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Abstract

Gait variability is a sensitive metric for assessing functional deficits in individuals with mobil-

ity impairments. To correctly represent the temporal evolution of gait kinematics, nonlinear

measures require extended and uninterrupted time series. In this study, we present and vali-

date a novel algorithm for concatenating multiple time-series in order to allow the nonlinear

analysis of gait data from standard and unrestricted overground walking protocols. The full-

body gait patterns of twenty healthy subjects were captured during five walking trials (at

least 5 minutes) on a treadmill under different weight perturbation conditions. The collected

time series were cut into multiple shorter time series of varying lengths and subsequently

concatenated using a novel algorithm that identifies similar poses in successive time series

in order to determine an optimal concatenation time point. After alignment of the datasets,

the approach then concatenated the data to provide a smooth transition. Nonlinear mea-

sures to assess stability (Largest Lyapunov Exponent, LyE) and regularity (Sample Entropy,

SE) were calculated in order to quantify the efficacy of the concatenation approach using

intra-class correlation coefficients, standard error of measurement and paired effect sizes.

Our results indicate overall good agreement between the full uninterrupted and the

concatenated time series for LyE. However, SE was more sensitive to the proposed concat-

enation algorithm and might lead to false interpretation of physiological gait signals. This

approach opens perspectives for analysis of dynamic stability of gait data from physiological

overground walking protocols, but also the re-processing and estimation of nonlinear met-

rics from previously collected datasets.

Introduction

Walking continuously is instrumental for humans to perform various activities of daily living

and lead an independent life. In order to walk continuously, complex mechanisms within the

human sensory motor system provide the necessary timing, coordination and balance such
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that the interplay between the centre of mass and the base of support are regulated in a repeti-

tive manner [1]. Inter-cycle variations during continuous walking, commonly termed gait var-

iability, are therefore an indicator of how repetitive walking is governed by the neuro-

muscular system [2, 3]. As such, gait variability quantifies an individual’s ability to adapt to

natural internal (e.g. noise in the human neuromuscular system [4]), as well as external pertur-

bations during walking and thus prevent falling [5, 6]. Gait variability is therefore the result of

a continuous dynamic system recovering from perturbations. Parameters such as the largest

Lyapunov exponent or sample entropy have previously been used to assess this dynamic

behaviour, in order to assess dynamic stability and regularity of human locomotion [7–9].

Unlike linear metrics of gait variability, these nonlinear parameters derived from gait-time

series assume that consecutive gait cycles are dependent upon one-another [2]. This assump-

tion is essential in assessing motor adaptation strategies during walking and therefore nonlin-

ear parameters have a clear benefit over linear metrics for characterising gait variability.

However, in order to ensure validity of these measures, it is also critical that gait patterns

are recorded in a consecutive manner [10], as well as that the derived time series is not inter-

rupted [11].

One obstacle when investigating the dynamic nature of walking in laboratory settings is the

limited field of view of optical motion capture systems, consequently constraining the collec-

tion of extended time series. Motorized treadmills are generally used to overcome this issue,

but due to their prescribed walking speeds, non-physiological walking patterns occur [12–14].

In order to collect consecutive cycles of overground walking, a novel protocol—the so-called

8-walk—was recently proposed, where subjects are requested to follow a pattern of eight walk-

ing track in order to record multiple non-interrupted (i.e. continuous) bouts of walking [10].

While this protocol has been shown to reliably estimate linear measures of gait variability and

allows the collection of physiological walking patterns, the recorded time-series often become

discontinuous when participants walk out of the motion capture field of view during turning,

thereby violating the requirement for non-interrupted time series recordings when evaluating

dynamic gait stability [10].

Our goal is to allow researchers to collect data using standard and unrestricted overground

walking protocols, while still profiting from the advantages of nonlinear analysis methods.

This paper therefore describes a novel method to concatenate such discontinuous sets of time-

series, in order to yield a single large time-series, which then adheres to the requirements of

nonlinear methods for evaluating the dynamic nature of walking. Importantly, we aim to

develop a generic method that allows non-linear analysis of full body kinematics from motion

capture data, independent of the walking protocol (overground vs. treadmill), as well as the

type of trajectory (position, velocity or angular kinematics) in order to be applicable in a vari-

ety of research settings. Furthermore, validation of the concatenation approach on both nor-

mal and perturbed walking will allow previously collected gait data to be re-analysed using

nonlinear algorithms. Results quantifying the efficacy of our concatenation method are pre-

sented based on two widely used nonlinear measures to assess stability (Largest Lyapunov

Exponent—LyE) and regularity (Sample Entropy—SE) [11].

Methods

Twenty healthy subjects (10 males and 10 females) provided written informed consent prior to

the beginning of experimental procedures, which were approved by the ETH Zurich ethics

committee. Their mean (SD) age, body height and mass were 27.0 (4.2) years, 175.7 (8.9) cm,

and 71.6 (10.9) kg respectively. None of the subjects had any form of acute musculoskeletal or

neurological disorders or pain that may have affected their ability to walk.

An approach to concatenate short time series
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Kinematic data was collected using an optical motion-capture system (Vicon Motion Sys-

tems Ltd. UK) using 10 Vicon cameras (T160) at a sampling frequency of 100Hz. A whole-

body marker set consisting of 62 retro-reflective markers was used. While dynamic behaviour

of walking was evaluated from the heel marker of the right foot, all remaining markers were

used only in order to identify similar poses during the concatenation process. In order to fulfil

the continuity requirements for nonlinear measures in the development of the concatenation

algorithm, the experimental procedure consisted of three sets of 5-minute barefoot walking

captured on a treadmill at self-selected speeds (0.96 ± 0.10 m/s). In order to draw conclusions

on the effectiveness of the concatenation procedure in assessing the dynamic behaviour of

walking under the effects of perturbation, participants also performed treadmill walking trials

with +40% bodyweight (wei40) and -40% bodyweight (har40), captured in randomized order.

For trials with addition of external weight, a weight vest was worn, whereas trials with body-

weight support were performed using a clinical harness system.

Data pre-processing

For each trial, the recorded 5-minute full time series (fullTS) were separated with the intention

to simulate three different sets of shorter time series. In order to create single time series with

the same number of gait cycles (Cin) within each set of short times series, heel strikes (HSs)

were identified using the stable foot velocity algorithm for defining gait cycles [15], where a

complete gait cycle was defined as the time between a HS and the following consecutive HS

from the right foot. After Cin cycles, a number of cycles (Cex) were excluded (i.e. removed), fol-

lowed by the inclusion of a further Cin cycles, and this procedure was repeated until the end of

the fullTS. In this manner, three short time series were created for each trial using Cin/Cex =

10 / 1 (cut1001), 8 / 3 (cut0803), and 6 / 5 (cut0605).

Concatenation

In order to concatenate the pre-processed short time series, an algorithm that is based on pose

identification and matching was used [16], in which the best possible match in terms of kine-

matic pose between the final frames of a Cin time series and the early frames of the following

Cin time series was initially identified. This strategy was chosen to ensure that two similar heel

positions would be concatenated and thus to avoid adding artifacts in the interpolated trajecto-

ries. These kinematic poses were then transformed in order to obtain smooth transitions

between the each consecutive Cin series [16]. The concatenation procedure was thus performed

as follows:

• Extract Cn
1

as the last n = 33 frames of C1, over which the transition from C1 and C2 should

be achieved, where 0n0 has been chosen corresponding to a window of about a third of the

sampling frequency [17]

• Extract Cn;v
2 as the same number n of frames from C2 starting from frame index v. Repeat this

procedure for all 0� v� N − n + 1, where N is the total number of frames in C2.

• Calculate the squared distance

DðCn
1
;Cn;v

2
Þ ¼

XM� 1

m¼0

Xn� 1

j¼0
wm k pm;j � Tv

j p
0

m;j k
2 ð1Þ

where pm,j is the position of marker m for frame j of Cn
1

and p0m;j is the position of the corre-

sponding marker and corresponding frame in Cn;v
2 . wm further represents the weighting

assigned to each marker 0�m�M– 1, with M the total number of markers, and Tv
j is an

optimized linear transformation from Cn;v
2;j to Cn

1;j, comprised of a rotation around the vertical
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axis and a translation in the horizontal plane (which was particularly chosen with the idea

that we are able to align the data orientation resulting from the 8-walk protocol). The closed

form solution of the transformation Tv
j is presented in the literature [16].

• In this formulation, weights 0� wm� 1 were assigned to each marker, where high weight-

ings were assigned to bony landmarks (over soft tissue markers) and those in proximity to

the heel marker.

• The local minima of the function DðCn
1
;Cn;v

2 Þ with respect to v therefore allows identification

of the frames in C2 in which the poses are most similar. For this study, the first local mini-

mum v ¼ V of DðCn
1
;Cn;v

2 Þ was chosen, meaning that the concatenation of C1 to C2 started at

the beginning of Cn
1

and transitioned over n frames into Cn;v¼V
2 , at which point the remainder

of C2 followed.

• In order to ensure a smooth spatial transition from C1 to C2, the marker positions of each

frame index 0� j� n − 1 within the two selected concatenation windows Cn
1
;Cn;V

2 were line-

arly interpolated (Fig 1) as follows:

CTrans ¼ aðjÞC
n
1;j þ ½1 � aðjÞ�C

n;V
2;j ð2Þ

where the interpolation coefficient α(j) is given by:

a jð Þ ¼ 2
jþ 1

n

� �3

� 3
jþ 1

n

� �2

þ 1 ð3Þ

[16]

• With the concatenation of C1 and C2 complete, this procedure is repeated with C2 as the new

C1 to be concatenated to the next consecutive Cin series.

Fig 1. Demonstration of a typical transition between two consecutive short times series (Eq 2). The grey shaded area highlights the selected

transition period (as determined by the first local minima of the distance function), with the concatenation result (CTrans) shown in black.

https://doi.org/10.1371/journal.pone.0218594.g001
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In order to impartially test the validity of the concatenation process for assessing nonlinear

properties of gait, each concatenated time series (cut1001, cut0803 or cut0605) was cropped to

an equal length (of the shortest time series), but which included a different number of concate-

nations. Data was not filtered in order to avoid unintentional manipulation of nonlinear stride

dynamics [18].

Nonlinear analyses

The raw vertical position of the right heel marker was taken as the input data for all nonlinear

analyses. Lyapunov exponent: As a measure for the stability of a time series, the largest Lyapu-

nov exponent, LyE (τ, dim), was calculated according to Wolf [19]. The embedding dimen-

sions (dim) and the time lag (τ) were determined separately for each trial, using a false-

nearest-neighbours approach (FNN) and average mutual information (AMI) method respec-

tively [20, 21]. The Wolf algorithm calculates the average rate of divergence of two neighbour-

ing data trajectories in the state space. Here, trajectory divergence was observed over 3

consecutive points, with a minimal (i.e. noise floor) and maximal attractor probe length of

10−4 and a tenth of the input data range, respectively.

Sample entropy: In order to quantify regularity in the data, a modified sample entropy mea-

sure, as suggested by Govindan and colleagues, that considers time delay and dimension of the

time series, SE (τ, dim, r), was used. While τ and dim were obtained through FNN and AMI

approach, r is chosen as 0.2 times standard deviation of the data trial, for all trials [22–25].

For validation purpose, both algorithms were tested on times series with known properties.

As can be seen in Fig 2, both LyE and SE values gradually decrease as predictability increases,

with highest values for a stochastic system such as a random white noise signal, intermediate

values for a chaotic Lorenz attractor system and gait signals, and values of zero for a determin-

istic system such as a sine wave. All analyses were conducted in MATLAB (R2014a, Math-

Works, USA). The functions and dependencies to perform concatenation are provided in

Electronic Supplementary Material (ESM#1), but also updated on GitHub (https://github.

com/laboratory-of-movement-biomechanics-eth/gait_concatenation).

Fig 2. Graphical representation of three time series with known nonlinear properties and a typical gait time series. Values for LyE and SE

for all for signals indicate valid representation of the predictability of a time series.

https://doi.org/10.1371/journal.pone.0218594.g002
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Statistical analysis

In order to quantify systematic (Bias) and random error (Limits of agreement—LoA) effects

between full and concatenated time series, Bland-Altman (BA) analysis was performed for

each of the nonlinear parameters. Additionally, intra-class correlation coefficients (ICC 3,1)

and standard error of measurement (SEM) were calculated between the fullTS of the unper-

turbed walking trials (normg) and the concatenated time-series of the same trials to assess

repeatability and measurement precision. ICC quality was interpreted according to [26].

Mixed factor ANOVAs were performed by using nonlinear exponents as dependent vari-

ables, whereas cutting conditions (4 levels: fullTS, cut1001, cut0803, cut0605), perturbation

trials (3 levels: har40, normg, wei40) as well as the interaction of cutting conditions and per-

turbation trials were included as independent fixed effect variables and subjects as random

effects.

In order to investigate whether the concatenation process is able to maintain known effects

of perturbations to the walking patterns, paired effect sizes (ESs) were investigated on normg
compared to har40 and wei40. In these exemplary trials, fullTS for each perturbation trial rep-

resented the ground-truth and was compared against all cutting conditions (cut1001, cut0803,

cut0605), where:

d ¼
�x1 � �x2

s
ð4Þ

where �x1 corresponds to the mean of nonlinear measures of normg time series, �x2 corresponds

to nonlinear measures of the perturbed time series, and s is defined as the pooled standard

deviation of both time series. In order to assess sensitivity of the three nonlinear measures to

data concatenation, the change in ESs were evaluated using coefficient of variation (CoV) of

ES. All statistical analyses were performed in R (v3.4.1, The R Foundation for Statistical Com-

puting, Austria).

Results

The average number (±SD) of cuts differed between each concatenated time series, with

cut0605 including 23±1, cut0803: 17±1, and cut1001: 13±1 concatenations respectively. FNN

and AMI resulted in an average number of embedded dimensions dim = 8.2±0.6 and an aver-

age time lag of τ = 40.3±4.4 frames. Due to non-physiological changes in the subjects’ walking

patterns (missing HS due to bodyweight unloading) during the har40, 3 trials were removed

from the analysis.

Effects of concatenation on largest lyapunov exponent

When comparing LyE for the fullTS against concatenated trials, ICC exhibited good to excel-

lent results, while relative SEM showed errors of up to 20% (Table 1). Bland-Altman plots

revealed good agreement for cut0803 and cut0605 conditions in comparison to cut1001 (Fig 3

top). Mixed factor ANOVA revealed significant effects of perturbation trials (p<0.01) on LyE:

however, there were no significant effect of concatenation conditions (p = 0.830) and no inter-

active effect of perturbation x concatenation conditions on LyE (p = 0.992).

For the fullTS, unloading bodyweight led to positive ESs in LyE, whereas addition of weight

resulted in negative ESs (Fig 4). Absolute ES magnitudes did not agree between fullTS and

concatenated trials: in particular, cut0605 exhibited considerably larger effects in the har40
condition and similarly cut1001 in the wei40 condition. In addition, LyE showed an average

intra-perturbation effect size variance of CoV = 36.3±18.4%.

An approach to concatenate short time series
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Effects of concatenation on sample entropy

ICC calculation of SE showed only fair to good results for all cutting conditions except

cut0803. Bland-Altman plots revealed widest LoA in the cut0803 condition and narrowest LoA

in cut0605 followed by cut1001 (Fig 3 bottom). The relative SEM showed errors up to 50%.

Mixed factor ANOVA revealed a significant effect of perturbation trials (p<0.001) on SE,

Table 1. Reliability and precision measures for the two nonlinear methods and cutting conditions for normg trials.

Method/Cut Mean ± SD ICC (3,1) BIAS ± LoA SEM Relative SEM

LyE fullTS 0.86 ± 0.44 ×10−2

cut1001 0.90 ± 0.48 ×10−2 0.84 -0.04 ± 0.51 ×10−2 0.18 ×10−2 0.20

cut0803 0.82 ± 0.46 ×10−2 0.91 0.04 ± 0.37 ×10−2 0.13 ×10−2 0.16

cut0605 0.93 ± 0.54 ×10−2 0.92 -0.07 ± 0.38 ×10−2 0.13 ×10−2 0.14

SE fullTS 0.02 ± 0.03 ×10−2

cut1001 0.05 ± 0.04 ×10−2 0.71 -0.02 ± 0.05 ×10−2 0.02 ×10−2 0.40

cut0803 0.06 ± 0.05 ×10−2 0.46 -0.03 ± 0.08 ×10−2 0.03 ×10−2 0.50

cut0605 0.04 ± 0.04 ×10−2 0.87 -0.01 ± 0.03 ×10−2 0.01 ×10−2 0.25

https://doi.org/10.1371/journal.pone.0218594.t001

Fig 3. Bland-Altman plots for fullTS versus different cutting conditions for the perturbation trial normg for both measures LyE (top) and

SE (bottom). The middle bold line indicates systematic bias, whereas the top and bottom bold lines indicate the upper and lower limits of

agreement (LoA). Dashed lines represent 95% confidence intervals for the three estimates of bias and upper and lower LoA.

https://doi.org/10.1371/journal.pone.0218594.g003

An approach to concatenate short time series

PLOS ONE | https://doi.org/10.1371/journal.pone.0218594 June 21, 2019 7 / 14

https://doi.org/10.1371/journal.pone.0218594.t001
https://doi.org/10.1371/journal.pone.0218594.g003
https://doi.org/10.1371/journal.pone.0218594


Fig 4. Effect sizes between normg trials and the two (loaded and unloaded) perturbation conditions. The uncut

complete time series (fullTS) represents the true effect size resulting from the perturbation, and are compared against

the effect sizes resulting from the concatenated time series for each of the nonlinear measures.

https://doi.org/10.1371/journal.pone.0218594.g004
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but not of concatenation conditions (p = 0.191) and no significant interaction effect of pertur-

bation x concatenation conditions (p = 0.714). Average intra-perturbation effect size variance

was CoV = 60.3±19.2%.

Upon visual inspection, concatenation errors were generally only apparent in small transla-

tional perturbations in the time series such as during heel strike (Fig 5).

Discussion

A classic problem in gait analysis is the assessment of functional characteristics requiring con-

tinuous movement data, which is often perturbed by subjects leaving the field of measurement,

or by treadmills governing temporal and spatial characteristics in an artificial manner. In this

study, we present a novel approach for concatenation of discontinuous time-series in order to

generate a single large continuous series, hence allowing assessment of dynamic behaviour in

human locomotion. In order to assess whether concatenated trials maintain both the magni-

tude and the direction of perturbation effects (using ESs), normal walking within this study

was compared to a) walking with a harness with bodyweight support and b) with additional

weight, both known to perturb gait kinematics [23, 27]. Through validation against exemplary

Fig 5. Example of possible errors resulting from the concatenation process. The grey shaded area represents transition frames.

https://doi.org/10.1371/journal.pone.0218594.g005
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weight induced perturbations, we have been able to demonstrate that our approach is able to

concatenate multiple short time series without inducing any changes in the direction of the

effect for both LyE and SE. However, concatenation resulted in considerable change in the

magnitude of ES and a systematic error of up to 20% for LyE and 50% for SE. Thus the out-

come of the proposed concatenation approach was not so robust for SE with a maximum sys-

tematic error equal to half the measurement value. The interpretation of regularity and

stability as assessed using the proposed SE algorithm and absolute magnitude of LyE respec-

tively should be interpreted with caution (due to their sensitivity to the size as well as pre-

processing of the dataset). To overcome this issue, our method provides an approach for esti-

mating the relative change in both regularity (via SE) and dynamic stability across perturba-

tions or participant groups (via LyE) for both uninterrupted and interrupted time series.

LyE estimates from entire 5 min walking trials (fullTS) showed an average value of

0.86 ± 0.44 ×10−2 across all participants. This value is considerably lower than other treadmill

studies evaluating foot positions, with values ranging from 0.3–0.9 [28], suggesting a much

more stable walking pattern in the present study. However, comparison of nonlinear measures

across studies is generally difficult, due to its known sensitivity to factors such as data length,

sampling frequency and filtering [29]. For example, the FNN method identified on average 8

embedded dimensions from the foot trajectory position data of this study, which is consider-

ably higher than the typically observed number of 5 dimensions for studies investigating accel-

erations of trunk kinematics [29]. In this situation the foot always returns to the floor during

the stance phase of gait, thereby repetitively converging to a fixed vertical coordinate, and

which might therefore explain the more stable pattern as can easily be visualized in Fig 2.

Together with the extended length of our time series (<30’000 time frames per trial), those dif-

ferences in considering vertical foot kinematic trajectory might well have led to the differences

in the number of embedding dimensions [29].

Our concatenation approach of combining several short time series, led on average to a

more reliable estimate (average ICC = 0.89) for LyE compared to ICC = 0.60 reported else-

where [30]. However, when considering the effects of the perturbations, heterogeneity between

concatenation conditions was observed. Finally, one of the pre-requisites for evaluating LyE

across all conditions was to achieve identical length for each time series. In order to achieve

this prerequisite for different concatenation conditions a distinct number of short time series

were needed, resulting in a larger number of concatenations for certain time series (e.g.

cut0605 vs. cut1001). As each concatenation is potentially associated with small errors, it could

be that the reduced reliability of LyE with addition of discontinuities could also be simply due

to the number of cuts but there was no significant effect of perturbation condition. Another

consideration is the applied algorithm to determine LyE. In this study, Wolf’s method was

used, which is slightly more accurate under only chaotic conditions as compared to Rosen-

stein’s method. The Rosenstein algorithm is thought to be advantageous when signals are com-

prised of more periodic than chaotic dynamics [31]. It appears, the characteristics of the heel

trajectory time series lies between that of a chaotic and a periodic system (Fig 2). Therefore,

Rosenstein’s algorithm is likely to provide more accurate estimates of LyE in comparison to

that of Wolf’s. On the other hand, a recent comparison of the two algorithms finds that both

algorithms are similarly efficient, when human walking and running kinematics are analysed

[32]. In this respect, further work is required to evaluate these relationships, but also possibly

introduce further improvements to the presented concatenation approach.

Analysis of 5 minutes of continuous treadmill walking resulted in an average SE of

0.02 ± 0.03 ×10−2 across all participants. Other studies assessing the regularity of times series

during treadmill walking report values of SE = 0.22–0.31 [23]. Higher values of SE reflecting a

more irregular / unpredictable time series [11]. Therefore, the values estimated within our
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study suggest comparatively more regular walking behaviour, which again is most likely

caused by the choice of time series [33]. Decker and colleagues report on joint angle time series

as compared to vertical marker trajectory in our study [23]. The mere difference is that the

here used vertical marker trajectory is bound to always identical (near identical, when consid-

ering measurement noise) point in space (i.e. floor), which is not the case in joint angle data.

Our results show only fair to good reliability between the fullTS and the concatenated time

series and thus, resulting large SEM values. But the direction of the harness and weight effect

did not change direction for the cut conditions. We conclude that, concatenated time series

could lead to a false interpretation of the absolute SE results, and further options to improve

such approaches for valid SE estimation should therefore be investigated.

In the present study, we used the heel marker for the assessment of dynamic gait behaviour.

The choice of marker was based on the fact that a) in the clinical context the most commonly

observed outcomes are computed from footfall kinematics [34], and b) that during walking

corrections to the base of support relative to the center of mass are provided by suitably adjust-

ing the placement of the feet [35]. The vertical trajectory of the foot was observed in order to

avoid the constraints imposed by the treadmill (however, due to the fact that the concatenation

is performed in three-dimensional space, the proposed procedure would also allow to investi-

gate medio-lateral foot placement). As the trajectory of the foot in the anterior-posterior direc-

tion is likely dragged by the treadmill such that the stance foot is helped backwards.

Furthermore, it was possible to evaluate the position data of the foot rather than the velocity

profile, as we are fairly certain that the dataset was devoid of any non-stationarities. Finally, in

order to demonstrate the effectiveness our concatenation algorithm we have evaluated the

dynamic stability of the velocity of the heel marker from the concatenated trials. It is to be

noted that similar to position data our approach once again revealed on average good realibi-

lity (average ICC = 0.87) for the velocity time series. Please refer to ESM#2.

For the process of concatenating, the highest priority was to retain as much data as possible.

This was enforced by identifying and concatenating at the first local minima of the distance

function DðCn
1
;Cn;v

2 Þ, which implied that the final heel strike in the previous short time series

was joined to the first heel strike of the subsequent short time series. However, in situations

when the current time series Cn
1

contained an abnormal movement pattern, finding a similar

pose in the subsequent time series, Cn;v
2 might be problematic. Alternatively, the first heel

strike in Cn;v
2 might not always be the best match to Cn

1
therefore causing irregularity in the

concatenated time series, i.e. concatenation error (Fig 5). In future, unrestricted selection of

concatenation windows in Cn
1

and Cn;v
2 might allow further improvements to the achieved con-

catenation results. Moving forward, while it is certainly possible that the proposed method is

generalizable to different experimental settings, marker trajectories and planes of walking, the

reliability and accuracy of concatenation addressing these aspects need to be established.

Importantly, future investigations should take into account that each of these aspects could

likely influence the choice of transformation Tv
j chosen for concatenation.

In conclusion, our results indicate that the proposed concatenation method can reliably be

used for LyE estimation and to evaluate dynamic stability of the gait pattern. However, mea-

sures of SE seem to be sensitive to the proposed concatenation procedure, and are therefore

subject to false interpretation. By combining multiple short time series, our concatenation

approach removes current obstacles in evaluating (e.g. nonlinear) parameters that rely on col-

lection of large continuous time series. One key advantage of the proposed concatenation

method is that previously collected data can be subsequently re-processed, thereby allowing

the estimation of sophisticated nonlinear metrics in existing datasets. As a result, the ability to

concatenate data from several trials improves perspectives for using overground walking
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protocols that are limited by the field of view, such as the 8-walk [10], and still allow a compre-

hensive analysis of the dynamical nature of human walking in physiological manner.

Supporting information

S1 File. The codes for the concatenation algorithm are attached as a zip file.

(ZIP)

S2 File. Additional observations on comparing dynamic stability for position to velocity

profiles are presented. Table A in S2 File Reliability and precision metrics for LyE derived

from position and velocity of the foot in the vertical direction. Table A in S2 File provides

LyE for the fullTS vs. all the other concatenation conditions (cut1001, cut0803, cut0605) for

both position as well as velocity. The ICC(3,1) for velocity ranged between 0.83–0.93, with

lower levels of relative SEM (comparing the SEM for the concatenation to the fullTS) in com-

parison to the LyE for position time series.

(DOCX)

S1 Fig. Comparison of position and velocity time series from the foot in the vertical direc-

tion. S1 Fig provides the comparison of position vs velocity timeseries in the vertical direc-

tion.

(PNG)

S2 Fig. Effect sizes for the two perturbation conditions for position data of the foot in the

vertical direction. S2 Fig shows that while the LyE for position harness led to more stable pat-

tern, LyE for velocity resulted in less stable pattern across all concatenation conditions as well

as fullTS.

(TIFF)

S3 Fig. Effect sizes for the two perturbation conditions for velocity data of the foot in the

vertical direction. S3 Fig shows that while the LyE for position harness led to more stable pat-

tern, LyE for velocity resulted in less stable pattern across all concatenation conditions as well

as fullTS.

(TIFF)
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