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Abstract

Background: Rapid advances in next-generation sequencing technologies

facilitate genetic association studies of an increasingly wide array of rare variants.

To capture the rare or less common variants, a large number of individuals will be

needed. However, the cost of a large scale study using whole genome or exome

sequencing is still high. DNA pooling can serve as a cost-effective approach, but

with a potential limitation that the identity of individual genomes would be lost and

therefore individual characteristics and environmental factors could not be adjusted

in association analysis, which may result in power loss and a biased estimate of

genetic effect.

Methods: For case-control studies, we propose a design strategy for pool creation

and an analysis strategy that allows covariate adjustment, using multiple imputation

technique.

Results: Simulations show that our approach can obtain reasonable estimate for

genotypic effect with only slight loss of power compared to the much more

expensive approach of sequencing individual genomes.

Conclusion: Our design and analysis strategies enable more powerful and cost-

effective sequencing studies of complex diseases, while allowing incorporation of

covariate adjustment.

Introduction

With the recent advances in next-generation sequencing (NGS) technology, it has

become feasible to explore the rare and less common variants in individual
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genomes with high throughput screening, for example, the 1000 Genomes Project

(http://www.1000genomes.org/, [1]), the UK10K project (www.uk10k.org), and

the NHLBI GO Exome Sequencing Project (ESP) (https://esp.gs.washington.edu/,

[2]). These projects allow investigators to conduct a survey of both common and

rare variants in well phenotyped populations, and increase the chance of discovery

for disease-causing variants. However, the cost of whole genome and whole exome

sequencing is still high. To be able to identify rare or less common variants, a large

number of samples need to be sequenced. In addition, the throughout of the latest

sequencer is very high that several billions of reads can be generated from a single

flow cell. For a sequencing study of a small targeted region, it translates to many

thousand-fold coverage if each individual is sequenced per lane, which is far

greater than needed to obtain accurate calls for the genotypes. Therefore, cost-

effective methods and study designs will be helpful to increase the size of

sequencing studies and power of the association tests while fully using the capacity

of the sequencer. One choice of such designs is DNA pooling [3–6], which pools a

number of individual DNAs to sequence as a single sample.

DNA pooling can efficiently use sequencing depth while reducing the cost of

target capture and library preparation, especially in targeted re-sequencing studies

for regions of tens to hundreds of kilobases. In addition, sequencing pooled DNA

samples can provide better SNP discovery and more accurate allele frequency

estimate than individual sequencing, even with presence of sequencing errors and

unequal contribution of individuals to the pool. [7–10] Comparing to the

intensity measure in microarray experiments, the read counts from sequencing

can be modeled using binomial distribution and allow better inference on

individual-level genotypes from pooled DNA samples.

Pooling can be done with tagging, which multiplexes samples with barcodes

prior to pooling [11, 12], and allows identification of individual samples in the

pool. However, indexing individual DNA samples will add to the labor and cost

for processing the extra barcode sequence. Sequencing errors can also lead to non-

perfect match in the index sequence which can reduce the total number of reads,

or quality of data if mismatches are allowed. In this paper, we will consider DNA

pooling of non-barcoded DNA samples, and develop novel statistical method for

pool creation and analysis of pooled sequence data.

Weinberg and Umbach [13] showed that in a case-control study, well-modeled

statistical tests for pooled samples lose very little statistical power compared to the

individual-based analysis. Statistical methods have also been developed specifically

for sequencing study of pooled samples ([14, 15]). However, a potential limitation

of the pooling strategy is that the identity of individual genomes would be lost and

therefore individual characteristics and environmental factors cannot be adjusted

in association tests. Such limitation may result in power loss, and even false

positives in presence of confounding effect (e.g., ethnicity). Weinberg and

Umbach [13] suggested exact match on covariates when pooling samples, but

such matching criteria is often difficult to achieve, especially when the number of

covariates is large and the variables are not discrete.
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In this paper, we propose a design strategy for pool creation in case-control

sequencing studies, which does not require exact match of covariate values, and

use multiple imputation technique to impute and analyze individual-level

genotype and covariates for SNP-disease association. We will use computer

simulations to validate our approach, and compare its statistical power to that of

individual-based analysis and pool-based analysis without covariate adjustment.

We hope this new design and analysis strategy can provide an alternative approach

to allow more powerful and cost-effective sequencing studies of complex diseases.

Methods

For case-control sequencing studies, we propose a design and analysis strategy for

DNA pooling that can greatly reduce the cost of sequencing and also allow

covariate adjustment for SNP-disease association. Our method includes three

steps:

1) Pool creation: Case and control samples will be grouped according to the

similarity of their characteristics (e.g., age, sex, ethnicity or principal

components, etc.). Samples with similar characteristics will be pooled for

sequencing.

2) Genotype Imputation: Assuming a random binomial process, we calculate

the probabilities of genotype for each sample in the pool, given the total

number of reads from sequencing. The genotypes will then be randomly

drawn following these probabilities.

3) Association test: We use logistic regression to assess the association

between candidate markers and disease status, controlling for other

genetic or environmental factors. Using multiple imputation technique

[16], we repeat 2) and 3) multiple times to obtain valid estimates for the

genetic effects.

Sample matching and pool creation

We will pool samples by their similarity in covariates. When the covariates are all

categorical and have a limited number of categories, an exact match can be

applied. In this paper, we consider a matching approach based on the predicted

probability of being affected.

Let y denote the observed disease status (15affected, 05unaffected), g be the

genetic marker, and Z 5 (z1, …, zk) be the vector of covariates. We fit a logistic

regression model of the disease risk on the covariates (without the genetic marker)

logit pð Þ~b0z
Xk

i~1

zibi

and calculate the predicted probability for sample s as
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Pr bys~1ð Þ~
exp b̂0z

Pk
i~1 zisb̂i

� �
1zexp b̂0z

Pk
i~1 zisb̂i

� � :

We then create the pools by dividing samples into multiple groups according to

quantiles of the predicted probabilities. (see Appendix for details)

Genotype Imputation

DNA pools will be created with approximately equal amount from each sample.

Sequencing will be carried out on the pooled DNA samples. Because sequencing

error in next-generation sequencing can be high even after quality control filtering

and may confound the disease-marker association, we incorporate the ‘‘blocked

pooling’’ design suggested by Wang et al. [9]. Using this approach, each pooled

sample is barcoded and multiple indexed DNA pools will be sequenced in one

lane. This blocked design allows accurate estimation of both locus-specific

sequencing error rate and allele frequency.

We consider a DNA pool with K individuals. Let p and q51 - p be the

frequencies of alleles a and A, respectively. Let G~ g1, . . . ,gKð Þ be the genotype for

the K subjects in the pool, and a0,a1,a2 be the number of genotypes AA, Aa, aa in

G, respectively. Let m~2a2za1 be the number of allele a in the pool of 2K alleles.

Assuming Hardy-Weinberg equilibrium (HWE), m follows a binomial distribu-

tion Bin(2K, p). When the variant is less common, p is small and m<a1. Let n,xð Þ
be the observed sequence data for the pool, where n is the total number of reads at

the locus and x the number of reads with allele a. Denote e the sequencing error

rate, and then d~ m=2Kð Þ 1{eð Þz 1{m=2Kð Þe½ � the probability of observing a

read of allele a. The joint probability:

P m,xð Þ~P mð ÞP xjmð Þ~
2K

m

� �
pmq2K{m

� �
n

x

� �
dx 1{dð Þn{x

� �
:c mð Þ:

and the posterior distribution of m given observed reads x is

P mjxð Þ~P m,xð Þ=P xð Þ~c mð Þ=M:

where M~
P2K

m~0 c mð Þ. Note that c(0)5c(2K)50.

Utilizing the blocked design, the allele frequency p and sequence error rate e can

be jointly estimated using the EM algorithm developed by Wang et al. [9]. When

the allele is causal, the HWE can be violated in the entire case-control cohort. The

allele frequency is therefore estimated separately for the pools of case samples and

pools of control samples, and can be further stratified by the covariate values. (see

Appendix)

To impute the genotype for each individual from the pooled sequence data, we

draw (a0,a1,a2)impute as follows:
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(1) Randomly generate m from the distribution P mjxð Þ, based on the

estimated allele frequency p and sequence error rate e.

(2) Given the value of m, draw a1(impute) from Bin m,
2pq

2p2z2pq

� �
~

bin m,qð Þ, and if m – a1(impute) is odd, redraw a1(impute). Once we have

a1, we calculate a2(impute)5(m – a1(impute))/2 and a0(impute)5K –

a1(impute)– a2(impute).

(3) Randomly assign the genotype AA, Aa, or aa to the K samples in the pool

such that there are a0(impute) samples with AA, a1(impute) samples with Aa,

and a2(impute) samples with aa.

(4) Repeat (1)-(3) multiple times.

Association test

After the individual genotypes are imputed from pooled sequence data, standard

logistic regression can be used to test for disease-marker association, with the

covariates being adjusted in the model. To take into account the uncertainty of

imputed data and obtain valid estimates, multiple imputation technique will be

applied. Specifically, we will repeat the genotype imputation and association test

multiple times (typically 5–10), and combine the results to produce estimated

effects and confidence intervals [16].

Simulations

We simulate case-control data possibly influenced by genotypes (G) at a disease

locus. We assumed the allele frequency of causal allele at 1%, and an odds ratio

(OR) of 1.0 (no association) and 3.5 (disease-causing) as the primary simulation

model, but also considered models with different allele frequencies and effect

sizes. We randomly sample equal numbers of cases and controls (n51000 cases/

controls), and consider a pool size of 12. For sequencing of pooled samples, we

assume an average coverage of 200X at the disease locus. The actual coverage for

each sample is randomly drawn from a normal distribution with standard

deviation of 20X. We assume 5 additional risk factors (Z) that are associated with

the disease with equal or unequal ORs (Table 1).

In the simulations, we first assume that the genotype is not associated with the

disease (model 1–4) and evaluate the type I error of our proposed method; model

5–12 assume an OR of 3.5 for the causal allele to compare power of different

methods. We vary the correlation between covariate Z and genotype G. In model 1

and 5, Z are independent risk factors so that the type 1 error of standard pooling

method can be correctly controlled without adjusting for any covariates. In the

other simulation models, we assume that one of the risk factors (for example,

sample ethnicity or a biomarker) is correlated with G and serve as a confounder.

We also vary the allele frequency and effect size of G and effect size of Z, using

simulation settings similar to those in model 5.
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We further consider simulation models to reflect possible scenarios of a real

study. In practice, we often do not have information on all risk factors. In model

7, we assume that only two of the five risk factors are included in analysis. In

model 8, we assume different effect sizes for the risk factors. We also consider a

more stringent significance level of 1024 using a large sample size (n55000, model

4 and 9) to evaluate the type 1 error and power of proposed method. In model 4

and 10, we simulate situations where the DNA samples are not equally represented

in the pool, reflecting potential technical errors in pool creation (see below). At

last, we simulate the sequence data with different sequencing errors (.5%, 1%, and

2%), and evaluate the type 1 errors, using model 2 and model 6 as an example.

For each model, we simulate 1,000 datasets (1,000,000 datasets for model 4),

and use 5 imputations in our proposed method.

We compare the power of our method (‘‘poolMI’’) to individual sequencing of

all cases and controls (‘‘seqall’’) and standard DNA pooling without considering

other risk factors (‘‘poolunivariate’’), where ‘‘seqall’’ would provide the maximum

power when budget is not a factor for experiment design. We calculate type 1

error and power as the proportion of simulated replicates where the association p-

value is ,.05 or 1024 at the locus.

Although equal concentration for individual samples in the pool is desired, in

practice their contributions can vary due to technical variability. We further carry

out simulations in which the samples have unequal proportions in the pool

(model 4 and 10). We randomly generate weight of an individual sample as 1/

K*(1+a), where K is the pool size and (1+a) is the scale parameter with a being

randomly drawn from (-amax, amax). In the simulations, we set amax to be 1. The

weights are further normalized and used as sampling proportions in the pool. We

Table 1. Characteristics of simulation models.

Model n RAF corr ORg ORz amax note

1 1000 .01 0 1.0 (1.5, 1.5, 1.5, 1.5, 1.5) 0 Base model

2 1000 .01 .1 1.0 (1.5, 1.5, 1.5, 1.5, 1.5) 0 Correlated G and Z

3 1000 .01 .1 1.0 (1.1, 1.3, 1.9, 2.0, 2.4) 100% Unequal %sample

4 5000$ .01 .1 1.0 (1.1, 1.3, 1.9, 2.0, 2.4) 0 Large sample size

5 1000 .01 0 3.5 (1.5, 1.5, 1.5, 1.5, 1.5) 0 Base model

6 1000 .01 .1 3.5 (1.5, 1.5, 1.5, 1.5, 1.5) 0 Correlated G and Z

7 1000 .01 .1 3.5 ([1.5, 1.5, 1.5,] 1.5, 1.5)* 0 Not all Z observed

8 1000 .01 .1 3.5 (1.1, 1.3, 1.9, 2.0, 2.4) 0 Varying effect of Z

9 5000$ .01 .1 3.5 (1.1, 1.3, 1.9, 2.0, 2.4) 0 Large sample size

10 1000 .01 .1 3.5 (1.1, 1.3, 1.9, 2.0, 2.4) 100% Unequal %sample

*. The simulation model consists of 5 covariates, each with OR of 1.5. In analysis, we assume that only the last two covariates are considered.
$. In analysis, a more stringent threshold (1024) is used for significance, compared to other simulation models (.05).
n: number of cases, assuming case:control ratio of 1:1; RAF: risk allele frequency; ORg: odds ratio for risk allele; ORz: odds ratios for covariates; corr:
correlation coefficient between causal variant and the last covariate; amax: variation in sample proportions (see ‘‘Methods’’). Model 1–4 were simulated under
the null hypothesis of no association; and model 5–12 were under the alternative hypothesis. Model 1 and 5 were treated as baseline models, and changes
of parameters in other models were highlighted.

doi:10.1371/journal.pone.0114523.t001
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perform association tests using our approach under the equal proportion

assumption, and evaluate type 1 error and power.

Results

Type 1 error and power

We first evaluate the false positive rates of our proposed approach and other

alternatives (Table 2). When there is no confounding effects (model 1), all

methods give false positive rates close to the nominal value of.05. However, when

there is a confounder in the model (model 2–4), for example, the variant is an

ancestry informative marker and ethnicity is correlated with disease outcome, the

standard pooling approach without adjusting for covariates can lead to inflated

type 1 error, while the proposed method still maintained the type 1 error at the

correct level.

When the sequenced variant is causal (Table 3), our proposed method is

slightly less powerful than individual sequencing of all samples, but can be much

more powerful than standard pooling method ignoring covariate information. For

example, when there is no correlation between genetic variant and other

covariates (model 5), although the standard pooling method has appropriate type

1 error, it fails to take into account other risk factors contributing to the disease

and therefore has lower power than multivariate models in our imputation-based

method. Fig. 1 compares the power of the three approaches for different genetic

effects. Our imputation-based method is about 2–5% lower in statistical power

compared to individual sequencing, but has 15–30% more power than the

standard pooling approach which cannot adjust for covariates. Fig. 2 compares

the power at different causal allele frequencies with similar observation. We also

assess the impact of effect size of covariates Z in the simulations (Fig. 3). When

OR of Z is 1 (no effect), the three methods have almost the same power; when the

OR increases, the power advantage of our imputation-based method over

standard pooling becomes more and more significant.

We further evaluate the performance of our proposed method when only a

subset of covariates is included in the analysis (Table 3, model 7), or when the

effect sizes of the five risk factors vary (Table 3, model 8). We also apply a

stringent threshold for significance (model 4 and 9), and our proposed method

still maintains correct type 1 error rate and good statistical power, compared to

other methods.

Unequal proportion of samples in pool

When technical variability in sample preparation lead to unequal contribution of

individual samples in the pool, estimated allele frequency of sequenced variant can

be biased from pooled samples [8, 17]. Our proposed method still maintains

reasonable type 1 error (model 3), while having higher power than standard

DNA Pooling with Covariate Adjustment
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pooling approach without covariate adjustment (.48 vs.23 and.25, respectively)

(model 12).

Impact of sequencing errors

We further evaluate the impact of sequencing errors that can potentially bias the

disease-marker association. Our method incorporates the estimated sequencing

error rate when imputing the individual genotypes from pooled DNA reads. The

simulation results show that our method maintains correct type 1 error rate

(Table 4).

Discussion

DNA pooling is a cost effective alternative for genetic sequencing studies, but the

standard pooling approach ignores covariate information that can lead to power

loss or false positives. We have proposed a new study design for sample pooling

that matches samples based on their covariates prior to sequencing and uses

multiple imputation technique for association test. Simulation studies show that

our approach can control the false positive rates in presence of confounders and

improve power of association test compared to standard pooling approach or

individual sequencing given the same cost.

Table 2. Type 1 error for multiple-imputation based pooling method (‘‘poolMI’’), individual sequencing of all samples (‘‘seqall’’) and pooling without considering
other risk factors (‘‘poolunivariate’’).

Model seqall poolunivariate poolMI

1 .044 .046 .043

2 .046 .458 .048

3 .058 .368 .060

4 1.1E-4 .040 1.2E-4

The significance level 5.05 for model 1–3, and 1024 for model 4. Number of simulations is 1000 for model 1–3, and 100,000 for model 4.

doi:10.1371/journal.pone.0114523.t002

Table 3. Power for multiple-imputation based pooling method (‘‘poolMI-prob’’), individual sequencing of all samples (‘‘seqall’’) and pooling without considering
other risk factors (‘‘poolunivariate’’).

Model seqall poolunivariate poolMI

5 .71 .42 .66

6 .63 .35* .59

7 .42 .25* .37

8 .52 .30* .47

9 .71 .24* .64

10 .50 .25* .48

*. Power adjusted for the nominal false positive rates.
The significance level 5.05 (1024 for model 11). Number of simulations is 1000.

doi:10.1371/journal.pone.0114523.t003
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Our new method tackles the problem of covariate adjustment by matching

samples in the pooling stage. We consider a matching strategy based on quantiles

of predicted probabilities. Other matching strategy can also be implemented, for

example, K-means or K-median clustering [18] and nearest neighbor algorithm

[19] using Euclidean distance (for continuous covariates) or Hamming distance

(for discrete covariates). Such methods can separate potential outliers in the

distribution of covariates, but often result in variable group sizes that may not be

desired in practice. It has been shown that optimal data clustering with size

Fig. 1. Power for individual sequencing of all samples, pooling with individual genotype imputed, and
pooling without considering other risk factors. The simulation setting is described in Table 1, model 5, but
with different odds ratio for the risk allele (ORg). Number of simulations is 200 for each setting.

doi:10.1371/journal.pone.0114523.g001

Fig. 2. Power for individual sequencing of all samples, pooling with individual genotype imputed, and
pooling without considering other risk factors. The simulation setting is similar to that described in
Table 1, model 5, but with different risk allele frequency (RAF) with n55000 cases/controls, and ORg52.
Number of simulations is 200 for each setting.

doi:10.1371/journal.pone.0114523.g002
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constraint is computationally extensive, a ‘‘NP-complete problem’’ in computa-

tional complexity theory [20]. To obtain sample pools of equal size, we apply a

greedy approach based on Euclidean distance. To create l pools, we first select l

samples (centers) randomly, and assign rest of the samples one at a time to their

closest pool defined by the minimum Euclidian distance to the center sample. If

the closest pool reaches the desired pool size K, the sample will be assigned to the

next closest pool. Simulations (data not shown) show slightly lower power and

more variable estimates of genetic effect using this approach. In practice, well-

matched samples can be pooled with equal pool size while ‘‘outlier’’ samples are

sequenced individually. Another advantage of this unbalanced ‘‘blocked pooling’’

design is that the pools with a single individual can provide accurate estimate for

sequence errors, and pools with a large number of individuals provide accurate

estimate for allele frequency.

The advantage of using predicted probabilities over Euclidean distance is that it

weighs the covariates by their estimated effect sizes in a model without the genetic

variant. In presence of a confounding variable such as ethnicity, the estimated

effect size of such variable can be biased in this model. However, given the current

GWAS results for common variants and the low frequency of rare variants, we

Fig. 3. Power for individual sequencing of all samples, pooling with individual genotype imputed, and
pooling without considering other risk factors. The simulation setting is described in Table 1, model 5, but
with different odds ratio for the covariates (ORz). Number of simulations is 200 for each setting.

doi:10.1371/journal.pone.0114523.g003

Table 4. Type 1 error (model 2) and power (model 6) for multiple-imputation based pooling method with sequencing error rate of 0.5%, 1%, and 2%.

Model Sequencing error rate

0.5% 1% 2%

2 .051 .053 .056

6 .66 .67 .62

Number of simulations is 1000.

doi:10.1371/journal.pone.0114523.t004
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expect that a single variant can only explain a small proportion of total variance of

outcome and the bias will be small. Our simulation results show that when the

effect size of covariates vary, matching based on predicted probabilities performs

slightly better than that based on Euclidean distance.

When imputing the genotypes for individuals in the pool, we assume HWE to

derive the posterior distribution P mjxð Þ. For analysis of low-frequency variants,

the homozygote of minor alleles is often negligible and HWE has little impact on

the validity of the imputation. Furthermore, the case-control sampling scheme

can lead to violation of HWE when the variant is causal. In our pooling design,

the cases and controls are pooled separately and the allele frequency is also

estimated separately. Our simulation results, based on 1000 selected cases and

controls, show correct type 1 error rate under different settings. However, when

the disease model is not multiplicative, the HWE can be violated in cases which

will lead to biased estimate for allele frequency and incorrect imputation,

especially when the causal allele is not rare. In such case, the distribution of P(m)

needs to be modified to reflect the true disease model.

Besides the assumption of HWE, our proposed method also relies on accurate

estimation of allele frequency to draw valid imputations. In practice, unequal

contribution of samples to the pool and sequencing errors can both lead to biased

estimation. First, individual DNA samples may not be pooled with equal

concentration due to technical variability [8, 17]. This bias can be minimized by

careful quantification of DNA samples prior to pooling and choice of target

enrichment method [5]. In our simulation study, we consider a scenario that the

actual proportion of each sample can vary dramatically from (close to) 0 to 200%

of the equal proportion of 1/N. Since the imputation is independent of disease

outcome and the sampling error was randomly assigned to the pools, our

proposed method still show false positive rate close to the nominal value. When

the allele is causal, power from our method is not significantly impacted as well.

Gautier et. al. [10] proposed a Bayesian hierarchical model to obtain accurate

estimation of allele frequency with unequal proportion of samples in the pool.

Second, sequencing errors are common in next-generation sequencing experi-

ments. Besides the ‘‘blocked pooling’’ design we consider, Chen et al. [8] and

Futschik and Schlotterer [7] proposed statistical methods to estimate the true

allele counts from pooled samples with sequencing errors being taken into

account. All these method can be incorporated into our proposed approach to

improve genotype imputation.

There are also several practical issues for our proposed methods. First, we

consider a pool size of 12 in our simulations. Gautier et. al. [10] showed that large

pool size (e.g.,.40) can help to reduce the impact of unequal contribution of

individuals to the pool. However, large pool size may also lead to worse matching

on the covariates. We run simulations with different pool sizes (S1 Table), and

find slightly increased type 1 error when the pool size is.50 at the presence of

confounders. This result may vary by the actual distributions of covariates. When

the confounder is discrete (e.g., ethnic groups), exact matching is possible and

large pool size become more feasible. Second, literatures on multiple imputations
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(e.g., [16]) typically suggest a small number of imputations to use. We evaluate

the impact of number of imputations (S2 Table). The results suggest that

increasing the number of imputations does not change the performance of our

method significantly. Third, the sequencing coverage needs to be considered given

different pool size. In our simulations, we choose a pool size of 12 with ,200X

coverage. We expect that a larger pool size will require a greater coverage to

achieve accurate estimate for allele frequencies. Fourth, in our simulations, we

assumed all samples were processed in a single lane. For a study with large sample

size but small pool size, multiple lanes may be needed. The sequencing error will

then be estimated separately for each lane, but the allele frequency estimates can

be averaged across lanes to achieve greater accuracy. The imputation procedure

will be performed accordingly for pools in different lanes.

In our simulation study, we consider association test based on a single variant,

which is often applied in targeted re-sequencing studies to identify or validate

potential causal variants. Alternatively, analysis of low-frequency genetic variant

(MAF ,.01) often model multiple variants simultaneously within a gene or

targeted region (e.g., [21–23]) to increase the power of association tests. Assuming

such variants are independent, our method can be extended to these multi-locus

tests, by imputing individual genotypes at each locus separately from the pooled

sequence reads. A multi-marker test can then be applied to the imputed genotypes

at multiple loci. A statistical method can also be developed to improve the

accuracy of imputation if the linkage disequilibrium (LD) information in the

region can be inferred from a reference panel such as the 1000 Genomes project.

In summary, we have proposed a new framework to match samples using the

covariate information to create sequencing pools and use multiple imputation

technique for association test that allows covariate adjustment. Our method is

specifically designed to improve power to detect the disease-marker association

using the cost effective DNA pooling approach, and correctly control the false

positives in presence of confounding effect. A sample Stata code is available freely

at http://www.biostat.umn.edu/,wguan/software/, which demonstrates the pool

creation and multiple imputation pipeline. We expect our method will aid

analyses of sequencing-based association studies for complex traits.

Appendix

The proposed design for DNA pooling is described in Fig. 4. The samples will be

matched based on their covariate values to create DNA pools. Pools with similar

covariate values and the same case/control status will be further grouped together.

We assume the allele frequency of risk allele is constant for samples within each

group of pools. When multiple lanes are needed, the pools from the same group

will be randomly distributed across lanes to minimize potential batch effects. We

assume the sequencing error rate is constant for pools within the same lane.

We first consider a DNA pool with K individuals. Let p and q51 - p be the

frequencies of alleles a and A, respectively. Let m be the number of allele a in the
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pool of 2K alleles. Assuming Hardy-Weinberg equilibrium (HWE), m follows a

binomial distribution Bin(2K, p). Let n,xð Þ be the observed sequence data for the

pool, where n is the total number of reads at the locus and x the number of reads

with allele a. Denote e the sequencing error rate, and then

d~ m=2Kð Þ 1{eð Þz 1{m=2Kð Þe½ � the probability of observing a read of allele a.

The joint probability:

Fig. 4. Design of DNA pooling with sample matching. After sample matching and pool creation, the pools are grouped into K groups, with allele frequency
in each group denoted by (p1, …, pK). Pools from the same groups are randomly distributed into M lanes, with sequencing errors (e1, …, eM).

doi:10.1371/journal.pone.0114523.g004
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P m,xð Þ~P mð ÞP xjmð Þ~
2K

m

� �
pmq2K{m

� �
n

x

� �
dx 1{dð Þn{x

� �
:c mð Þ:

and the posterior distribution of m given observed reads x is

P mjxð Þ~P m,xð Þ=P xð Þ~c mð Þ=M:

where M~
P2K

m~0 c mð Þ. Note that c(0)5c(2K)50.

To estimate the allele frequency p and sequence error rate e, an EM algorithm

was described by Wang et al. [9]. We extend the algorithm to allow joint estimate

of ps and es from multiple groups of pools (each group with the same value of

covariates and case/control status) and multiple lanes. Let i denote the lane, and

assuming the sequence error is consistent for pools within the same lane, we

denote the error rate by ei. We denote the allele frequency in group k by pk. In the

simple case where no covariate is considered, k51 or 2 for group of cases and

controls, respectively. For pool j, let Kj denote the pool size. To reduce potential

batch effects, the pools in the same group will be distributed randomly across all

the lanes, i.e., pool j is nested within group k and within lane i, but k is in general

not nested within i. Let Lk denote the number of pools in group k, and Li denote

the number of pools in lane i.

(1) E step:, for the j-th pool in group k, lane i.

c mð Þj~P mj,xjjZ~Zk
� 	

~
2Kj

mj

� �bpk
mj bqk

2Kj{mj

� �
nj

xj

� �ddj ið Þ
xj 1{ddj ið Þ

� �nj{xj
� �

:

where, ddj ið Þ~ mj=2Kj
� 	

1{beið Þz 1{mj=2Kj
� 	bei


 �
and,

wj~P mjjxj,Zk
� 	

~
c mð ÞjP2Kj

mj~0 c mð Þj

(2) M step:

bpk~ ~

PLk
j~1

P2Kj
mj~0 mjwjPLk

j~1 2Kj
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bei~ ~

PLi
j~1

P2Kj
mj~0 wj xj{

m
2Kj

nj

� �
PLi

j~1 nj

When the covariates are continuous, no exact match can be done for pooling

samples. In practice, we can divide the samples by quantiles of matching score,

e.g., Pr bys~1ð Þ as described in ‘‘Methods’’ to achieve large sample size in each

group of pools to estimate the allele frequency pk. In our simulations, we divide

the case pools and control pools into 4 groups each, i.e., Lk<20, to estimate the

allele frequency. This approach will oversimplify the distribution of allele

frequencies, but performs fairly well in our simulation results.

Supporting Information

S1 Table. Type 1 error (model 2) for pool size of 12, 30, and 50. Number of

simulations is 1000.

doi:10.1371/journal.pone.0114523.s001 (DOCX)

S2 Table. Type 1 error (model 2) and power (model 6) for multiple-imputation

based pooling method using 5, 10, and 100 imputations. Number of simulations is

1000.

doi:10.1371/journal.pone.0114523.s002 (DOCX)
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