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Mapping the ecological networks of microbial
communities
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Mapping the ecological networks of microbial communities is a necessary step toward
understanding their assembly rules and predicting their temporal behavior. However, existing
methods require assuming a particular population dynamics model, which is not known a
priori. Moreover, those methods require fitting longitudinal abundance data, which are often
not informative enough for reliable inference. To overcome these limitations, here we develop
a new method based on steady-state abundance data. Our method can infer the network
topology and inter-taxa interaction types without assuming any particular population
dynamics model. Additionally, when the population dynamics is assumed to follow the classic
Generalized Lotka-Volterra model, our method can infer the inter-taxa interaction strengths
and intrinsic growth rates. We systematically validate our method using simulated data, and
then apply it to four experimental data sets. Our method represents a key step towards
reliable modeling of complex, real-world microbial communities, such as the human gut
microbiota.
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ARTICLE

he microbial communities established in animals, plants,

soils, oceans, and virtually every ecological niche on Earth

perform vital functions for maintaining the health of the
associated ecosystems!™. Recently, our knowledge of the orga-
nismal composition and metabolic functions of diverse microbial
communities has markedly increased, due to advances in DNA
sequencing and metagenomics®. However, our understanding of
the underlying ecological networks of these diverse microbial
communities lagged behind’. Mapping the structure of those
ecological networks and developing ecosystem-wide dynamic
models will be important for a variety of applications®, from
predicting the outcome of community alterations and the effects
of perturbations’, to the engineering of complex microbial
communities”!?. We emphasize that the ecological network dis-
cussed here is a directed, signed, and weighted graph, where
nodes represent microbial taxa and edges represent direct eco-
logical interactions (e.g., parasitism, commensalism, mutualism,
amensalism, or competition) between different taxa. This is
fundamentally different from the correlation-based association or
co-occurrence network”!1713, which is undirected and does not
encode any causal relations or direct ecological interactions, and
hence cannot be used to faithfully predict the dynamic behavior
of microbial communities.

To date, existing methods for inferring the ecological networks
of microbial communities are based on temporal abundance data,
i.e., the abundance time-series of each taxon in the microbial
community'*1°. The success of those methods has been
impaired by at least one of the following two fundamental lim-
itations. First, those inference methods typically require the a
priori choice of a parameterized population dynamics model for
the microbial community. This choice is hard to justify, given
that microbial taxa in the microbial community interact via a
multitude of different mechanisms”?*~22, producing complex
dynamics even at the scale of two taxa?>?*, Any deviation of the
chosen model from the ‘true’ model of the microbial community
can lead to systematic inference errors, regardless of the inference
method that is used'®. Second, a successful temporal data-based
inference requires sufficiently informative time-series data!®?>,
For many host-associated microbial communities, such as the
human gut microbiota, the available temporal data are often
poorly informative. This is due to the fact that such microbial
communities often display stability and resilience’®?’, which
leads to measurements containing largely their steady-state
behavior. For microbial communities such as the human gut
microbiota, trying to improve the informativeness of temporal
data is challenging and even ethically questionable, as it requires
applying drastic and frequent perturbations to the microbial
community, with unknown effects on the host.

To circumvent the above fundamental limitations of inference
methods based on temporal data, here we developed a new
method based on steady-state data, which does not require any
external perturbations. The basic idea is as follows. Briefly, if we
assume that the net ecological impact of species on each other is
context-independent, then comparing equilibria (i.e., steady-state
samples) consisting of different subsets of species would allow us
to infer the interaction types. For example, if one steady-state
sample differs from another only by addition of one species X,
and adding X brings down the absolute abundance of species Y,
then we can conclude X inhibits the growth of Y. This very simple
idea can actually be extended to more complicated cases where
steady-state samples differ from each other by more than one
species. Indeed, we rigorously proved that, if we collect enough
independent steady states of the microbial community, it is
possible to infer the microbial interaction types (positive, nega-
tive, and neutral interactions) and the structure of the ecological
network, without requiring any population dynamics model. We
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further derived a rigorous criterion to check if the steady-state
data from a microbial community is consistent with the gen-
eralized Lotka—Volterra (GLV) model™!°, a classic population
dynamics model for microbial communities in human bodies,
soils, and lakes. We proved that, if the microbial community
follows the GLV dynamics, then the steady-state data can be used
to accurately infer the model parameters, i.e., inter-taxa interac-
tion strengths and intrinsic growth rates. We validated our
inference method using simulated data generated from various
classic population dynamics models. Finally, we applied it to real
data collected from four different synthetic microbial commu-
nities, finding that the inferred ecological networks either agree
well with the ground truth or help us predict the response of
systems to perturbations. Our method represents a key step
toward reliable ecological modeling of complex microbial com-
munities, such as the human gut microbiota.

Results
Theoretical basis. Microbes typically do not exist in isolation, but
form complex ecological networks’. The ecological network of a
microbial community is encoded in its population dynamics,
which can be described by a set of ordinary differential equations
(ODEs):

dx;(¢)/dt = x;(t)fi(x(t)), i=1,...,N. (1)

Here, fi(x(t))’s are some unspecified functions whose functional
forms determine the structure of the underlying ecological net-
work; x(t) = (x1 (), ... ,xn(t))"€ RV is an N-dimensional vec-
tor with x;(¢) denoting the absolute abundance of the i-th taxon
at time f. In this work, we do not require ‘taxon’ to have a par-
ticular taxonomic ranking, as long as the resulting abundance
profiles are distinct enough across all the collected samples.
Indeed, we can group microbes by species, genus, family, or just
operational taxonomic units (OTUs).

Note that in the right-hand side of Eq. (1), we explicitly factor
out x; to emphasize that (i) without external perturbations those
initially absent or later extinct taxa will never be present in the
microbial community again as time goes by, which is a natural
feature of population dynamics (in the absence of taxon invasion
or migration); (ii) there is a trivial steady state where all taxa are
absent; (iii) there are many non-trivial steady states with different
taxa collections. We assume that the steady-state samples
collected in a data set X' correspond to those non-trivial steady
states x* of Eq. (1), which satisfy xifi(x},...,x%) =0,
i=1,...,N. For many host-associated microbial communities,
e.g., the human gut microbiota, those cross-sectional samples
collected from different individuals contain quite different
collections of taxa (up to the taxonomic level of phylum binned
from OTUs)?%. We will show later that the number of
independent steady-state samples is crucial for inferring the
ecological network.

Mathematically, the intra- and inter-taxa ecological interac-
tions (i.e., promotion, inhibition, or neutral) are encoded by the
Jacobian matrix J(x(t)) € RN*N  with matrix elements
Jii(x(t)) = ofi(x(t))/0x;. The condition J;i(x(t)) > 0 (<0 or =0)
means that taxon j promotes (inhibits or does not affect) the
growth of taxon i, respectively. The diagonal terms J;(x(t))
represent intra-taxa interactions. Note that J;;(x(t)) might depend
on the abundance of many other taxa begond i and j (due to the
so-called ‘higher-order’ interactions?*2832),

The structure of the ecological network is represented by
the zero-pattern of J(x(t)). Under a very mild assumption
that fé]ij(xl + o(xX — '))de = 0 holds if and only if J; =0
(where x! and xKX are two steady-state samples sharing taxon i),
we find that the steady-state samples can be used to infer the
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Fig. 1 Inferring ecological interaction types for a small microbial community. The interaction types are coded as the sign-pattern of the Jacobian matrix. a
For a microbial community of two taxa, its ecological network and the sign-pattern of the corresponding Jacobian matrix are shown here. b There are three
possible steady-state samples (shown as colored pie charts), and two of them x1"2}, x{1} share taxon 1. We calculate the green line that passes through the
origin and is perpendicular to the vector (x”l} - x{”) (shown as a blue line segment). This green line crosses the origin, and two other orthants (shown in
light cyan and green), offering a set of possible sign-patterns: (0, 0), (—, —) and (+, —), for which s; = (sign(Jn), sign(J12)) may belong to. Provided that
Jn<0, we conclude that s; = (—, +). ¢ For a microbial community of three taxa, its ecological network and the sign-pattern of the corresponding Jacobian
matrix are shown here. d There are seven possible steady-state samples, and we plot four of them that share taxon 1. Consider a line segment

(x{m} — xm) (solid blue). We calculate the orange plane that passes through the origin and is perpendicular to this solid blue line. This orange plane

crosses nine regions: the origin and the other eight regions (denoted in different color cubes, color lines), offering nine possible sign-patterns for s;. We can
consider another line segment that connects two steady-state samples sharing taxon 1, say, {3} and x{"23}, and repeat the above procedure. We do this
for all the sample pairs (dashed blue lines), record the regions crossed by the corresponding orthogonal planes. Finally, the intersection of the regions

crossed by all those orthogonal hyperplanes yields a minimum set of sign-patterns &; = {(-=,0,4),(0,0,0), (4,0, —)} that s; may belong to. If we know
that Jn<O, then we can uniquely determine s; = (—,0,+)

zero-pattern of J(x(t)), i.e., the structure of the ecological network
(Methods, the subsection ‘Inferring the zero-pattern’ of Supple-
mentary Note 1, Supplementary Note 2, and Supplementary
Note 3 for details). Note that the network structure is interesting
by itself and can be very useful in control theoretical analysis of
microbial communities’>. But in many cases, we are more
interested in inferring the interaction types or strengths, so that
we can better predict the community’s response to perturbations.

The ecological interaction types are encoded in the sign-pattern
of J(x(t)), denoted as sign(J(x(t))). To infer the interaction types,
ie, sign(J(x(t))), we make an explicit assumption that
sign(J(x(t))) = const across all the observed steady-state sam-
ples. In other words, the nature of the ecological interactions
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between any two taxa does not vary across all the observed
steady-state samples, though their interaction strengths might
change. Note that the magnitude of J;;(x(t)) by definition may
vary over different states, we just assume its sign remains
invariant across all the observed samples/states. This assumption
might be violated if those steady-state samples were collected
from the microbial community under drastically different
environmental conditions (e.g., nutrient availabilit 4. In that
case, inferring the interaction types becomes an ill-defined
problem, since we have a ‘moving target’ and different subsets
of steady-state samples may offer totally different answers.
Notably, as we will show later, the assumption is valid for many
classic population dynamics models®>.
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The assumption that sign(J(x(¢))) = const can be falsified by
analyzing steady-state samples. In Proposition 1 of the subsection
‘Inferring the sign-pattern’ of Supplementary Note 1, we
rigorously proved that if sign(J(x(#))) = const, then true multi-
stability does not exist. Equivalently, if a microbial community
displays true multi-stability, then sign(J(x(t)))#const. Here, a
community of N taxa displays true multi-stability if there exists a
subset of M (< N) taxa that has multiple different steady states,
where all the M taxa have positive abundances and the other
(N — M) taxa are absent. In practice, we can detect the presence
of true multi-stability by examining the collected steady-state
samples. If yes, then we know immediately that our assumption
that sign(J(x(¢))) = const is invalid and we should only infer the
zero-pattern of J, ie., the structure of the ecological network. If
no, then at least our assumption is consistent with the collected
steady-state samples, and we can use our method to infer
sign(J(x(t))), ie., the ecological interaction types. In short, by
introducing a criterion to falsify our assumption, we significantly
enhance the applicability of our method (see Remark 6 of the
subsection ‘Inferring the sign-pattern’ of Supplementary Note 1
for more detailed discussions).

Inferring interaction types. The assumption that sign(J(x(¢))) =
const enables us to mathematically prove that sign(J(x(¢)))
satisfies a strong constraint (see Methods and Theorem 2 in the
subsection ‘Inferring the sign-pattern’ of Supplementary Note 1).
By collecting enough independent steady-state samples, we can
solve for the sign-pattern of J(x), and hence map the structure of
the ecological network (Remarks 4 and 5 in the subsection
‘Inferring the sign-pattern’ of Supplementary Note 1).

The basic idea is as follows. Let Z; be the set of all steady-state
samples sharing taxon i. Then, for any two of those samples x!
and xK, where the superscripts I, K € Z; denote the collections of
present taxa in those samples, we can prove that the sign-pattern
of the i-th row of Jacobian matrix, denoted as a ternary vector
sie {—,0,+}", is orthogonal to (x' —xX) (see Eq. (S3) in
Supplementary Note 1). In other words, we can always find a real-
valued vector y € RV, which has the same sign-pattern as s; and
satisfies y7 - (x! — xX) = 0. If we compute the sign-patterns of all
vectors orthogonal to (x' —xX) for all I,K € Z;, then s; must
belong to the intersections of those sign-patterns, denoted as S;.
In fact, as long as the number Q of steady-state samples in X’ is
above certain threshold Q, then S; will contain only three sign-
patterns {—a, 0, a} (see Remark 5 in the subsection ‘Inferring the
sign-pattern’ of Supplementary Note 1). To decide which of these
three remaining sign-patterns is the true one, we just need to
know the sign of only one non-zero interaction. If such prior
knowledge is unavailable, one can at least make a reasonable
assumption that s; = ‘-, ie., the intra-taxa interaction J; is
negative (which is often required for community stability). When
&; has more than three sign-patterns, we proved that the steady-
state data is not informative enough in the sense that all sign-
patterns in S; are consistent with the data available in X" (see
Remark 5 in the subsection ‘Inferring the sign-pattern’ of
Supplementary Note 1). This situation is not a limitation of any
inference algorithm, but of the data itself. To uniquely determine
the sign-pattern in such a situation, one has to either collect more
samples (thus increasing the informativeness of X) or use a priori
knowledge of non-zero interactions.

We illustrate the application of the above described method to
small microbial communities with unspecified population
dynamics (Fig. 1). For the two taxa community (Fig. 1a), there
are three possible types of equilibria, ie., {x{l} x{2} x{1:2}}
depicted as colored pie charts in Fig. 1b. In order to infer
s1 = (sign(J11), sign(J12)), we compute a straight line (shown in
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green in Fig. 1b) that is orthogonal to the vector (x{1?} — x{1})
and passes through the origin. The regions (including the origin
and two quadrants) crossed by this green line provide the set of
possible sign-patterns S; = {(—, +), (0,0), (+, —)} that s, may
belong to. A priori knowing that J;;<0, our method correctly
concludes that s; = (—, +). Note that J;, > 0 is consistent with
the observation that with the presence of taxon 2, the steady-state
abundance of taxon 1 increases (Fig. 1b), i.e., taxon 2 promotes
the growth of taxon 1. We can apply the same method to infer the
sign-pattern of s, = (—, —).

For the three taxa community (Fig. 1c), there are seven possible
types of  equilibria (steady-state samples), ie.,
{alth x2h 3} {12} 513} 5123}y 11230 Four of them share
taxon 1 (see colored pie charts in Fig. 1d). Six line segments

connect the = 6 sample pairs, and represent vectors of the

4
2
form (xf —xX), I, K € Z,={{1},{1,21,{1,3},{1,2,3}}. Considering
the line segment (x11*} — x{1}), i.e, the solid blue line in Fig. 1d,
we compute a plane (shown in orange in Fig. 1d) that is
orthogonal to it and passes through the origin. The regions
(including the origin and eight orthants) crossed by this orange
plane provide a set of possible sign-patterns that s; may belong to
(Fig. 1d). We repeat the same procedure for all other vectors
(x —xX),I,K € Z;, and compute the intersection of all the

possible sign-patterns, finally yielding the minimum set S =
{(-,0,+),(0,0,0), (4,0, —)} to which s, may belong to. If the
sign of one non-zero interaction is known (J;;<0 for this
example), our method correctly infers the true sign-pattern
s1 = (—,0,+). Repeating this process for samples sharing taxon 2
(or 3) will enable us to infer the sign-pattern s, (or s;),
respectively.

It is straightforward to generalize the above method to a
microbial community of N taxa (see Methods and the subsection
‘Brute-force algorithm’ of Supplementary Note 2 for details). But
this brute-force method requires us to calculate all the sign-
pattern candidates first, and then calculate their intersection to
determine the minimum set S; that s; will belong to. Since the
solution space of sign-patterns is of size 3V, the time complexity
of this brute-force method is exponential with N, making it
impractical for a microbial community with N > 10 taxa
(Methods). To resolve this issue, we developed a heuristic
algorithm that pre-calculates many intersection lines of (N — 1)
non-parallel hyperplanes that pass through the origin and are
orthogonal to (x' — xX),I,K € Z;. Based on these pre-calculated
intersection lines, the algorithm determines S; using the most
probable intersection line. The solution space of this heuristic
algorithm is determined by the user-defined number of pre-
calculated interaction lines (denoted as ¥). Hence this algorithm
naturally avoids searching the exponentially large solution space
(see Methods and the subsection ‘Inference using the heuristic
algorithm’ of Supplementary Note 2 for details). Later on, we will
show that this heuristic algorithm can indeed infer the interaction
types with high accuracy.

In reality, due to measurement noise and/or transient behavior
of the microbial community, the abundance profiles of the
collected samples may not exactly represent steady states of the
microbial community. Hence, for certain Jjj’s, their inferred signs
might be wrong. Using simulated data, we will show later that for
considerable noise level the inference accuracy is still reasonably
high.

Inferring interaction strengths. To quantitatively infer the inter-
taxa interaction strengths, it is necessary to choose a priori a
parameterized dynamic model for the microbial community. The
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Fig. 2 Consistency check of the GLV model and the observed steady-state samples. For a microbial community following exactly the GLV dynamics, all its
steady-state samples sharing one common taxon will align onto a hyperplane in the state space. a Here we consider a microbial community of three taxa.
There are four steady-state samples {x!"}, x{12} x{13} x{123}3 that share common taxon 1. Those four steady-state samples represent four points in the
state space, and they align onto a plane (light red). The normal vector of this plane is parallel to the first row a, of the interaction matrix A in the GLV model.
Given any one of non-zero entries in a;, we can determine the exact values of all other entries. Otherwise, we can always express the inter-taxa interaction
strengths a; (j%i) as a function of the intra-taxa interaction strength a;. b Here we again consider a microbial community of three taxa. Taxon-1and taxon-2
follow the GLV dynamics, but taxon-3 does not. Then those steady-state samples that share taxon-3 do not align onto a plane anymore. Here we show the
best fitted plane (in green) by minimizing the distance between this plane and the four steady states, with the coefficient of determination R2 = 0.77

classical GLV model can be obtained from Eq. (1) by choosing
N .
filx) = Zj:1 agxj+r, i=1,.. (2)

where r = (rq, ... ’rN,)\rTe RY is the intrinsic growth rate vector
and A = (a;) € RVV is the interaction matrix characterizing
the intra- and inter-taxa interactions.

From Eq. (2) we can easily calculate the Jacobian matrix ],
which is nothing but the interaction matrix A itself. This also
reflects the fact that the value of a;; quantifies the interaction
strength of taxon j on taxon i The GLV model considerably
simplifies the inference of the ecological network, because we can
prove that a;- (x! — xK) =0, for all I,K € Z;, where a;
(ai1, ... ,aiv) represents the i-th row of the A matrix (see the
subsection ‘Inference of interaction strengths and intrinsic growth
rates’ of Supplementary Note 5). In other words, all steady-state
samples containing the i-th taxon will align exactly onto a
hyperplane, whose orthogonal vector is parallel to the vector a;
that we aim to infer (Fig. 2a, Theorem 3 of the subsection ‘A
condition for detecting GLV dynamics’ of Supplementary Note 5).
Thus, for the GLV model, the inference from steady-state data
reduces to finding an (N — 1)-dimensional hyperplane that ‘best
fits' the steady-state sample points {«x|I € Z;} in the N-
dimensional state space. In order to exactly infer a; it is
necessary to know the value of at least one non-zero element in a;,,
say, a;. Otherwise, we can just determine the relative interaction
strengths by expressing a;; in terms of a;;. Once we obtain a;, the
intrinsic growth rate r; of the i-th taxon can be calculated by
averaging (—a;-x!) overall I €Z;, ie, all the steady-state
samples containing taxon i.

In case the samples are not collected exactly at steady states of the
microbial community or there is noise in abundance measurements,
those samples containing taxon i will not exactly align onto a
hyperplane. A naive solution is to find a hyperplane that minimizes
its distance to those noisy samples. But this solution is prone to
induce false-positive errors and will yield non-sparse solutions
(corresponding to very dense ecological networks). This issue can
be partly alleviated by introducing a Lasso regularization,
implicitly assuming that the interaction matrix A in the GLV
model is sparse. However, the classical Lasso regularization may
induce a high false-discovery rate (FDR), meaning that many zero
interactions are inferred as non-zeros ones. To overcome this

7N’
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drawback, we applied the Knockoff filter*! procedure, allowing us
to control the FDR below a desired user-defined level g > 0 (see the
subsection ‘Applying the Knockoff filter to control the false-
discovery rate’ of Supplementary Note 5 for details).

The observation that for the GLV model all noiseless steady-
state samples containing the i-th taxon align exactly onto a
hyperplane can also be used to characterize how much the
dynamics of the i-th taxon in a real microbial community deviates
from the GLV model. This deviation can be quantified by the
coefficient of determination (denoted by R?) of the multiple linear
regression when fitting the hyperplane using the steady-state
samples (Fig. 2b). If R? is close to 1 (the samples indeed align to a
hyperplane), we conclude that the dynamics of the microbial
community is consistent with the GLV model, and hence the
inferred interaction strengths and intrinsic growth rates are
reasonable. Otherwise, we should only aim to qualitatively infer
the ecological interaction types that do not require specifying any
population dynamics.

Validation on simulated data. To validate the efficacy of our
method in inferring ecological interaction types, we numerically
calculated the steady states of a small microbial community with
N = 8 taxa, using four different population dynamics models*>=°:
GLV, Holling Type II (Holling II), DeAngelis—Beddington (DB),
and Crowley—Martin (CM) models (see Supplementary Note 4 for
details). Note that all these models satisfy the requirement that the
sign-pattern of the Jacobian matrix is time-invariant. To infer the
ecological interaction types among the eight taxa, we employed
both the brute-force algorithm (with solution space ~3% = 6,561)
and the heuristic algorithm (with solution space given by the
number of the pre-calculated intersections chosen as
Y = 5N = 40).

In the noiseless case, we find that when the number of steady-
state samples satisfies Q > 3N, the heuristic algorithm out-
performed the brute-force algorithm for data sets generated from
all the four different population dynamics models (Fig. 3a). This
result is partly due to the fact that the former requires many fewer
samples than the latter to reach high accuracy (the percentage of
correctly inferred interaction types). However, when the sample
size Q is small (<3N), the heuristic algorithm completely fails
while the brute-force algorithm still works to some extent.
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Fig. 3 Validation of our method in inferring interaction types using simulated data. a,b Consider a small microbial community of N = 8 taxa. We generate steady-
state samples using four different population dynamics models: Generalized Lotka-Volterra (GLV), Holling Type Il (Holling II), DeAngelis-Beddington (DB), and
Crowley-Martin (CM). We compare the performance of the brute-force algorithm (with solution space ~38 = 6, 561) and the heuristic algorithm (with solution
space ~¥ = 5N = 40). a In the noiseless case, we plot the inference accuracy (defined as the percentage of correctly inferred signs in the Jacobian matrix) as a
function of sample size Q. b In the presence of noise, we plot the inference accuracy as a function of the noise level 5. Here the sample size is fixed:

Q = 5N = 40. The error bar represents standard deviation for 10 different realizations. ¢, d We calculate the minimal sample size Q* required for the heuristic
algorithm to achieve high accuracy (100% for GLV, 95% for Holling II, DB, and CM) at different system sizes. We consider two different taxa presence patterns:
uniform and heterogenous (see insets). Here the simulated data is generated in the noiseless case and we chose ¥ = 10N. a-d The underlying ecological network
is generated from a directed random graph model with connectivity 0.4 (i.e., with probability 0.4 there will be a directed edge between any two taxa)

We then fix Q = 5N, and compare the performance of the
brute-force and heuristic algorithms in the presence of measure-
ment noise (Fig. 3b). We add artificial noise to each non-zero
entry x! of a steady-state sample x! by replacing x/ with x! + nu,
where u ~ U[—x!,x!] is a random number uniformly distributed
in the interval [—x/, x!] and 5 > 0 quantifies the noise level. We
again find that the heuristic algorithm works better than the
brute-force algorithm for data sets generated from all the four
different population dynamics models.

The above encouraging results on the heuristic algorithm
prompt us to systematically study the key factor to obtain an
accurate inference, i.e., the minimal sample size Q* (Fig. 3c, d).
Note that for a microbial community of N taxa, if we assume that
for any subset of the N taxa there is only one stable steady state
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such that all the corresponding taxa have non-zero abundance,
then there are at most Q. = (2N — 1) possible steady-state
samples. (Of course, not all of them will be ecologically feasible.
For example, certain pairs of taxa will never coexist.) In general, it
is unnecessary to collect all possible steady-state samples to
obtain a highly accurate inference result. Instead, we can rely on a
subset of them. To demonstrate this, we numerically calculated
the minimal sample size Q* we need to achieve a highly accurate
inference of interaction types. We considered two different taxa
presence patterns: (1) uniform: all taxa have equal probability of
being present in the steady-state samples (inset of Figs. 3c); and
(2) heterogenous: a few taxa have higher presence probability
than others, reminiscent of human gut microbiome samples®
(inset of Fig. 3d). We found that for the steady-state data
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Fig. 4 Validation of our method in inferring interaction strengths using simulated data. Here, we simulate steady-state samples using the GLV model with N
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connectivity 0.4. The noise is added to steady-state samples as follows: x| — x! 4 yu, where the random number u follows a uniform distribution U[—x., x
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and 7 is the noise level. a, b Consider the ideal case: (1) noiseless # = O; and (2) we know exactly a; = —1. a We can perfectly infer a;'s and r's. b The
minimal sample size Q* required to correctly infer the interaction strengths scales linearly with the system size N. Here we consider two different taxa
presence pattern: uniform and heterogenous. ¢-f In the presence of noise, and during the we just assume that the intra-taxa interaction strengths a;; follows
a half-normal distribution. ¢ Using the Lasso regularization induces high false-discovery rate (FDR) ~0.448 at # = 0.1. d Using classical Lasso with cross
validation, both NRMSE and FDR increase with increasing 7. e For the same data set used in ¢, we use the knockoff filter to control the FDR below a certain
level g = 0.2. f With increasing noise level 5, FDR can still be successfully controlled below g = 0.2 by applying the knockoff filter. In subfigures a, c-f, we
have N = 50. The error bar represents standard deviation for 10 different realizations

generated from all the four population dynamics models, Q*
always scales linearly with N in both taxa presence patterns, and
the uniform taxa presence pattern requires much fewer samples
(Fig. 3¢, d).

Note that as N grows, the total possible steady-state samples
Q. increases exponentially, while the minimal sample size Q*
we need for high inference accuracy increase linearly. Hence,
interestingly, we have Q*/Qu,.x — 0 as N increases. This suggests
that as the number of taxa increases, the proportion of samples
needed for accurate inference actually decreases. This is a rather
counter-intuitive result because, instead of a ‘curse of dimension-
ality’, it suggests that a ‘blessing of dimensionality’ exists when
using the heuristic algorithm to infer interaction types for
microbial communities with a large number of taxa.

To validate our method in quantitatively inferring inter-taxa
interaction strengths, we numerically calculated steady states for a
microbial community of N = 50 taxa, using the GLV model with
a; = —1 for all taxa.

In the noiseless case, if during the inference we know exactly
a;; = —1 for all taxa, then we can perfectly infer the inter-taxa
interaction strengths a;/'s and the intrinsic growth rates r;'s (see
Fig. 4a). To study the minimal sample size Q required for perfect
inference in the noiseless case, we again consider two different
taxa presence patterns: (1) uniform and (2) heterogeneous. We
find that for both taxa presence patterns Q" scales linearly with N,
though the uniform taxa presence pattern requires much fewer
samples (Fig. 4b).

|8:2042

In the presence of noise, and if we don’t know the exact values
of a;/'s, but just assume they follow a half-normal distribution
—|N(—1,0.1%)|, we can still infer a;s and r;’s with reasonable
accuracy (with the normalized root-mean-square error (NRMSE)
< 0.08), for noise level #<0.3 (Fig. 4c—f). However, we point out
that the classical Lasso regularization could induce many false
positives, and the FDR reaches 0.448 at noise level # = 0.1,
indicating that almost half of inferred non-zero interactions are
actually zero (Fig. 4c). Indeed, even with a noise level = 0.04,
the classical Lasso already yields FDR~ 0.45, staying there for
higher # (Fig. 4d).

In many cases, we are more concerned about low FDR than
high false-negative rates, because the topology of an inferred
ecological network with even many missing links can still be very
useful in the study of its dynamical and control properties*?. To
control FDR below a certain desired level g = 0.2, we applied the
Knockoff filter*! (Fig. 4e), finding that though it will introduce
more false negatives (see the horizontal bar in Fig. 4e), it can
control the FDR below 0.2 for a wide range of noise level (Fig. 4f).

We also found that applying this GLV inference method to
samples obtained from a microbial community with non-GLV
dynamics leads to significant inference errors even in the absence
of noise (Supplementary Fig. 9).

Application to experimental data. First, we applied our inference
method to an experimental data set from a synthetic soil microbial
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Fig. 5 Inferring interaction types of a synthetic soil microbial community. The steady-state samples were experimentally collected from a synthetic soil
microbial community of eight bacterial species. Those steady-state samples involve 101 different species combinations: all eight solos, 28 duos, 56 trios, all
eight septets, and 1 octet. a From the eight solos (monoculture experiments) and 28 duos (pair-wise co-culture experiments), one can calculate the relative
yield Ry, quantifying the promotion (positive) or inhibition (negative) impact of species j on species i. The values shown in the relative yield matrix R = (Rj)
quantify the strengths of promotion and inhibition effects. The sign-pattern of this matrix serves as the ground truth of that of the Jacobian matrix
associated with the unknown population dynamics of this microbial community. b Without considering the 8 solos and 28 duos, we analyze the

other steady-state samples. We use the brute-force method to infer the ecological interaction types, i.e., the sign-pattern of the Jacobian matrix. Blue (or
red) means inhibition (or promotion) effect of species j on species i, respectively. 10 signs (labeled by ‘x') are falsely inferred, four signs (gray) are
undetermined by the analyzed steady-state samples. ¢, d The robustness of the inference results in the presence of artificially added noise: x| — x| + yu,
where the random number u follows a uniform distribution U[fx,{,xﬂ, and 7 is the noise level. At each noise level, we run 50 different realizations. Yellow
(or blue) means many (or few) inferred J; keep the same sign among 50 different realizations. ¢. Many of the inferred J; keep their signs in the presence of
noise up to noise level = 0.3. d At n = 0.04, we plot the percentage of unchanged signs for inferred Jacobian matrix in 50 different realizations. The 'x’

labels correspond to the 10 falsely inferred signs shown in b. Five of the 10 falsely inferred interactions change their signs frequently even when the
perturbation is very small, implying that the falsely inferred signs in b could be due to measurement noise in the experiments

community of eight bacterial species?®. This data set consists of
steady states of a total of 101 different species combinations: all
eight solos, 28 duos, 56 trios, all eight septets, and one octet (see the
subsection ‘A synthetic microbial community of 8 soil bacteria’ of
Supplementary Note 6 for details). For those steady-state samples
that started from the same species collection, but with different
initial conditions, we average over their final steady states to get a
representative steady state for this particular species combination.
In the experiment, it was found that several species grew to a
higher density in the presence of an additional species than in
monoculture. The impact of each additional species (competitor)
j on each focal species i can be quantified by the so-called relative

8
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yield, defined as: R;; = %, which represents a proxy of the
ground truth of the interaction strength that species j impacts
species i. A negative relative yield indicates growth hindrance of
species j on i, whereas positive values indicated facilitation
(Fig. 5a). Though quantifying the relative yield is conceptually
easy and implementable for certain small microbial communities
(see Supplementary Note 7 for details), for many host-associated
microbial communities with many taxa, such as the human gut
microbiota, measuring these one-species and two-species samples
is simply impossible. This actually motivates the inference
method we developed here.
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Fig. 6 Inferring interaction types in a synthetic community of maize roots with seven bacterial species. The data set consists of seven sextets and one
septet. a Without considering the one septet, we analyze the seven sextets (steady-state samples involving six of the seven species). We use the brute-
force method to infer the ecological interaction types, i.e., the sign-pattern of the Jacobian matrix. Blue (or red) means inhibition (or promotion) effect of
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Before we apply our inference method, to be fair, we remove all
those steady states involving one or two species, and analyze only
the remaining 65 steady states. (Note that for N = 8, the number
of total possible steady states is Qp,,x = 255. Hence we only use
roughly one quarter of the total possible steady states.) During the
inference, we first check if the population dynamics of this
microbial community can be well described by the GLV model.
We find that all the fitted hyperplanes show small R?, indicating
that the GLV model is not appropriate to describe the dynamics
of this microbial community (Supplementary Fig. 10b). Hence,
we have to aim for inferring the ecological interaction types,
without assuming any specific population dynamics model.

Since this microbial community has only eight species, we can
use the brute-force algorithm to infer the sign-pattern of the 8 x 8
Jacobian matrix, i.e., the ecological interaction types between the
eight species (The results of using a heuristic algorithm are
similar and described in the Supplementary Fig. 10c). Compared
with the ground truth obtained from the relative vyield
matrix (Fig. 5a), we find that 50 (78.13%) of the 64 signs were
correctly inferred, 10 (15.62%) signs were falsely inferred
(denoted as ‘x’), and four (6.25%) signs cannot be determined
(denoted as ?’) with the information provided by the 65 steady
states (Fig. 5b).

We notice that the relative yield of many falsely inferred
interactions is weak (with the exception of Rg, pch, and Rg, pr). We
conjecture that these errors are caused by noise or measurement
errors in the experiments. To test this conjecture, we analyzed the
robustness of each inferred s; by calculating the percentage of
unchanged s;; after adding perturbations (noise) to the samples
(Fig. 5¢). Similar to adding noise to simulated steady-state data,
here we add noise to each non-zero entry x/ of a sample x! such
that x! — xI + nu, where u ~ U[—x!, x]. The more robust the
inferred results are, the higher the percentage of unchanged signs
as 7 is increased. We found that most of the inferred signs were
robust: the percentage of unchanged signs remained nearly 80%
up to noise level # = 0.3 (Fig. 5¢). Specifically, Fig. 5d plots the
percentage of unchanged signs of the inferred Jacobian matrix
when 7 = 0.04. We found that even if the perturbation is very
small, 5 of the 10 falsely inferred s; in Fig. 5b changed their signs
very frequently (blue entries with label ‘x’ in Fig. 5d). In other
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words, those interactions were very sensitive to noise, suggesting
that some falsely inferred signs in Fig. 5b were largely caused by
measurement noise.

Second, we applied our method to an experimental data set
from a synthetic bacterial community of maize roots**. There are
seven bacterial species (Ecl, Sma, Cpu, Opi, Ppu, Hfr, and Cin) in
this community. This data set consists of in total eight steady-
state samples: seven sextets and one septet. We found that this
community cannot be described by the GLV dynamics (Supple-
mentary Fig. 11).

Using only the seven sextets (i.e., seven steady-state samples
involving six of the seven species), we inferred the sign-pattern of
the Jacobian matrix (Fig. 6a). Based on the sign of J;; we can
predict how the abundance of species-i in a microbial community
will change, when we add species-j to the community. For
example, if we add Ecl to a community consisting of the other six
species (i.e., Sma, Cpu, Opi, Ppu, Hfr, and Cin), we predict that
the abundance of Sma, Opi, Ppu, Hfr, and Cin will increase, while
the abundance of Cpu will decrease (first column of Fig. 6b). Note
that our prediction only considers the direct ecological interac-
tions between species and ignores the indirect impact among
species. Indeed, Ecl promotes Opi, but Ecl also promotes Hfr that
inhibits Opi. Hence the net effect of Ecl on Opi is hard to tell
without knowing the interaction strengths. Nevertheless, we
found that our prediction is consistent with experimental
observation (Fig. 6b, first column).

We then systematically compared our predictions of species
abundance changes with experimental observations. There are in
total seven sextets, corresponding to the seven columns in Fig. 6b.
We add the corresponding missing species back to the
community, and check the abundance changes of the existing
six species. There are in total 6x 7 = 42 abundance changes. We
found that our inferred sign-pattern of the Jacobian matrix
(Fig. 6a) can correctly predict 30 of the 42 abundance changes
(accuracy ~71.43%). Moreover, for those false predictions, the
detailed values of the abundance changes are actually relatively
small (comparing to those of correct predictions). Note that we
only used seven steady-samples to infer the interaction types. If
we have more steady-state samples available, we assume the
prediction accuracy of our method can be further improved.
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We also demonstrated the application of our inference method
to two additional experimental data sets. One was obtained from
a synthetic microbial community of two cross-feeding partners,
the other was obtained from a synthetic community of 14
auxotrophic Escherichia coli strains®®. For both data sets, our
inference results agree well with the ground truth (see

Supplementary Note 6 for details).

Discussion

In this work, we developed a new inference method to map the
ecological networks of microbial communities using steady-state
data. Our method can qualitatively infer ecological interaction
types (signs) without specifying any population dynamics model.
Furthermore, we show that steady-state data can be used to test if
the dynamics of a microbial community can be well described by
the classic GLV model. When GLV is found to be adequate, our
method can quantitatively infer inter-taxa interaction strengths
and the intrinsic growth rates.

The proposed method bears some resemblance to previous
network reconstruction methods based on steady-state data”®,
But we emphasize that, unlike the previous methods, our method
does not require any perturbations applied to the system nor
sufficiently close steady states. For certain microbial communities
such as the human gut microbiota, applying perturbations may
raise severe ethical and logistical concerns.

Note that our method requires the measurement of steady-state
samples and absolute taxon abundances. For systems that are in
frequent flux, where steady-state samples are hard to collect, our
method is not applicable. Moreover, it fails on analyzing the
relative abundance data (see Methods). Note that the composi-
tionality of relative abundance profiles also represents a major
challenge for inference methods based on temporal data!>!%,
Fortunately, for certain small laboratory-based microbial com-
munities, we can measure the absolute taxon abundances in a
variety of ways, e.g., selective glating47, quantitative polymerase
chain reaction (qQPCR)!>16484 flow cytometry>’, and fluores-
cence in situ hybridization (FISH)>!. For example, in the study of
a synthetic soil microbial community of eight bacterial species®?,
the total cell density was assessed by measuring the optical density
and species fractions (relative abundance) were determined by
plating on nutrient agar plates. In recent experiments evaluatin:
the dynamics of Clostridium difficile infection in mice models'>!°,
two sources of information were combined to measure absolute
abundances: (1) data measuring relative abundances of microbes,
typically consisting of counts (e.g., high-throughput 16S rRNA
sequencing data); and (2) data measuring overall microbial bio-
mass in the sample (e.g., universal 16S rRNA qPCR).

In contrast to the difficulties encountered in attempts to
enhance the informativeness of temporal data that are often used
to infer ecological networks of microbial communities, the
informativeness of independent steady-state data can be
enhanced by simply collecting more steady-state samples with
distinct taxa collection. For host-associated microbial commu-
nities, this can be achieved by collecting steady-state samples
from different hosts. Our numerical analysis suggests that the
minimal number of samples with distinct taxa collections
required for robust inference scales linearly with the taxon rich-
ness of the microbial community. Our analysis of experimental
data from a small synthetic microbial community of eight species
shows that collecting roughly one quarter of the total possible
samples is enough to obtain a reasonably accurate inference.
Furthermore, our numerical results suggest that this proportion
can be significantly lower for larger microbial communities.

This blessing of dimensionality suggests that our method holds
great promise for inferring the ecological networks of large and
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complex microbial communities, such as the human gut micro-
biota. There are two more encouraging facts that support this
idea. First of all, it has been shown that the composition of the
human gut microbiome remains stable for months and possibly
even years until a major perturbation occurs through either
antibiotic administration or drastic dietary changes®’™°. The
striking stability and resilience of human gut microbiota suggest
that the collected samples very likely represent the steady states of
the gut microbial ecosystem. Second, for healthy adults the gut
microbiota displays remarkable universal ecological dynamics®®
across different individuals. This universality of ecological
dynamics suggests that microbial abundance profiles of steady-
state samples collected from different healthy individuals can be
roughly considered as steady states of a conserved ‘universal gut
dynamical’ ecosystem and hence can be used to infer its under-
lying ecological network. Despite the encouraging facts, we
emphasize that there are still many challenges in applying our
method to infer the ecological network of the human gut
microbiota. For example, the assumption of invariant ecological
interaction types (i.e., promotion, inhibition, or neutral) between
any two taxa needs to be carefully verified. Moreover, our method
requires the measurement of absolute abundances of taxa.

We expect that additional insights into microbial ecosystems
will emerge from a comprehensive understanding of their eco-
logical networks. Indeed, inferring ecological networks using the
method developed here will enable enhanced investigation of the
stability®” and assembly rules®® of microbial communities as well
as facilitate the design of personalized microbe-based cocktails to

treat diseases related to microbial dysbiosis™!°.

Methods

Theoretical basis for inferring ecological interactions. Consider a microbial
community of N taxa, whose population dynamics follow Eq.(1). A steady-state
data set X is a collection of N-dimensional vectors x € RY corresponding to the
measured equilibria of Eq. (1). We will denote a steady-state sample as x' € RV,
where the superscript I € Z determines which taxa are present, and Z = 211 N}
is the set of all possible subsets of {1, ... ,N}. Consider the subset X; C X of all
samples containing taxon i so that f;(x) = 0 for all x € X;. Applying the mean
value theorem for multivariable functions, we obtain

5) ) = ([ B ) oy <o

0 Ox

where “’ denotes the inner product between vectors in RY Let J;(x) = %—S‘x) e RN
be the i-th row of the Jacobian matrix J(x) = (J;(x)) = (%3 and let us intro-
duce the notation ’

/ i / ‘;"‘("’ +o(x — x))do, (4)

where L, .« denotes the line segment connecting the points x’ and xX in RY. With
this notation, Eq. (3) can be rewritten more compactly as

(/ L) (=) =0, v xMex (5)
Lx’,xK

The above equation implies that the difference of any two samples {x!, xX}
sharing taxon i constrains the integral of J; over the line segment joining them
al — K

We consider that the ecological interactions in a microbial community are
encoded in the Jacobian matrix J € R¥*N of its population dynamics. More
precisely, we assume that the j-th taxon directly impacts the i-th one iff the
function Jj;(x) # 0. Notice that this condition is well defined because J;;(x) is a
meromorphic function. Furthermore, an ecological interaction is inhibitory iff
Jij(x)<0 and excitatory iff J;;(x) > 0.

Inferring the absence or presence of interactions is equivalent to inferring the
zero-pattern of the Jacobian matrix, recovering the topology of the ecological
network underlying the microbial community. Furthermore, inferring the type of
interactions (inhibitory, excitatory, or null) is equivalent to inferring the sign-
pattern of the Jacobian matrix.
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Inference using the brute-force algorithm. In Theorem 2 of the subsection
‘Inferring the sign-pattern’ of Supplementary Note 1, in order to check if there is a
vector with sign-pattern s € {—,0,+}" orthogonal to a given vector (x! — xX), we
can check if the following linear program has a solution:

Findv € RY subjecttov" (x' — xX) = 0andsign(v) =ss. (6)

Note that the condition sign(v) = s can be encoded as a set of equalities/
inequalities of the form {v; = 0,v;<0,v; > 0} corresponding to the cases

{s; = 0,s; = —1,s; = 1}. Therefore, we can construct an algorithm to obtain all
admissible sign-patterns for given steady-state data. Indeed, by enumerating all
possible sign-patterns, we can use the liner program in Eq. (6) to check if each of
the possible 3" sign-patterns is admissible for taxon i. See Algorithm 1 in the
subsection ‘Brute-force algorithm’ of Supplementary Note 2 for the pseudo code.
This brute-force algorithm relies on the enumeration of all 3 possible sign-
patterns in RY, since it needs to test if each one of them is admissible for the given
data. If the set X; has n; elements, there will be n;(n; — 1)/2 vectors of the form
xl — 2K with (xf, %K) € X;x X;. Then for each of those vectors and each of the
possible 3V sign-patterns, we will need to run the linear program Eq. (6) to check if
there is an orthogonal vector with the desired sign-pattern. If we assume that the
linear program can be solved with N operations, then for each taxon the Brute-
force algorithm requires to perform a number of operations in the order of
N3¥n;(n; — 1)/2. Hence, for 100 taxa, we will need to perform at least 5.19x 10%°
operations for the reconstruction of each taxon—which is a number with the same
order of magnitude as the number of atoms in Earth. Furthermore, the linear
programming used in the brute-force method can also be time consuming even for
a small microbial community with N ~ 10. Consequently, applying the
enumeration procedure is only reasonable for a community with N ~ 10, since in
this case only around 10° operations are needed to infer the sign-pattern of the
Jacobian corresponding to each taxon.

Inference using the heuristic algorithm. The computational complexity of the
brute-force algorithm motivated us to develop a more efficient reconstruction
method. This method has two main ingredients. First, a graph-based approach to
quickly check whether a region can be crossed by a hyperplane, circumventing the
need to solve the linear program. Second, a heuristic algorithm efficiently explores
the solution space and infers the ecological interaction types.

First, we formalize a sign-satisfaction problem. Consider a real-valued vector
y € RY. Thus, solving the linear program Eq. (6) is equivalent to solving the
following sign-satisfaction problem:

Findsign(y) € {—,0, +}" subjecttoy” (' — x¥) = 0. (7)

Notice that from a geometrical viewpoint, solving Eq. (7) is equivalent to finding
the orthants of RN crossed by the hyperplane orthogonal to (x! — xX).

Second, we propose a graph-based approach to solving the sign-satisfaction
problem. For the definition, construction, and examples of sign-satisfaction graph,
see the subsection ‘Inference using the heuristic algorithm’ of Supplementary
Note 2. By using the sign-satisfaction graph, it is very efficient to test if the
hyperplane orthogonal to (x' — xX) crosses some orthants of RY, because it
reduces to checking if its corresponding vector in {—,0,+}" meets the
requirements of sign-satisfaction. However, finding all orthants crossed by such
orthogonal hyperplane remains challenging, since the sign-satisfaction graph did
not decrease the dimension of the solution space (that remains with exponential
size 3V). To address this issue, next we introduce a method to efficiently sample
paths in the sign-satisfaction graph.

Third, we use the intersection line of hyperplanes to sample paths in the sign-
satisfaction graph. This method depends on a user-defined parameter ¥ > 1 that
specifies the number of intersection lines we need to compute. There are five steps:
(step-1): Construct the matrix of the difference of all the sample pairs. Consider the
|l

Nx
set of all vectors {x! — xK|x/ 2K € X;}. Let M; € R ( 2 ) be a matrix

constructed by stacking all the ( |'§" )vectors, where |Xj| is the number of

samples containing taxon i. By construction, each column of M; is the normal
vector of a hyperplane orthogonal to the difference of the corresponding sample
pair. (step-2): Randomly sample (N — 1) hyperplanes. Choose randomly N — 1
columns from M;. (step-3): Find the intersection of the (N — 1) sampled
hyperplanes to obtain an intersection line. This can be done by finding the kernel
of the matrix obtained by stacking the chosen columns. Note that the randomly
sampled (N — 1) hyperplanes do not always intersect into a line, because some
hyperplanes might be parallel with each other. However, this situation is not
generic in RY. Thus, if the randomly sampled hyperplanes do no intersect into a
line, we return to step-2 and choose a new subset of columns. (step-4): Count how
many hyperplanes cross the region of the intersection line using the sign-
satisfaction graph. The sign-pattern of this intersection line represent the three
orthants in RN crossed by all those (N — 1) hyperplanes. For the remaining
hyperplanes in M; (i.e., the rest of the columns in M;), let (;5 be the number of those

|8:2042

hyperplanes that cross these three orthants. We normalize ¢ using
i ( 5
of the intersection line meets the requirements of sign-satisfaction for all the
sample pairs. Therefore, the magnitude of the computed ¢ can be seen as the
confidence of this potential solution to be the true solution of the sign-satisfaction
problem. (step-5): Go back to step-2 until ¥ > 1 intersection lines have been
computed.

In summary, selecting the intersection line can be seen as a ‘preference’
sampling in the sign-satisfaction graph, because this intersection line can be
crossed by at least (N — 1) hyperplanes in M;. Combining the sign-satisfaction
graph with the sampling procedure described above, we propose a heuristic
algorithm to infer the sign-pattern of J;. See Supplementary Fig. 6 for the detailed
flowchart of this method.

), so that ¢ € [0, 1]. Notice that ¢) = 1 means that this sign-pattern

Limitations of the inference using relative abundance data. High-throughput
amplicon sequencing of 165 RNA has become a well-established approach for
profiling microbial communities. The result of this procedure is a relative abun-
dance profile, where the relative abundance of each taxon in the microbial com-
munity has been normalized so that their sum is one. This implies that an increase
of the relative abundance of one taxon must be accompanied by a decrease in the
relative abundance of other taxa.

This compositionality of relative abundance data severely limits the application of
system identification methods based on temporal data, as discussed with details in
refs. 1>19%, Tt also limits our method based on steady-state data. Consider, for example,
that there exist three relative abundance profiles containing taxon i, say ', ¥/ , ¥<. Since
they are relative abundances, the sum of each of these samples must equal 1, implying
that sum(*¥ — ¥) = sum(* — ) = sum(¥ — ¥X) = 0. Consequently, the vector
1=(1,...,1) RN satisfies I - (& —F)=1-F -7)=1-@ -7)=0.In
other words, this vector 1 is always orthogonal to all sample differences and the
intersection line of the (N — 1) hyperplanes generated by relative abundance is
always 1. Therefore, the heuristic algorithm fails in correctly inferring the sign-pattern
of Jacobian matrix using relative abundances, because it always predicts that one
possible sign-pattern is sign(s) = (+, ... , +).

Data availability. All the experimental data,sets analyzed in this study are either
publicly available or kindly provided by the original authors. Other data that support the
findings of this study are available from the corresponding author on reasonable request.
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