Θi,2)

⊺.

2. p(Σ|µ,Θ,γ, π, Y ) ∝ inverse-Wishart
(
η0 + n, [S0 + Sµ]

−1
)

, where Sµ =
∑n

i=1 (Θi − µ) (Θi − µ)T ,
we take S0 = Λ0 but only loosely center Σ around this value by taking η0 = p + 2 = 4, where p is
the number of treatment arms.

3. p(γi|Θ,µ, π,Σ, Yik) ∝ Bernoulli

(
π1{Yi0=0,Yi1=0}∏1

k=0(1−Pik)
Nik−Yik (1−π)+π1{Yi0=0,Yi1=0}

)
where Pik =

expit(Θik).

4. p(π|γ,Θ,µ,Σ, Y ) ∝ Beta (1 +
∑n

i=1 γi, 1 +
∑n

i=1 (1− γi)).

We then use a Metropolis step50 for the estimation of the full posterior distribution of random effects
Θ.46, 47 The complete Metropolis-Hastings approximation algorithm is:

1. Sample µ(s+1) from p(µ|Σ(s),Θ(s),γ(s), π(s), Y ).

2. Sample Σ(s+1) from p(Σ|µ(s),Θ(s),γ(s), π(s), Y ).

3. Sample γ
(s+1)
i from p(γi|Θ

(s)
i ,µ(s), π(s),Σ(s), Y ) for i = 1 . . . n.

4. Sample π(s+1) from p(π|γ(s),Θ(s),µ(s),Σ(s), Y ).
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5. For each j ∈ 1, . . . , n,

(a) sample Θ∗
j ∼ multivariate normal(Θ(s)

j , 12Σ
(s));

(b) compute the acceptance rate

r =
p(Y | Θ∗

j , π
(s),γ(s),µ(s),Σ(s))p(Θ∗

j | µ(s),Σ(s))

p(Y | Θ(s)
j , π(s),γ(s),µ(s),Σ(s))p(Θ

(s)
j | µ(s),Σ(s))

;

(c) sample u ∼ uniform(0, 1). Set Θ(s+1)
j to Θ∗

j if u < r and to Θ
(s)
j if u > r.

We used 100,000 iterations with thinning to keep every 100th value and set the burn-in period to be
10, 000. We manually examined the trace plot and autocorrelation for a few example datasets to make sure
the autocorrelation between the samples was low and the acceptance rate was around 50%.

3.6 Implementation

The frequentist BGLMM and ZIBGLMM were implemented using PROC NLMIXED in SAS Stu-
dio 3.81 (Enterprise Edition). The random effects were approximately integrated by the default adaptive
Gaussian quadrature, and likelihood maximization used the conjugate gradient optimization algorithm. The
Bayesian models were implemented using R version 4.2.2. In addition to our custom Bayesian Gibbs Sam-
pler, we have implemented a version of the model using the RStan package. This alternative provides a
flexible framework, facilitating the customization and experimentation with various prior distributions. The
source SAS and R implementation code along with simulation and Cochrane datasets can be found in the
GitHub repository.32

4 Case Study

We apply our ZIBGLMM method to the meta-analysis of 19 studies conducted by Hofmeyr et al.,33

which involves 33,041 participants. This meta-analysis compares misoprostol use of greater than or equal
to 600 µg dose versus placebo in terms of reducing maternal deaths or severe morbidity.33 The original
analysis suggests that when comparing misoprostol use of greater than or equal to 600 µg versus placebo,
the results for ‘maternal death or severe morbidity’ are statistically non-significant (RR 1.67, 95% CI 0.80
to 3.45). In the original analysis, 5 of the 19 studies were DZS, with sample sizes ranging from 100 to 900,
and were excluded from the analysis.

To evaluate the impact of using different strategies for handling the DZS on the results, we applied
various methods to the same data as in Hofmeyr et al. When using the Mantel-Haenszel estimate51 of the
risk difference, the estimated risk difference is 0.005 when including the DZS and changes to 0.006 when
excluding the DZS. The estimated RR using the Mantel-Haenszel method is 2.84 (95% CI 2.03 to 3.99). Our
Bayesian ZIBGLMM method yielded an RR of 2.98 (95% CI 1.97 to 4.62), which suggests a 198% increase
in the risk of maternal death or severe morbidity associated with high dosage use of misoprostol compared
with placebo. This conclusion is also consistent with the general recommendation of using the lowest effec-
tive dose of misoprostol to treat/prevent maternal bleeding after giving birth. Using the Bayesian BGLMM
method yielded an RR of 2.81 (95% CI 1.78 to 4.37). This investigation underscores that neglecting DZS
can lead to non-negligible differences in the final estimated effects in meta-analyses.

We note the difference between the original analysis and the ZIBGLMM method might be due to the
fact that they used conditional effects, while we focused on marginal effects.52 Nonetheless, the difference
between the BGLMM and ZIBGLMM methods is 0.17, suggesting that accounting for DZS could lead to
estimates that differ to a large degree.
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The estimated proportion of structural zeros π is 0.246. For every single study, the posterior probabilities
of belonging to the structural-zero or non-structural-zero study cluster are reported in Table 1. The estimated
ρ is 0.062, which suggests a slight positive correlation between the treatment and control outcomes within
studies. The estimated variances are 0.079 and 0.061 for the treatment and control groups, respectively,
which provide insights into the variability of the effect sizes within each group. The AIC of the frequentist
version of the ZIBGLMM model is 1756.3 and the AIC of the BGLMM model is 1761.7. The DIC for the
Bayesian ZIBGLMM model is 979.02, and the DIC for the Bayesian BGLMM is 973.84.

5 Cochrane Meta-Analyses

To evaluate the practical impacts of our ZIBGLMM method on a wide spectrum of meta-analyses across
different clinical domains, we conducted a meta-meta-analysis using a large number of datasets in the CDSR
collected in our previous work.53 We identified 1,111 meta-analyses, each containing between 15 and 50
studies (inclusive), with proportions of double-zero studies ranging from 0.15 to 0.4. Figure 2 shows the
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart detailing how
we selected the 1,111 studies.54 Note that we do not know the true effect sizes for these real-world studies.

We meta-analyzed each dataset using a conventional two-stage method that excludes DZS, as well
as both the frequentist and Bayesian versions of BGLMM and ZIBGLMM. When using the frequentist
approach, 1,015 datasets converged for ZIBGLMM, while 1,084 datasets converged for BGLMM. The
Bayesian BGLMM and ZIBGLMM successfully converged and provided the estimated effect sizes for all
1,111 studies.

To explore the impact of excluding DZS vs. including DZS in a meta-analysis, we contrasted four
methods based on the inclusion or exclusion of DZS, focusing on estimated effect size differences. The
comparisons are listed below:

A. BGLMM with DZS vs. BGLMM without DZS: to investigate the impact of excluding DZS in one-
stage method BGLMM.

B. ZIBGLMM with DZS vs. conventional two-stage meta-analysis without DZS: to investigate the im-
pact of excluding DZS in conventional meta-analysis.

C. ZIBGLMM with DZS vs. BGLMM without DZS: to investigate the impact of including DZS vs. not
between two one-stage methods.

D. ZIBGLMM vs. BGLMM, both incorporating DZS: to investigate the impact of using different one-
stage methods to incorporate DZS.

Specifically, we applied the Bland-Altman analysis55 to determine the difference in each comparison.
The results are displayed in Figure 1. Notably, the mean effect size difference can reach up to 0.16 when
comparing methods that differ in DZS inclusion (ZIBGLMM with DZS vs. meta-analysis without DZS).
However, when both ZIBGLMM and BGLMM include DZS, this mean effect size difference narrowed
down to 0.06. This suggests that omitting DZS can significantly alter effect size estimates.

Table 3 presents the results for further quantifying the impact of the exclusion of DZS and the method-
ological differences in both the magnitude and direction of log RRs. We detail the percentages of increase
and decrease and document the count and proportion of pairs with different directions. The effect changed
direction if the RRs flipped, this is, log RR changing from “< 0” to “> 0”. The significance is flipped if the
p-value transitioned from nonsignificant to significant, using a 0.05 threshold. We used the middle 99% of
the RRs to leave out outliers.
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The highest percentage of direction change is observed in comparison B (ZIBGLMM with DZS vs. meta-
analysis without DZS) at 12.96%, while the lowest percentage is observed in comparison D (ZIBGLMM vs.
BGLMM both including DZS) at 3.78%. This indicates excluding DZS can lead to changes in effect direc-
tions. Comparison B (ZIBGLMM with DZS vs. meta-analysis without DZS) records the highest percentage
of significance flip at 10.77%, with comparison D (ZIBGLMM vs. BGLMM both including DZS) having the
lowest at 5.20%. The findings suggest that excluding DZS could lead to significant changes, i.e., difference
with a magnitude of greater than 0.1, in estimated effect sizes in meta-analysis. This finding is consistent
across various methods, including conventional two-stage meta-analysis that excludes DZS, BGLMM, and
ZIBGLMM.

Finally, we compared the frequentist and Bayesian methods of BGLMM and ZIBGLMM in terms of
their goodness of fit using the Akaike information criterion (AIC) and deviance information criterion (DIC).
Figure 3(B) displays the distribution of AIC and DIC differences for the Cochrane meta-analyses, with the
y-axis representing the difference in goodness of fit between ZIBGLMM and BGLMM. The violin plot
included a box plot where the box limits indicated the range of the central 50% of the data (i.e., the range
between the 25th and 75th percentile), and the median value was marked by a central black line, along with a
kernel smoothed density plot representing the probability distribution. ZIBGLMM outperformed BGLMM
in 365 of 1,010 (36.13%) Cochrane meta-analyses as measured by AIC, and in 986 of 1,111 (88.74%)
datasets based on DIC.

In summary, our meta-meta analysis study suggests that the inclusion or exclusion of DZS in meta-
analyses can influence effect size estimates, with disparities in mean effect size differences reaching up
to 0.16. Additionally, both the direction and significance of effect sizes can be altered depending on the
methodologies employed. The findings underscore the importance of carefully considering methodological
choices in meta-analyses, particularly when handling datasets with double-zero studies.

6 Simulations

In addition to the Cochrane datasets, we conducted extensive simulation studies to evaluate our methods
in various settings. We simulated meta-analyses with small (10), moderate (25), and large (50) numbers of
studies of sample size 50. The non-zero-inflated data were generated using the BGLMM. The number of
DZS for each meta-analysis was generated from a binomial distribution with proportions of zero-inflation
of 25% and 50%. The baseline event risk in the control group was set at 3% and the average marginal RR
was established at 1, 1.5, and 2. Detailed settings of the simulation studies can be found in Table 4. A total
of 1,000 meta-analyses were simulated for each of the 18 combinations of settings.

We applied both the frequentist and Bayesian versions of BGLMM and ZIBGLMM to each simulated
meta-analysis, assessing their goodness of fit with AIC and DIC. The distribution of AIC and DIC differ-
ences across the 18,000 simulation datasets is depicted in Figure 3(A), with the y-axis representing the
goodness of fit differences between ZIBGLMM and BGLMM. The violin plot included a box plot where
the box limits indicated the range of the central 50% of the data (i.e., the range between the 25th and 75th
percentile), and the median value was marked by a central black line, along with a kernel smoothed den-
sity plot representing the probability distribution. ZIBGLMM outperformed BGLMM in 8,839 of 16,215
(54.51%) simulation studies in terms of AIC and in 17,805 of 18,000 (98.92%) studies based on DIC. These
findings underscore ZIBGLMM’s robustness in the simulated scenarios.

We compared the coverage properties of conventional two-stage meta-analyses excluding DZS and both
the frequentist and Bayesian versions of BGLMM and ZIBGLMM. Figure 4 shows the coverage proba-
bilities, along with the mean lengths of confidence intervals (frequentist models) and credible intervals
(Bayesian models), while detailed coverage probabilities can be found in Table 5. Remarkably, the Bayesian
BGLMM and Bayesian ZIBGLMM display comparable, consistently high coverage probabilities to meta-
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analysis, while maintaining the shortest mean confidence interval widths across all settings among all five
methods. The coverage probabilities for all methods decrease as the average marginal RRs increase and
as the size of studies increases. The coverage properties of frequentist BGLMM and ZIBGLMM were
calculated contingent on the number of meta-analyses that attained convergence.

Figure 5 shows the bias in the estimation of RR obtained from conventional two-stage meta-analysis ex-
cluding DZS, along with the frequentist and Bayesian versions of BGLMM and ZIBGLMM. The frequentist
ZIBGLMM obtains the least bias for meta-analyses of small size (10 studies) while the Bayesian BGLMM
manifests the least bias for meta-analyses of moderate size (e.g., with 25 studies) among the five methods.
The Bayesian BGLMM and ZIBGLMM obtain effect size estimates with a comparatively small bias for
large meta-analyses (e.g., with 50 studies).

Moreover, the frequentist ZIBGLMM consistently demonstrates less bias than the frequentist BGLMM.
For all settings, both frequentist and Bayesian BGLMM and ZIBGLMM consistently yielded smaller biases
compared to conventional two-stage meta-analyses that exclude DZS. We observe an increased number of
convergence issues for frequentist ZIBGLMM, especially for smaller meta-analyses with 10 studies. Possi-
ble contributing factors could be the absence of DZS or an excessive presence of DZS within a meta-analysis.
Comprehensive details on the convergence issues for n = 10 can be found in Table 6. This convergence issue
by the zero-inflated models is consistent with the observations made by Beisemann et al.31

An important advantage of the proposed ZIBGLMM method is its capability of capturing population
heterogeneity by estimating the proportion of zero-inflation. To evaluate the empirical performance of
ZIBGLMM under various settings, Figure 6 summarizes the bias of the estimated proportion of zero-
inflation with respect to the frequentist and Bayesian ZIBGLMM methods. We observe that Bayesian
ZIBGLMM produces estimates of the proportion of zero-inflation with smaller biases than the frequen-
tist ZIBGLMM across meta-analyses of all sizes and proportions of zero-inflation. In addition, Bayesian
ZIBGLMM yields more accurate estimates when the proportion of zero-inflation is 50% than when the pro-
portion of zero-inflation is 25%. In contrast, the frequentist ZIBGLMM appears to have a more substantial
bias as the size of the meta-analyses grows.

In summary, our extensive simulation studies suggest that ZIBGLMM, especially the Bayesian method,
is a promising tool for meta-analyses, particularly when dealing with datasets that have varying proportions
of DZS. This method provides robust model fit, smaller bias in effect size estimation, and comparatively
high coverage probabilities as conventional two-stage meta-analysis. Moreover, the capability of Bayesian
ZIBGLMM to estimate the proportion of zero-inflation accurately, especially in smaller and moderate-sized
meta-analyses, further emphasizes its significance in capturing the underlying population heterogeneity.
However, practitioners need to be cautious while interpreting results from larger meta-analyses, as there
may be a tendency to overestimate the proportion of zero-inflation. It’s also worth noting the potential con-
vergence issues faced by the frequentist ZIBGLMM method in certain scenarios, which might be solved by
using different optimization algorithms.

7 Discussion

In this paper, we proposed a zero-inflated bivariate generalized linear mixed model (ZIBGLMM) as a
new method for handling double-zero-event studies (DZS) in meta-analysis. This model is motivated by the
hypothesis that zeros in DZS may arise due to heterogeneity in the population, making the segregation of
“structural” and “chance” zeros essential for accurate analysis.

The main estimate that we derive from our model is a marginal Relative Risk (RR). Alternatively, one
could use the Odds Ratio (OR) as the estimate. We chose RR over OR as the estimate mainly because of
the non-collapsibility issues of the OR. There has been an ongoing debate on the choice between OR and
RR.56–59 Another option is to use a GLMM with a log-link assuming a Poisson distribution within studies
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as Böhning et al.60 to report cluster-specific effects instead of marginal effects.61 The choice between
reporting the cluster-specific effects versus the marginal effects depends on the population we are interested
in generalizing to. Marginal effects should be used if the goal is to generalize to the whole population, while
cluster-specific effects should be used if we are only interested in the study-level effects. One potential issue
with the bivariate approach to meta-analysis is that it may permit inter-trial information to be recovered,
which in theory can lead to bias.62 However, as Senn62 has pointed out, in practice the size of this bias is
likely to be small and can rarely cause an issue in real-world applications.

There are two ways of defining the treatment effects in our model setting. Let pik denote the probability
of success for the i-th study for the k-th treatment arm. Then, we could estimate the treatment effects
based on the overall population (both ZI and non-ZI population), and the formula is π + (1 − π)pk, where
pk = E(pik). The argument for this approach is that this aligns more with our model of the two mixture
parts or only the non-ZI population, and the formula is pk = E(pki). The argument for this is that since the
population is ZI and is healthier, then there are little treatment effects for that population. We have chosen
the latter way of defining the treatment effects.

Using 1,111 real-world meta-analyses with DZS selected from the CDSR and 18,000 simulated meta-
analyses, we demonstrated the strengths and potential benefits of both the frequentist and Bayesian versions
of ZIBGLMM. The Bayesian ZIBGLMM provided consistently better goodness of fit than the Bayesian
BGLMM across varying scenarios. We further identified that Bayesian BGLMM and Bayesian ZIBGLMM
generally accomplished comparable coverage probabilities to two-stage meta-analyses, shorter confidence
interval lengths, and less bias in estimating RR.

The ZIBGLMM method has several limitations compared with the standard bivariate generalized linear
model or conventional two-stage meta-analysis excluding DZS. Notably, convergence issues might occur for
the frequentist versions of ZIBGLMM and BGLMM models, especially for meta-analyses with a smaller
number of studies. This issue potentially stems from the absence of DZS or the excessive presence of DZS in
a meta-analysis. The frequentist ZIBGLMM method has a higher chance of encountering convergence issues
than the BGLMM method. Specifically, 1,015 datasets converged for ZIBGLMM, while 1,084 datasets
converged for BGLMM for the 1,111 CDSR meta-analyses. A potential way of avoiding convergence issues
is to change the optimization algorithms used. Alternatively, using the Bayesian BGLMM and ZIBGLMM
can avoid the convergence issues.

The limitation of the Bayesian BGLMM and ZIBGLMM is that they typically might take longer time to
compute than the frequentist counterparts. For example, fitting a Bayesian ZIBGLMM on a meta-analysis
with 25 studies takes around 4 minutes, and fitting on a meta-analysis with 50 studies takes around 9 minutes
on a MacBook Pro with an Apple M1 Pro 10-core CPU and 32 GB RAM.

Our general recommendation to practitioners is to opt for Bayesian ZIBGLMM in the presence of double-
zero-event studies (DZS), as it provides a more accurate estimation of the risk ratio and the proportion of
zero-inflation. Bayesian ZIBGLMM in general achieves better goodness of fit in terms of deviance of in-
formation (DIC) than Bayesian BGLMM. In addition, the Bayesian methods are not subject to convergence
issues that the frequentist ZIBGLMM might face. The main limitation of the Bayesian methods is that the
computation time might be longer for a single meta-analysis than their frequentist counterparts.

If computation time is a major limitation, we recommend using the frequentist ZIBGLMM, which can
provide a more accurate estimation of the risk ratio than the frequentist BGLMM. For meta-analyses com-
prising 10 or fewer studies, we recommend using Bayesian ZIBGLMM for meta-analyses with 10 studies
or fewer since the computation time wouldn’t increase too much and the frequentist ZIBGLMM are more
likely to experience convergence for the small meta-analyses as observed in the simulation studies. We also
recommend exercising caution with large meta-analyses when using Bayesian ZIBGLMM, as there might
be a tendency to overestimate the proportion of zero-inflation.

We note that when the true data-generating mechanism (DGM) is BGLMM rather than ZIBGLMM,
using ZIBGLMM might be misspecified. In fact, the BGLMM is a submodel of the ZIBGLMM. In practice,
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if there are excessive numbers of zeros in the data, we recommend the investigators to fit the ZIBGLMM
to avoid substantial biases due to underfitting. Further, we can also formally test between the BGLMM
and ZIBGLMM models, as they are nested models. Score tests and likelihood ratio tests can be developed
following the work by Hall et al.63 and Huang et al.64 For the likelihood ratio test, one needs to properly
account for the fact that under the null hypothesis, the mixing probability parameter π = 0 lies at the
boundary of its parameter space [0, 1].41, 65, 66

Meta-regression remains a challenging yet vital aspect of enhancing the robustness and applicability
of our findings. In particular, when many zero events occur in meta-analyses, the effect sizes tend to be
more homogeneous, making it difficult to identify appropriate study-level summary covariates that could
explain small between-study heterogeneity. One direction for future work is to expand the current model to
incorporate covariate meta-regression, which would allow for a more detailed examination of how specific
study characteristics influence the treatment effects.

In conclusion, our study proposes the ZIBGLMM as a novel approach to handling DZS, which can
effectively reduce the biases in conventional meta-analysis methods by properly accounting for the between-
population heterogeneity. We expect the ZIBGLMM method to be useful in pharmacoepidemiological and
pharmacovigilance studies where the event probabilities are rare and DZS are prevalent.
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Figure 1: Estimated effect size differences using four methods, i.e., bivariate generalized linear mixed
model (BGLMM) including double-zero-event studies (DZS), BGLMM excluding DZS, conventional two-
stage meta-analysis excluding DZS (MA), and zero-inflated bivariate generalized linear mixed model
(ZIBGLMM) including DZS. In each subfigure, the y-axis is the difference in log RRs between the two
methods, and the x-axis is the average of the log RRs of the two methods being compared. Subfigure (A)
contrasts the BGLMM with and without DZS. Subfigure (B) explores the difference in effect size between
ZIBGLMM and MA, both excluding DZS. Subfigure (C) presents a similar comparison between ZIBGLMM
including DZS and BGLMM excluding DZS. Subfigures (A)-(C) shed light on how the inclusion or ex-
clusion of DZS significantly impacts effect sizes based on 1,111 Cochrane meta-analyses. Subfigure (D)
provides a comparison between ZIBGLMM and BGLMM, both incorporating DZS. It illustrates a more
concentrated distribution, signifying a smaller difference in log RR. Each subfigure displays the number of
meta-analyses lying outside the 95% limits of agreement, the mean difference between log RRs, 95% limits
of agreements, and 99% range of the averages of log RRs at its upper left corner.
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Figure 2: PRISMA plot of the 1,111 Cochrane Database of Systematic Reviews (CDSR) meta-analyses
included in this paper. We extracted 1,111 studies with sample sizes between 10 and 50 and with double-
zero ratios between 0.15 and 0.4 from a total of 72,716 studies.
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Figure 3: Model goodness of fit in terms of AIC and DIC differences between the ZIBGLMM and BGLMM
methods for simulation meta-analyses in subfigure (A) and Cochrane meta-analyses in subfigure (B). Each
violin plot67 included a box plot where the box limits indicated the range of the central 50% of the data (i.e.,
the range between the 25th and 75th percentile), and the median value was marked by a central black line,
along with a kernel smoothed density plot representing the probability distribution. The y-axis in each sub-
plot represents the goodness of fit of ZIBGLMM subtracting the goodness of fit of BGLMM. The dashed
line represents when the difference is 0. Subfigure (A) illustrates the distribution of AIC and DIC differ-
ences for 18,000 simulation datasets. The ZIBGLMM exhibited superior fit for 8,839 of 16,215 (54.51%)
simulation studies as measured by AIC, and for 17,805 out of 18,000 (98.92%) simulation studies when
measured by DIC. Subfigure (B) illustrates the distribution of AIC and DIC differences for 1,111 Cochrane
meta-analyses. The ZIBGLMM exhibited superior fit for 365 of 1,010 (36.13%) Cochrane meta-analyses as
measured by AIC, and for 986 out of 1,111 (88.74%) Cochrane meta-analyses when measured by DIC.
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Figure 4: Coverage probability and mean CI length of conventional two-stage meta-analysis (MA), bivariate
generalized linear mixed models (BGLMM), Bayesian BGLMM, zero-inflated bivariate generalized linear
mixed models (ZIBGLMM), and Bayesian ZIBGLMM. The y-axis displays the coverage probability and the
x-axis displays the mean 95% confidence/credible interval widths. The number of studies in a meta-analysis
is denoted by n. The Bayesian BGLMM and Bayesian ZIBGLMM displayed comparable, consistently
high coverage probabilities to MA, while maintaining the shortest mean credible interval widths across all
settings. The coverage probabilities for all methods decreased as the average marginal RR increased and as
the size of studies increased.
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Figure 5: Bias in the estimation of risk ratio (RR) from conventional two-stage meta-analysis excluding DZS
(MA), alongside the frequentist and Bayesian versions of BGLMM and ZIBGLMM. For meta-analyses with
a smaller size (10 studies), the frequentist ZIBGLMM exhibits the least bias. For meta-analyses with a mod-
erate size (25 studies), Bayesian BGLMM manifests the least bias. The Bayesian BGLMM and ZIBGLMM
archives the smallest bias for large (50 studies) meta-analyses. Frequentist ZIBGLMM consistently demon-
strates less bias than the frequentist BGLMM. For all settings, both frequentist and Bayesian BGLMM and
ZIBGLMM consistently yield smaller biases compared to MA.
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Figure 6: Bias in the estimation of proportion of zero-inflation π. Bayesian ZIBGLMM produces an estimate
of the proportion of zero-inflation with a smaller bias than the frequentist ZIBGLMM across all study sizes
and proportions of zero-inflation. However, it tends to overestimate the proportion of zero-inflation for larger
meta-analyses (50 studies). In addition, Bayesian ZIBGLMM yields better estimates when the proportion
of zero-inflation is 50% than when it is 25%. The frequentist ZIBGLMM appears to have a more substantial
bias as the size of the meta-analyses grows.
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Data Availability Statement

The data sets and code for this study can be found in the repository.32

Highlights

What is already known?

• Double-zero-event studies (DZS) are challenging for meta-analysis due to division by zero errors.

• Current methods to address this include continuity correction or omitting DZS.

• These existing methods might produce biased conclusions.

What is new?

• The paper introduces and discusses the rationale for proposing ZIBGLMM (Zero-Inflated Bivariate
Generalized Linear Mixed Model), a novel method for handling double-zero-event studies (DZS) in
meta-analysis.

• The ZIBGLMM addresses issues by using a data-driven approach to identify subpopulations with
extremely low risks and model population heterogeneity.

Potential impact for Research Synthesis Methods readers

• The proposed ZIBGLMM can potentially provide a more accurate estimation of effect sizes, especially
in meta-analysis with excess DZS.

• Using a data-driven approach, ZIBGLMM provides a more robust solution to handle DZS compared
to existing methods, which could lead to better conclusions in research synthesis.
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Tables

Table 1: Motivation example study data.33

Study ID
Experimental
Number of Events

Experimental
Sample Size

Control
Sample Size

Control
Number of Events

Posterior Probability of
Belonging to the Structual-Zero

1 10 407 4 402 0
2 0 1026 1 1032 0
3 1 30 0 30 0
4 66 488 0 490 0
5 0 257 0 257 0.98
6 0 79 2 81 0
7 4 630 3 599 0
8 1 330 0 331 0
9 1 97 5 99 0
10 0 100 0 100 0.73
11 2 812 2 808 0
12 0 900 0 900 1
13 1 29 0 32 0
14 0 533 0 583 1
15 1 32 1 32 0
16 5 117 0 121 0
17 28 705 13 717 0
18 0 702 0 698 1
19 15 9225 15 9230 0
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Table 2: Descriptions of notation.

Notation Description

i Index of study
π proportion of zero-inflation
k Index of treatment arm, k = 0 represents control group and k = 1 represents treatment group
Yik No. of events in the kth group in the ith study
n No. of studies in a meta-analysis
Nik No. of subjects in the the kth group in the ith study
Pik Probability of an event for the kth group in the ith study
µk Fixed effects on the logit scale for the kth group across entire population
νik Random effects on the logit scale for the kth group in the ith study
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Table 3: Summary of the comparative analysis of different methods in Figure 1 (∗ denotes using the middle
99% of data to exclude extreme values).

Subfigure Subfigure A Subfigure B Subfigure C Subfigure D
Methods being com-
pared

BGLMM w/ DZS
vs. BGLMM w/o
DZS

ZIBGLMM w/
DZS vs. two-stage
meta-analysis w/o
DZS

ZIBGLMM w/
DZS vs. BGLMM
w/o DZS

ZIBGLMM w/
DZS vs. BGLMM
w/ DZS

No. Meta-analyses 1067 1015 998 990
Mean absolute differ-
ence in log RRs∗

0.13 0.16 0.13 0.06

No. meta-analyses with
direction changes∗

98 (9.29%) 130 (12.96%) 101 (10.22%) 37 (3.78%)

No. meta-analyses with
significance changes∗

74 (7.01%) 108 (10.77%) 79 (8.00%) 51 (5.20%)

95% limit of agreements
of log RRs

(-0.60, 0.44) (-0.55, 0.55) (-0.59, 0.42) (-0.33, 0.34)

No. meta-analyses with
RRs increased∗

324 (30.71%) 465 (46.36%) 278 (28.14%) 428 (43.67%)

No. meta-analyses with
RRs decreased∗

731 (69.29%) 533 (53.14%) 708 (71.66%) 466 (47.55%)
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Table 4: Specifications for the simulation studies.

Parameter Value

proportion of zero-inflation 25%, 50%
No. of studies 10 (small), 25 (moderate), 50 (large)
Average event probabilities for
the non-zero-inflated part

3% for the control group on average, generated from a BGLMM model

Marginal RR 1, 1.5, 2
Study size 50
No. of double zero studies Binomial (# studies, proportion of zero-inflation)
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Table 5: Coverage probability of the five methods: two-stage meta-analysis excluding DZS (MA), BGLMM,
Bayesian BGLMM, ZIBGLMM, and Bayesian ZIBGLMM.

Frequentist Bayesian

π=0.25 π=0.5 π=0.25 π=0.5

MA n=10 RR=1 98.3% 98.5% - -
RR=1.5 97.3% 96.7% - -
RR=2 96.3% 96.3% - -

n=25 RR=1 98.1% 98.1% - -
RR=1.5 95.2% 96.1% - -
RR=2 91.9% 93.7% - -

n=50 RR=1 97.6% 97.8% - -
RR=1.5 92.4% 94.9% - -
RR=2 82.8% 91.3% - -

BGLMM n=10 RR=1 97.2% 96.8% 98.3% 98.8%
RR=1.5 96.1% 96.1% 97.4% 98.4%
RR=2 95.8% 94.7% 97.3% 96.6%

n=25 RR=1 92.4% 92.4% 94.8% 94.7%
RR=1.5 93.5% 92.4% 94.3% 93.6%
RR=2 93.1% 89.3% 93.6% 92%

n=50 RR=1 91.9% 92.4% 92.5% 93.1%
RR=1.5 90.8% 91.5% 90.7% 92.2%
RR=2 88.5% 88.9% 89.6% 91.6%

ZIBGLMM n=10 RR=1 94% 94.3% 98.3% 98.6%
RR=1.5 91.1% 93.4% 96.8% 98%
RR=2 90% 88.3% 96.9% 96.3%

n=25 RR=1 95.4% 91.8% 94.9% 95.2%
RR=1.5 91.1% 89.9% 94.6% 93.9%
RR=2 87.2% 85.1% 93.6% 92.1%

n=50 RR=1 92.7% 91.9% 92.2% 93.4%
RR=1.5 89.7% 88.6% 91.1% 92.3%
RR=2 85.2% 80% 90.1% 91.7%

Supporting Information
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Table 6: Summary of the meta-analyses that converged for the frequentist BGLMM and ZIBGLMM methods
in the simulation study. π denotes the proportion of zero-inflation, n is the number of studies in the sim-
ulated meta-analysis, and RR is the true marginal risk ratio. “# covered” is the number of meta-analyses
whose confidence intervals contain the true risk ratio. “# is not NA” is the number of meta-analyses whose
random effect and fixed effect for both treatment arms are available using the frequentist methods. “#
of converged” is the total number of meta-analyses for which the frequentist methods converged (i.e., the
model successfully executes without encountering the “Optimization cannot be completed” error). All the
numbers are out of a total of 1,000 simulated meta-analyses.

# covered # not NA # of converged
BGLMM π = 0.25 n=10 RR=1 847 871 977

RR=1.5 819 852 977
RR=2 820 856 984

n=25 RR=1 727 787 952
RR=1.5 809 865 979
RR=2 825 886 980

n=50 RR=1 834 908 981
RR=1.5 853 939 991
RR=2 852 963 999

π = 0.5 n=10 RR=1 847 875 981
RR=1.5 799 831 970
RR=2 815 861 974

n=25 RR=1 746 807 958
RR=1.5 789 854 977
RR=2 781 875 983

n=50 RR=1 843 912 975
RR=1.5 866 946 987
RR=2 849 955 993

ZIBGLMM π = 0.25 n=10 RR=1 772 821 932
RR=1.5 703 772 890
RR=2 668 742 860

n=25 RR=1 730 765 953
RR=1.5 713 783 917
RR=2 635 728 868

n=50 RR=1 728 785 939
RR=1.5 777 866 955
RR=2 662 777 874

π = 0.5 n=10 RR=1 788 836 920
RR=1.5 735 787 881
RR=2 651 737 830

n=25 RR=1 738 804 898
RR=1.5 683 760 875
RR=2 549 645 783

n=50 RR=1 718 781 922
RR=1.5 697 787 906
RR=2 517 646 760
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