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Abstract: Vinegar has been found to have in vitro improvement effect on inflammatory biomarkers,
and clinically used to improve inflammation and obesity-related diseases. This study was designed
to analyze in vitro anti-inflammatory effects of Cudrania tricuspidata fruits vinegar (CTFV) in a
co-culture system with macrophages and adipocytes. We analyzed the physicochemical properties
and polyphenolic ingredients of CTFV, and investigated in vitro anti-inflammatory effects of CTFV in a
co-culture system with macrophages and adipocytes. The cells were cultured in the presence of CTFV
for 24 h in contact with each other, then, harvested. The levels of monocyte chemoattractant protein
(MCP)-1, tumour necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), nitric oxide (NO),
and interleukin (IL)-6 were evaluated by using the Griess reagent, western blot, or enzyme-linked
immunosorbent assay assays. We found that increasing levels for NO, iNOS, TNF-α, IL-6 and MCP-1
were caused by LPS treatment and co-culture using the contact method, whereas CTFV efficaciously
attenuated inflammatory response by improving inflammatory parameters including NO, iNOS,
TNF-α, IL-6 and MCP-1. The present study indicates that CTFV might provide a nutraceutical product
or functional food resource for improving inflammation processed via the interaction of adipocytes
and macrophages.
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1. Introduction

Cudrania tricuspidata is commonly used as food ingredients and a medicinal plant, and its fruit is
consumed fresh and dried or used in the preparation of fruit jams and alcoholic drinks. This plant is
mostly distributed in East Asia and its fruit is rich in bioactive substances, such as phenolic compounds,
flavones, and isoflavonoids [1]. Several studies on the anti-inflammatory effects of this plant and its
active ingredients have been reported [2–5].

The adipose tissue is an active endocrine organ containing diverse cells, including macrophages,
adipocytes, and immune and endothelial cells, that release adipokines such as adipose hormones and
cytokines, and regulate the levels of adipokines under various conditions [6]. In obesity, the chronic
inflammatory response contributes to increased macrophage infiltration, which in turn leads to
decreased adiponectin secretion and elevated levels of pro-inflammatory cytokines [7]. The paracrine
interactions between adipocytes and macrophages in adipose tissues are activated by polysaccharides,
and fatty acids, and are involved in the regulation of the adipokine profile [7,8]. To improve
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chronic inflammation in obesity, investigation of the paracrine interactions between macrophages
and adipocytes is crucial. We therefore chose two cell lines, RAW264.7 macrophages and 3T3-L1
adipocytes, for analysis of the paracrine interactions using a co-culture system. RAW264.7 macrophage,
a monocyte cell line derived from BALB/c mice, plays an important role in the immune response
involving phagocytosis, antigen presentation, and immune regulation to release various cytokines
and growth factors. 3T3-L1 adipocytes derived from mouse 3T3 cells induce the accumulation and
synthesis of triglycerides. The cells are sensitive to lipolytic and lipogenic hormones, and release
pro-inflammatory cytokines, including monocyte chemoattractant protein 1 (MCP-1) and tumor
necrosis factor-α (TNF-α). The two cell lines can produce an inflammatory response and are involved
in the regulation of cytokines and hormones related to immune activity and growth.

Previous studies have shown that vinegar treatment decreased the levels of inflammatory
cytokines [9,10], and biomarkers including mitogen-activated protein kinases (MAPKs), cyclooxygenase
(COX)-2, inducible nitric oxide synthase (iNOS), and nitric oxide (NO) [9–11]. Vinegar has been found
to possess inhibitory effects against immunoglobulin E (IgE) production, immune cell infiltration, Th1 or
Th17 responses, and Toll-like receptor (TLR)4-induced inflammatory response [10–12]. Moreover,
vinegar supplementation reduced the levels of interleukin-6 (IL-6), an inflammatory cytokine, and
the biomarkers nitric oxide (NO) and TNF-α in a clinical study [13–16]. Recently, vinegars have
been reported to reduce body fat and glucose levels, as well as exert anti-oxidant, anti-tumor, and
anti-microbial effects [15–19]. The biological activities of fruit vinegars have been studied to exploit the
beneficial effects of vinegar. Some plant fruits, including Schizandra chinensis, black raspberries, apples,
blueberries, and Vitis coignetiae, have been used to produce fruit vinegar [20–22]. To date, there is
no information on the in vitro anti-inflammatory efficacy of C. tricuspidata fruit vinegar (CTFV) in a
co-culture system with macrophages and adipocytes. Therefore, our study was designed to evaluate
the in vitro anti-inflammatory effects of CTFV in a co-culture system with macrophages and adipocytes.

2. Materials and Methods

2.1. Chemicals, Reagents, and Antibodies

Quercetin, rosmarinic acid, coumaric acid, cinnamic acid, taxifolin, ferulic acid, p-coumaric acid,
rutin, isovanillic acid, chlorogenic acid, protocatechuic acid, gallic acid, p-hydroxybenzoic acid, caffeic
acid, gastrodin, p-hydroxybenzyl alcohol, ethylenediaminetetraacetic acid (EDTA), dimethyl sulfoxide
(DMSO), hematoxylin and eosin, and parishin A, B, C, and E were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Streptomycin, penicillin, fetal bovine serum (FBS), and Dulbecco’s modified Eagle’s
medium (DMEM) were purchased from Invitrogen (Carlsbad, CA, USA). Primary antibodies against
iNOS was purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). Prestained protein
ladder (PageRuler TM Plus) was purchased from Thermo Scientific (Rockford, IL, USA). Other reagents
were commercially available and of special grade.

2.2. Wine and Vinegar Preparation

Fresh C. tricuspidata fruits were collected from a farm located in Milyang, Gyeongsangnam-do,
Republic of Korea and immediately stored at −20 ◦C until use. Before preparation of the wine,
the frozen fruit was homogenized with tap water at a 1:2 ratio using a multipurpose high-performance
hand blender (Lacuzin, China). The sets of mixture were raised to 12 ◦Brix by adding sugar and
sterilized for 90 min at 85 ◦C. The yeast strain (Saccharomyces cerevisiae Fermivin) was cultivated by
inoculating into malt medium (12 ◦Brix) and incubating at 25–27 ◦C for 5 days under shaking at
120 rpm. The fermentation process was then initiated by inoculating 6 L of the homogenized fruit
slurry in a 10 L glass jar with 5% of the yeast culture. The fermentation jar was then incubated at
26 ◦C for 10 days with manual shaking twice daily. At the end of fermentation, the two wine phases
(liquid and solid) were separated by centrifugation at 9000× g for 15 min, and the liquid phase was
filtered through a 110 mm filter (Whatman filter paper no. 2). The C. tricuspidata fruit wine was then
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sterilized for 30 min at 85 ◦C. To prepare the vinegar, equal volumes of the C. tricuspidata fruit wine
and traditional starter vinegar [23] were mixed and incubated at 30 ◦C for 60 days. During incubation,
fresh wine feeding (half of the volume of the vinegar preparation) and acidity measurements were
conducted every twelve days.

2.3. HPLC Analysis

HPLC was performed using an HPLC system (Waters, Milford, MA, USA) equipped with a Waters
996 DAD with a ZORBAX Eclipse XDB-C18 column (250 mm × 4.6 mm, 5 µm; Agilent Technologies,
Inc., Santa Clara, CA, USA), and 2690 separation module as previously described [24]. For analysis of
phenolic acids and flavonoids, the mobile phase comprised 0.1% formic acid in 10% acetonitrile of
solvent A, and 0.1% formic acid in 90% acetonitrile of solvent B. The mobile phase ratio was maintained
at A:B 100:0 for 0–5 min, 100:0 for 5–10 min, 88:12 for 10–40 min, 30:70 for 40–45 min, and 100:0 for
45–50 min at 0.8 mL/min of a flow rate. The quantification of each compounds was analyzed at 280 nm
based on peak areas.

The parishin derivatives were analyzed by the previously described method [24]. The mobile
phase comprised 0.1% formic acid in ionized water of solvent A, and 0.1% formic acid in methanol of
solvent B. The mobile phase ratio was maintained at A:B 95:5 for 0–5 min, 85:15 for 5–10 min, 45:55 for
10–25 min, and 95:10 for 25–40 min at 0.8 mL/min of a flow rate. The quantification of each compounds
was analyzed at 220 nm based on peak areas.

Twenty phenolic compound standards were used for calibration curves: quercetin, rosmarinic
acid, coumaric acid, cinnamic acid, taxifolin, ferulic acid, p-coumaric acid, rutin, isovanillic acid,
chlorogenic acid, protocatechuic acid, gallic acid, p-hydroxybenzoic acid, caffeic acid, parishin A, B, C,
E, p-hydroxybenzyl alcohol, and gastrodin by the previously described method [24]. 50, 100, 250, and
500 µg/mL of the standard solutions were dissolved in DMSO. The main compounds of CTFV were
identified based on the retention times of the standards. These compounds were spectrophotometrically
quantified by using the peak intensities to those of standard curves.

2.4. Cell Culture and Co-Culture of Macrophages and Adipocytes

Cell culture was carried out as previously described [25]. 3T3-L1, and Raw264.7 cells were obtained
from the American Type Culture Collection (Manassas, VA, USA). Raw264.7 cells were cultured in
DMEM added with 100 µg/mL streptomycin, 100 U/mL penicillin, and 10% FBS. The cells were
incubated in humidified air (5% CO2, 95% air) at 37 ◦C. The media were changed every 2 days. 3T3-L1
cells were cultured as previously described [26]. In the contact method described previously [26,27],
5.0 × 105 cells/well of serum-starved 3T3-L1 were cultured in a 24-well plate. 2.0 × 105 cells/well of
RAW264.7 were placed above the 3T3-L1. The cells were cultured in 2% FFA-free BSA medium for
24 h in the presence of CTFV (0, 50, 100, and 200 µg/mL) in contact with each other, then, harvested.
The medium supernatants and cell lysate buffers of differentiated RAW264.7 and 3T3-L1 were used to
harvest the co-cultures.

2.5. Cell Viability Assay

Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay,
cell viability was determined to examine possible toxic effects as previously described [25]. Cells were
prepared at a density of 1 × 104 cells/well into 96-well plates, and incubated for 24 h before experimental
treatments. The sample was dissolved in saline solution. 3T3-L1, and Raw264.7 cells were treated with
10–500 µg/mL CTFV for 24 h. After incubation with MTT for 4 h at 0.5 mg/mL of a final concentration,
and 37 ◦C, the media were removed. To dissolve the formazan crystals, 100 µL of dimethyl sulfoxide
was added to each well for 10 min, and absorbance was measured using a microplate reader at 570 nm.
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2.6. Measurement of IL-6, TNF-α, and MCP-1

Determination of IL-6, TNF-α, and MCP-1 levels in the cells extracts or the culture medium by
enzyme-linked immunosorbent assay (ELISA). The IL-6, TNF-α, and MCP-1 levels of the extracts were
determined using a commercially available IL-6 or TNF-α ELISA kit (R&D Systems, Minneapolis, MN,
USA), and MCP-1 ELISA kit (Sigma-Aldrich, St. Louis, MO, USA). The assays were conducted by the
manufacturer’s the instructions provided.

2.7. NO Assay

Nitric oxide metabolite from cells was measured by the Griess reaction as previously described [28].
First, each sample of 100 µL was incubated with Griess reagent of 100 µL, containing 0.1% naphthyl
ethylenediamine dihydrochloride and 1% sulfanilamide in 2.5% polyphosphoric acid at room
temperature (RT) for 10 min. Then, the absorbance was measured at 540 nm with a microplate
reader. The concentration of nitric oxide metabolite was determined by measuring the absorbance at
540 and comparing to those of sodium nitrite.

2.8. Immunoblotting

Immunoblotting analysis was performed as previously described [25]. The collected cells were
washed with phosphate buffer solution (PBS). Then, the harvested cells were lysed by RIPA buffer
(Sigma-Aldrich, St. Louis, MO, USA). The concentrations of protein were analyzed by BCA assay
(Thermofisher, Waltham, MA, USA). Each extracts of 20 µg were analyzed by 12% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis. Then, the proteins were transferred to polyvinylidene
difluoride membranes. After blocking in blocking buffer (0.1% Tween 20 [pH 7.5], 150 mM NaCl,
and 10 mM Tris-HCl) at RT for 1 h, the membranes were incubated with primary antibodies against
beta-actin (1:2500 dilution), and iNOS (1:1000 dilution) at RT for 1 h. The membranes were washed in
TBST buffer, and incubated with horseradish peroxidase-conjugated secondary antibodies at RT for 1 h.
The membranes were treated with Western Blue Stabilized Substrate for WESTZOL (plus) Western
Blot Detection System (Intron Biotechnology, Inc., Seongnam, Korea) to reveal the reaction bands.
The signals were detected by a MicroChemi instrument (DNR Bio-imaging Systems, Jerusalem, Israel).

2.9. Statistical Analysis

Statistical analysis was performed by the previously described method [5] using SPSS 21 software
(SPSS Inc., Chicago, IL, USA). The data collected and analyzed from this study were expressed as
mean ± standard deviation (SD). The statistical significance of multiple group comparisons was
assessed by one-way analysis of variance followed by a post-hoc Tukey’s test. p-values less than 0.05
were considered as statistically significant.

3. Results

3.1. Physicochemical Properties and Polyphenolic Compositions of CTFV

The traditional fermentation process in the described method was used to produce CTFV. After
the alcoholic and acetic acid fermentation process, we analyzed various physicochemical properties
of CTFV. The pH value of CTFV was found to be 3.4 ± 0.1, and the sugar level was found to be
21.3 ± 0.5 ◦Brix. The total acidity, the alcohol concentration, and the total organic acid were 11.2 ± 0.3%,
0 ± 0%, and 49.2 ± 0.9 mg/mL. In previous studies [1,24], we found that CTF and its ferment compose
various bio-active ingredients such as phenolic, flavonoid, and parishin derivatives. Therefore, we
performed HPLC analysis to identify polyphenolic ingredients and parishin derivatives in CTFV
(Figure 1). Tables 1 and 2 shows that the concentrations of chlorogenic acid, caffeic acid, rutin, gastrodin,
p-hydroxybenzyl alcohol, and parishin A detected in CTFV were 454.1 ± 5.2, 60.8 ± 0.4, 40.1 ± 2.9,
273.1 ± 4.6, 182.9 ± 0.9, and 41.7 ± 0.3, respectively, at each peak compared to standards.
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Figure 1. HPLC analysis of polyphenolic ingredients (B) and parishin derivatives (D) from CTFV.
Mixture of authentic standards for polyphenolics (A) and parishin derivatives (C). X-axis is retention
time in minutes and Y-axis is absorbance unit (AU). 1, gallic acid; 2, protocatechuic acid; 3, chlorogenic
acid; 4, p-hydroxybenzoic acid; 5, caffeic acid; 6, isovanillic acid; 7, rutin; 8, p-coumaric acid; 9, ferulic
acid; 10, taxifolin; 11, trans-coumaric acid; 12, rosmarinic acid; 13, quercetin; 14, trans-cinnamic acid
(A, left panel). 1, gastrodin; 2, p-hydroxybenzyl alcohol; 3, parishin E; 4, parishin B; 5, parishin C; 6,
parishin A (C, right panel).

Table 1. The polyphenolic ingredients of CTFV.

Concentration of Polyphenolic Compounds (µg/g dw)

Chlorogenic Acid Caffeic Acid Rutin Total Flavonoid (mg/mL) Total Phenol (mg/mL)

CTFV 454.1 ± 5.2 60.8 ± 0.4 40.1 ± 2.9 0.12 ± 0.01 4.3 ± 0.2

Values are mean ± SD of 3 observations. Total phenol content is expressed in mg GAE/g dw. Total flavonoid content
is expressed in mg QUE/g dw. CTFV, C. tricuspidata fruits vinegar.

Table 2. The parishin derivatives of CTFV.

Concentration of the Parishin Derivatives (µg/g dw)

CTFV
Gastrodin p-Hydroxybenzyl alcohol Parishin A

273.1 ± 4.6 182.9 ± 0.9 41.7 ± 0.3

Values are mean ± SD of 3 observations.

3.2. Effect of CTFV on Cell Viability in 3T3-L1, and Raw264.7

The effect of CTFV on cell viability was investigated using two cell lines: 3T3-L1, and Raw264.7
by MTT assay. Each cell line was treated with 30, 50, 100, 200, 300, 500, 700, and 1000 µg/mL CTFV of
different concentrations for 48 h. Although CTFV treatment up to 200 µg/mL showed no effects on the
viability of non- or LPS-treated Raw264.7 (Figure 2A,B), and non- or LPS-treated 3T3-L1 (Figure 2C,D),
500µg CTFV decreased the viability of 3T3-L1 cell line.

3.3. Effects of CTFV on Cytokines Levels in Macrophages or Adipocytes

To investigate the efficacy of CTFV on the inflammatory response, we evaluated the level of
cytokines in LPS-stimulated RAW264.7 or 3T3-L1. The MTT assay revealed that 24 h treatment of
RAW264.7 cells with ≤200 µg/mL CTFV resulted in no toxicity, thus, ≤200 µg/mL CTFV was treated in
all assays. Protein levels of IL-6, TNF-α, and MCP-1 in a single-cell culture of macrophages RAW264.7
(Figure 3A–C) or adipocytes 3T3-L1 (Figure 4A–C) were remarkably increased by 6.1–14.4-fold, whereas
these levels were significantly decreased by CTFV treatment.
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Figure 4. Effect of CTFV on the inflammatory response in 3T3-L1 cells. The levels of IL-6 (A), TNF-α 
(B), MCP-1 (C), NO (D), and iNOS (E) in 3T3-L1 cells were measured by ELISA, the Griess reagent, 
and western blot analysis. Measurement of these expression or levels in non-treated cells was used as 
the control group. Each value is the mean ± SD of triplicate measurements. # p < 0.01, compared with 
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Figure 3. Effect of CTFV on the inflammatory response in RAW264.7 cells. The levels of IL-6 (A), TNF-α
(B), MCP-1 (C), NO (D), and iNOS (E) in RAW264.7 cells were measured by ELISA, the Griess reagent,
and western blot analysis. Measurement of these expression or levels in non-treated cells was used
as the control group. Each value is the mean ± SD of triplicate measurements. # p < 0.01, compared
with non-treated group. * p < 0.01, compared with only LPS-treated group. CTFV, C. tricuspidata
fruits vinegar; IL, interleukin; TNF, tumour necrosis factor; MCP, monocyte chemoattractant protein;
NO, nitric oxide; iNOS, inducible nitric oxide synthase; ELISA, enzyme-linked immunosorbent assay;
LPS, lipopolysaccharide.
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Figure 4. Effect of CTFV on the inflammatory response in 3T3-L1 cells. The levels of IL-6 (A),
TNF-α (B), MCP-1 (C), NO (D), and iNOS (E) in 3T3-L1 cells were measured by ELISA, the Griess
reagent, and western blot analysis. Measurement of these expression or levels in non-treated cells
was used as the control group. Each value is the mean ± SD of triplicate measurements. # p < 0.01,
compared with non-treated group. * p < 0.05 and ** p < 0.01, compared with only LPS-treated group.
CTFV, C. tricuspidata fruits vinegar; IL, interleukin; TNF, tumour necrosis factor; MCP, monocyte
chemoattractant protein; NO, nitric oxide; iNOS, inducible nitric oxide synthase; ELISA, enzyme-linked
immunosorbent assay; LPS, lipopolysaccharide.

3.4. Effects of CTFV on Nitrite, and iNOS Levels in Macrophages or Adipocytes

To further investigate the effects of CTFV in macrophage or adipocyte inflammation response, we
evaluated the NO metabolite, and iNOS protein expression. Noticeable increase of NO metabolite
(2.2–2.5-fold) and iNOS protein levels (2.5–36.3-fold) were observed in RAW264.7 (Figure 3D,E) and
3T3-L1 (Figure 4D,E), compared to non-treated control group. However, CTFV significantly reduced
NO metabolite and iNOS expression in both cell lines.

3.5. Effects of CTFV on Cytokines Levels in Co-Culture Medium

To elucidate the effects of CTFV on an inflammation response in a co-culture system with RAW264.7
and 3T3-L1, we evaluated the level of inflammatory cytokines using the contact method (Figure 5).
The levels of IL-6, TNF-α, and MCP-1 in the co-culture medium were increased by 4.35-, 1.38-, and
2.63-fold compared to separate culture of RAW264.7, and by 18.83-, 3.67-, and 2.31-fold compared to
separate culture of 3T3-L1. Moreover, IL-6, TNF-α, and MCP-1 levels were significantly higher in
LPS-stimulated RAW264.7 or 3T3-L1 than in non-treated control group by 14.6-, 5.3-, and 557.1-fold.
CTFV at 200 µg/mL significantly reduced the production of IL-6 (Figure 5A), TNF-α (Figure 5B),
and MCP-1 (Figure 5C).
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Figure 5. Effect of CTFV on the inflammatory response induced by 24 h co-culture using the contact
method. The levels of IL-6 (A), TNF-α (B), MCP-1 (C), NO (D), and iNOS (E) in the medium co-cultured
with RAW264.7 and 3T3-L1 were measured by ELISA, the Griess reagent, and western blot analysis.
Measurement of these expression or levels in the non-treated co-culture medium was used as the
control group. Each value is the mean ± SD of triplicate measurements. # p < 0.01, compared with
non-treated co-culture medium group. * p < 0.05 and ** p < 0.01, compared with only LPS-treated
co-culture medium group. CTFV, C. tricuspidata fruits vinegar; IL, interleukin; TNF, tumour necrosis
factor; MCP, monocyte chemoattractant protein; NO, nitric oxide; iNOS, inducible nitric oxide synthase;
ELISA, enzyme-linked immunosorbent assay; LPS, lipopolysaccharide.

3.6. Effects of CTFV on Nitrite, and iNOS Levels in Co-Culture Medium

To further elucidate the effects of CTFV on an inflammation response in a co-culture system with
both cell lines, we investigated NO metabolite, and iNOS protein expression using the contact method
in co-culture medium (Figure 5). The level of iNOS in the co-culture medium was increased by 4.59-fold
compared to separate culture of RAW264.7, and by 2.72-fold compared to separate culture of 3T3-L1.
While nitrite and iNOS protein concentrations were increased by 2.7- and 6.3-fold in LPS-stimulated
group compared to non-treated control group, treatment with CTFV significantly inhibited the levels
of nitrite (Figure 5D) and iNOS protein (Figure 5E) in co-culture medium.

4. Discussion

Obesity often causes chronic inflammation, and related studies have revealed that obesity,
low-intensity chronic inflammation, and insulin resistance are closely associated with each other [29,30].
Adipose tissues release various adipokines involved in energy homeostasis that interact with
macrophages and play a crucial role in the inflammatory response in adipose tissues. Recent studies
have focused on new approaches to treat chronic inflammation, obesity, and diabetes by mitigating
the inflammation induced by obesity and identifying the relationship between inflammation and
adipokines [31–33]. In obese conditions, the levels of adipokines secreted from adipocytes increase and
cause the infiltration of macrophages into adipocytes, leading to inflammation and increased insulin
resistance. Another factor involved in the accumulation of macrophages in the adipose tissues is the
management of the dead hypertrophic cells surrounded by adipose tissue macrophages (ATM) [34].
A recent clinical study also reported a link between body mass index (BMI) and the number of
macrophages in adipocytes [35]. TNF-α and IL-6 are pro-inflammatory cytokines that are synthesized
in white adipose tissues and their concentrations increase with an increase in lipid accumulation [36,37].
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MCP-1 is a chemotactic signaling molecule secreted by adipocytes that triggers the recruitment of
macrophages [38]. Macrophage infiltration into adipose tissue is closely related to obesity-induced
inflammation. Inflammatory intermediaries secreted by adipocytes promote the penetration of
immune cells and accelerate macrophage infiltration into the adipose tissues. Stimulated macrophages
produce pro-inflammatory cytokines, which upregulate the inflammatory response of obese adipose
tissues. The phenotype is shifted from anti-inflammatory M2 macrophages to pro-inflammatory M1
macrophages in obese adipose tissues [39]. The anti-inflammatory M2 macrophages are characterized
by the expression of arginase, which blocks the production of anti-inflammatory cytokines and
inducible nitric oxide synthase (iNOS) activity, whereas the pro-inflammatory M1 macrophages induce
the expression of iNOS, catalyzing the production of NO, and markedly increase the concentrations of
pro-inflammatory cytokines such as TNF-α and IL-6 [40]. iNOS expression regulates the infiltration
of inflammatory cells and the release of inflammatory cytokines; high levels of iNOS expression
disrupt lymphatic endothelial NOS (eNOS) expression through infiltration of macrophages, resulting
in decreased immunity [41–43].

Vinegar has been used since 300 BC as a food preservative and flavoring agent in Western, European,
and Asian countries. While vinegar was once used as an acidic seasoning, its usage has expanded to the
medical fields owing to its biological activities, which have been studied extensively. Vinegar contains
various bioactive ingredients, including vitamins, minerals, organic acids, carbohydrates, peptides,
and polyphenolics, which are beneficial for health [44–46]. In particular, fruit vinegars produced from
berries, pineapples, grapes, and apples have various polyphenols and flavonoids that are known to
possess biological properties such as anti-oxidant and anti-inflammatory effects [10,11,47]. Several
studies have investigated the anti-inflammatory effects of fruit vinegars, including fermented fig,
Ficus spp. (fig), pear, pomegranate, and apple vinegars [47–49].

A previous study established the conditions of the fermentation process of CTFV using acetic acid
isolated from traditional fermented food; this study primarily focused on the chemical properties of
vinegar, the discovery of bacterial strains from traditional foods, free radical scavenging, and sensory
evaluation assays [50]. Our study demonstrates the physicochemical properties of CFTV fruit vinegar
prepared using C. tricuspidata fruits, the detection of polyphenolic ingredients in CTFV, and the
anti-inflammatory effects of CTFV in a co-culture system comprising macrophages and adipocytes.
We demonstrated that the levels of secreted pro-inflammatory adipokines were elevated in the
RAW264.7 and 3T3-L1 cells. Moreover, we showed the efficacy of CTFV in reducing inflammation via
paracrine interactions between RAW264.7 and 3T3-L1 cells. We found that the levels of IL-6, MCP-1,
NO metabolite, and iNOS were higher in the co-culture medium with RAW264.7 and 3T3-L1 than
in those with single cultures (Figures 3–5), suggesting that direct cell-to-cell contact centrally causes
pro-inflammatory crosstalk between macrophages and adipocytes. The activation of the various factors
observed in the co-culture system with RAW264.7 and 3T3-L1 cells was consistent with the increasing
levels of NO, iNOS, TNF-α, IL-6, and MCP-1 reported in previous studies [27,51]. Among the factors
investigated, we found high expression of MCP-1 in the co-culture compared to that in the single
cell culture. In addition, a previous study showed that the increase in MCP-1 during co-culture was
primarily due to adipocytes, while that of TNF-α was primarily due to macrophages [7]. Interestingly,
CTFV treatment markedly reduced the levels of NO, iNOS, TNF-α, IL-6, and MCP-1 in the co-culture
medium, indicating that the inflammatory process, or the interaction between macrophages and
adipocytes, was attenuated by CTFV.

However, this study has certain drawbacks. The first drawback is that the form and efficacy of
polyphenols and organic acids from CTFV may be different from those derived from the metabolic
processes of animals and humans. Although the actions of polyphenols and organic acids, which
are the main components of CTFV, are expected to contribute primarily to the anti-inflammatory
efficacy, future experiments require comparative investigation of metabolites and safety analysis after
CTFV treatment. In addition, the practical in vitro and in vivo applicability of polyphenolic substances
isolated from CTFV is very low. Although polyphenolics undergo metabolism in liver and intestinal
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tissues by colon microbiota, most phytochemicals are not easily absorbed by the transcellular pathway
because of size restriction (<600 Da) [52]. It has been reported that apple polyphenolics indirectly affect
this pathway of cell signaling transduction by increasing the tight junction functionality [53], whereas
polyphenol aglycones and glucosides are assumed to be taken up by sodium-glucose linked transporter
(SGLT)-1 activation and passive diffusion [54,55]. After oral administration, certain polyphenols are
absorbed poorly and can be excreted quickly, while others are absorbed rapidly by the intestinal barrier
and reach the plasma in their original form. Consequently, the polyphenols reaching the target tissues
and the blood may differ from their original forms due to the actions of the gastrointestinal tract,
colonic microflora, and Phase I or Phase II reactions in the liver [56]. Therefore, understanding the
metabolism, absorption, and bioavailability of polyphenols is important to elucidate their mechanisms
or identify the final metabolites. The second drawback is concerning the reduction in stability of
CTFV treated cells under neutral and culture conditions (pH 7 and 37 ◦C). Several studies have
reported that polyphenolic substances in the cell culture medium are significantly degraded within
3 h in neutral buffer at 37 ◦C [57–60]. In particular, the concentrations of catechins and myricetin
are significantly reduced within 10 min in DMEM at 37 ◦C in 5% CO2. Under the same conditions,
quercetin, kaempferol, myricitrin, galangin, and flavonols are degraded within 3 h. It was reported
that the concentrations of catechins were reduced by up to 30% when incubated for 24 h under neutral
conditions. Therefore, the cell culture conditions (37 ◦C, pH 7, and treatment time of 24 h) in this study
can affect the degradation and auto-oxidation of polyphenols in CTFV. Further optimization of the
processing time and incubation conditions is required to elucidate the efficacy and stability of CTFV.

In conclusion, the present study revealed that CTFV produced from C. tricuspidata contains several
bioactive ingredients with anti-inflammatory effects, and inhibits inflammation stimulated by the
interaction of RAW264.7 and 3T3-L1 cells via suppressing the inflammatory biomarkers in a co-culture
system. These findings could provide the basis for an effective strategy to alleviate inflammation-related
disorders and develop functional food or dietary supplements.
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