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Supervised Machine-Learning Reveals That Old and
Obese People Achieve Low Dapsone Concentrations

RG Hall II1, JG Pasipanodya2, MA Swancutt3, C Meek1, R Leff1 and T Gumbo2,4*

The human species is becoming increasingly obese. Dapsone, which is extensively used across the globe for dermatological
disorders, arachnid bites, and for treatment of several bacterial, fungal, and parasitic diseases, could be affected by obesity.
We performed a clinical experiment, using optimal design, in volunteers weighing 44–150 kg, to identify the effect of obesity
on dapsone pharmacokinetic parameters based on maximum-likelihood solution via the expectation-maximization algorithm.
Artificial intelligence-based multivariate adaptive regression splines were used for covariate selection, and identified weight
and/or age as predictors of absorption, systemic clearance, and volume of distribution. These relationships occurred only
between certain patient weight and age ranges, delimited by multiple hinges and regions of discontinuity, not identified by
standard pharmacometric approaches. Older and obese people have lower drug concentrations after standard dosing, but
with complex patterns. Given that efficacy is concentration-dependent, optimal dapsone doses need to be personalized for
obese patients.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 552–559; doi:10.1002/psp4.12208; published online 13 July 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� The pharmacokinetics of dapsone have not been char-

acterized in overweight or obese people, a problem since

the world population has become increasingly obese.
WHAT QUESTION DOES THIS STUDY ADDRESS?
� This study characterizes the population pharmacoki-

netics, including covariate effects, of dapsone in over-

weight and obese adults from the United States.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� Weight and age were identified as having an impact

on dapsone pharmacokinetics, based on the use of

Multivariate adaptive regression splines (MARS), an

artificial intelligence algorithm that enables delineation
of nonlinear relationships and high-order interactions.
The effect was nonlinear and discontinuous at some
values.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� MARS allows a simpler approach to identify pharma-
cokinetic covariates and their nonlinear interactions
using smaller sample sizes, compared to standard
approaches. The complex relationships identified for
dapsone suggest the need to redefine doses in obese
and older patients.

Dapsone [4–40-diaminodiphenyl sulphone] was first synthe-
sized by Fromm and Wittman in 1908.1 It is one of the
most commonly used pharmacological compounds on the

globe, given its mode of activity as a competitive inhibitor of
para-amino benzoic acid in the evolutionarily conserved
folate synthesis pathway.1 This mechanism gives it a broad
spectrum of activity against Mycobacterium leprae, fungi,

and parasites of global health significance such as Plasmo-
dium falciparum and Toxoplasma gondii. In addition, dap-
sone inhibits neutrophil activity, and is prescribed for this
immunomodulatory role in several dermatological disorders,

as well as brown recluse spider bite wounds.1 Given the
important role of the relationship between drug concentra-
tions achieved in patients and therapy failure as well as
acquired drug resistance and other pharmacodynamics out-

comes, it is imperative to identify the factors responsible for
dapsone pharmacokinetic variability.2–6 One factor that has

emerged as an important pharmacokinetic covariate for
many antiinfective agents is patient weight; specifically,
weight increases beyond 66.3 kg.7–10 This pharmacokinetic
covariate is a concern since the human species is becom-
ing obese, and most adults have weight above 66.3 kg.
High-level obesity is now encountered across the globe,
with an estimated 2 billion people now considered obese,
who also live in the very countries where dapsone is used
extensively.11–14

Obesity is defined using the interaction parameter, body
mass index (BMI), with weight (kg) and height in meters
(m) interacting. Overweight is a BMI �25 kg/m2 and obesity
a BMI �30 kg/m2. In the case of dapsone, the impact of
weight on drug concentrations has been assumed to be lin-
ear through all ranges, such that both systemic clearance
and volume of distribution have been considered to
increase linearly for each 1 kg increase above body mass
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(colloquial term “weight”), not BMI.15,16 However, based on
some of our prior studies, such linear relationships in bio-
logic systems over a wide range of values should be sus-
pect.8,9,17–20 Moreover, the effect of weight on
pharmacokinetics in the ranges of up to 150 kg, now
increasingly encountered in patients, has hitherto not been
investigated for dapsone. Prior studies have been of rela-
tively underweight patients and mixtures of babies and
adults.15,16,21 Here, we optimized a clinical experimental
study design to more precisely identify the effects of obesity
on dapsone pharmacokinetic parameters.

Using the example of trimethoprim-sulfamethoxazole, we

found that if experimental design is optimized and sampling

times are optimized, machine-learning algorithms such as

multivariate adaptive regression splines (MARS) can

robustly identify covariates of pharmacokinetic parameters

with as few as 36 patients.22 Here we utilized the same

strategy, design, and sample size for dapsone. We recruited

subjects of different weights by stratifying by BMI groups

and gender in the study design, so that enough subjects of

different weight ranges of up to 150 kg could be studied.

Second, we performed intensive pharmacokinetic sampling

at eight timepoints in each patient over 72 h, to allow greater

precision and minimum bias in identifying pharmacokinetic

parameter estimates. Third, we utilized MARS to simulta-

neously identify linear and nonlinear interactions between

potential covariates and pharmacokinetic parameters. All

potential covariates were included in toto for a single imple-

mentation of the model, without presupposing the nature of

any interactions. MARS, introduced by Jerome Freidman in

1991, is a machine-learning method that does not have line-

arity assumptions and does not need the data to follow a

specific distribution.23–25

METHODS
Regulatory approval and ethics
The study was submitted and approved by Institutional Review

Boards (IRBs) of the University of Texas Southwestern Medical

Center (#032011-121) and the Texas Tech University Health

Sciences Center (#A10-3591). The study was also registered

on ClinicalTrials.gov (NCT01165840). All participants provided

informed written consent prior to voluntary participation.

Recruitment
We recruited three groups of 12 people (six men, six

women) based on BMI (normal weight, <25 kg/m2; over-

weight and class I/II obesity, 25–40 kg/m2; class III obesity,

>40 kg/m2) who were �18 years old. Participants were

recruited from July 20th 2010 to May 2nd, 2012. Participants

were ineligible if they 1) were pregnant or nursing, 2) had a

medical contraindication or history of allergy to dapsone,

sulfones, or sulfonamides, 3) had abnormal liver function

tests (transaminases >10 times upper limit of normal, alka-

line phosphatase >5 times upper limit of normal, or a total

bilirubin >5 times upper limit of normal), or had glucose-6-

phosphate dehydrogenase deficiency. With the same

design, a sample size of 36 has been shown to be ade-

quate in identifying the role of weight as pharmacokinetic

covariate in the past.8–10,17,22

Study procedures
Participants were first screened in an outpatient clinic,

where they had a medical history obtained and a physical

examination performed. An informed consent was then

obtained from participants who fulfilled the study criteria,

and blood drawn for comprehensive metabolic profile, com-

plete blood count, and glucose-6-phosphate dehydrogenase

deficiency. The participants were then admitted to the Uni-

versity of Texas Southwestern Clinical Trials and Research

Center (CTRC). Participants received a single oral dapsone

dose of 100 mg under directly observed therapy. Vitals

signs were examined and recorded 0.5, 1, 2, and 24 h after

the dapsone administration. Blood draws (10 mL each) to

determine dapsone concentrations were obtained at the fol-

lowing times: 0 h (predose), 1, 2, 4, 8, 16, and 24 h follow-

ing dapsone administration, timepoints and number of

samples identified in D-optimality in ADAPT (see below).

Patients were discharged from the CTRC after 24 h. Two

additional blood draws were performed 48 and 72 h post-

dose in the CTRC outpatient clinic, for measurement of

dapsone concentration as well as for complete blood count

and comprehensive metabolic profile. At each timepoint,

blood samples were centrifuged for plasma separation with

plasma stored at 2808C for transport to the Center for

Pharmacology and Experimental Therapeutics to measure

dapsone concentrations.
Adverse events were ascertained through patient inter-

view and review of laboratory data. The IRB was notified of

serious adverse events within 24 h. Data safety monitoring

meetings included study coordinators and investigators

(R.G.H., M.A.S., T.G.). These meetings occurred after the

enrollment of 12 participants (September 2010), at the time

of continuing review (April 2011, April 2012) and study

enrollment closure (May 2012).

Drug concentration assay
Plasma samples were quantified for dapsone content using a

validated, liquid chromatography/tandem mass spectrometry

(LC-MS/MS) analytical method that included a Shimadzu

(Columbia, MD) liquid chromatograph and AB Sciex (Foster

City, CA) 5500 QTRAP tandem mass spectrometer.

Unknown plasma samples (100 lL) were transferred into a

96-well plate with glass inserts to which 100 lL sulfamethi-

zole (internal standard, IS) was added. The plate was

removed and vortex mixed for 5 min. Then 500 lL of 80:20

ACN:MeOH was transferred to each insert, after which the

samples were vortex mixed for 10 min then centrifuged for

10 min, 48C at 3,300g. Next, 500 lL of the supernatant was

transferred to a well plate with clean inserts and evaporated

to dryness using a Labconco Centrivap. The dried samples

were reconstituted with 100 lL of 50:50 MeOH:DIW and ana-

lyzed by reverse phase LC-MS/MS. Dapsone and IS were

quantitated using positive electrospray ionization (1ESI)

combined with multiple reaction monitoring (MRM) for the

respective precursor!product ion combinations of

249.0!155.9 m/z for dapsone and 271.0!155.9 m/z for IS.

The standard curve was linear (r2 5 0.9942) and ranged from

5 ng/mL to 1,800 ng/mL.
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Pharmacokinetic modeling
In all, 280 dapsone concentrations were comodeled using
the ADAPT 5 program of D’Argenio et al.26 Steps utilized
have been detailed in the past.3,8–10,17,22 Briefly, initial phar-
macokinetic parameters were estimated using the standard
two-stage approach, for one-, two-, and three-compartment
models, with and without lag, and with first-order input and
elimination. Estimates were then used for further analysis
of the same compartment models using the maximum-
likelihood solution via the expectation-maximization (MLEM)
algorithm. The best compartment model was chosen based
on Akaike information criteria, Bayesian information criteria
(which penalizes for complexity), negative log-likelihoods,
and parsimony, as described in our prior studies.2–4,7–10,17,22

Nonlinear system analyses to identify covariates
MARS was used to examine the nonlinear behavior of phar-
macokinetic factors and their interactions with potential
covariates. Potential covariates examined included anthro-
pometric measures such as weight and height, demo-
graphic factors such as age and self-identified “racial”
grouping, clinical factors, and laboratory test values for
comprehensive metabolic profile and complete blood count.
The potential covariates were also examined for linear and
nonlinear interactions between themselves. All these varia-
bles were used to independently predict systemic clearance,
apparent volume of distribution, and absorption constant for
each participant who had been identified using MLEM.
MARS uses basis functions (BFs) to examine candidates for
both main and interaction effects, which gives MARS flexible
and adaptive capabilities to fit nonlinear and linear relation-
ships and interaction components simultaneously. Individual
estimates for the pharmacokinetic parameters were incorpo-
rated in the MARS algorithm. Overfitting procedures were
used to grow large models with up to 15 BFs and up to two-
way interactions between them, which were then pruned
back using generalized cross-validation (GCV) function dur-
ing the backward pass. Each variable was assigned a mea-
sure of predictive importance by MARS, entailing both
marginal and interaction effects involving this variable.
Briefly, in view of our small sample size (35 patients), MARS
built a sequence of models using all available data for learn-
ing purposes, after which the optimal model was determined
based on GCV, which penalized model size and degrees of
freedom parameter. We set the degree of freedom at 3 and
also used na€ıve R-squared values to assess goodness and
compare models. Change in both R2 and mean squared
error (MSE) values were used to examine for overfit in train-
ing and test samples. Overfit thresholds were identified by
large difference between training MSE and test MSE, as
well as flattening or U-curvature in test MSE with increase in
model complexity. SALFORD predictive modeling software
(v. 7, San Diego, CA) was used to run MARS models.

MARS is designed for situations in which the number of
variables of interest (p) is relatively large when compared
to the number of observations (n): colloquially defined as
p�n.25,27,28 MARS is a nonparametric modeling technique
that builds piecewise regression models using BFs and
then ranks the most influential predictors in each model
using variance-bias tradeoffs. BF are data-driven and

locally defined (not on the global data), such that the rela-

tionships between the dependent variable and the indepen-

dent variables, i.e., predictors, is a set of discontinuous

regression lines, each with its own slope, but joint end-to-end

via knots or hinges. These knots represent local points in the

data where the relationships or slope changes, thereby

reflecting nonlinear patterns within the data. The output for

MARS are given as BF to account for their nonlinear behavior

of potential predictors (i.e., covariates) with the dependent

variable, as well as the tendency to interact among them-

selves. The BFs take on several forms, which help explain

what they mean. First, a BF can be a simple hinge function

that takes the form “max (0, covariate – constant)” which

means that the value of the expression is that of covariate

(e.g., weight) minus a constant for all values of covariate-

constant less than zero (i.e., for all values of covariate < con-

stant), otherwise it is zero value. The constant is at the hinge.

Similar to its predecessor, a classification and regression

tree that is commonly used for categorical dependent varia-

bles, MARS is used for a continuous dependent variable but

also transforms data, groups, and then ranks predictors

based on information theory. Thus, MARS can also be used

for classification purposes and detection of high-order inter-

actions.28 Since MARS is a forward stepping spline regres-

sion model, it takes the functional form:

f xð Þ 5 b01Rbmhmx (1)

where hm(x) is a function of the BF.25 Lastly, MARS uses a

generalized adjusted penalty and generalized cross-

validation to select the best set of BF to include in the mod-

els. The net effect is to produce smooth curves and surfaces

such that residuals sum of squares are minimized and then

demonstrating up to three-way interactions between the

dependent variable and predictors in 3D plots.

Statistical analysis
The D’Agostino–Pearson omnibus normality test was used to

check whether data were normally distributed. Comparison

of clinical and demographic factors between groups, shown

in Table 1, was made using either the Student’s t-test or

Kruskal–Wallis test, while the Spearman rank correlation

was used to demonstrate correlation between weight and

age in all patients and then separately in males and females.

Some continuous variables that were found to be important

predictors in MARS were converted into categorical variables

based on the BF obtained and then comparison between

groups including gender made accordingly. Fisher’s exact

test or the v2 test was used to compare proportions between

groups, when appropriate. All tests were two-sided; statistical

significance was set at 0.05 and analyses were performed

using STATA (v. 12, College Station, TX) and Prism (Graph-

Pad v. 6.0, La Jolla, CA) software packages.

RESULTS

We recruited 35 subjects; 24 (69%) were overweight or

obese. Ten of these 24 people (42%) had metabolic syn-

drome. The distribution of BMI and weight are shown in

Obese People Have Low Dapsone Concentrations
Hall et al.

554

CPT: Pharmacometrics & Systems Pharmacology



Figure 1; these were not normally distributed, as demon-

strated by a P < 0.05 on D’Agostino K2 normality test, ful-

filling our experimental design intent. On the other hand,

height (in meters), utilized in calculating the BMI metric,

was normally distributed. Table 1 shows the demographic

characteristics of study participants; 51% were women and

49% men. There was no significant difference in weight,

BMI, or the prevalence of comorbid conditions between

men and women.
The concentration–time profiles in all subjects are shown

in Figure 2a. The highest to lowest peak concentrations

had a ratio of �10; all patients had received the same

100 mg dose of dapsone, illustrating the adage that a

drug’s dose is a poor surrogate for drug concentration.

MLEM revealed results for model selection shown in Sup-

plementary Table S1. Based on Akaike information crite-

ria, Bayesian information criteria, and parsimony, a one-

compartment model was found to best describe dapsone

pharmacokinetics. Observed vs. predicted concentrations

for the 280 serum concentrations are shown in Figure 2b

for the one-compartment model. The base model parame-

ters mean value, percent relative standard error (RSE), and

standard deviation as a percent covariance were 1.85 L/h

(37.3%) and 37.6% for systemic clearance, 64.0 L (23.4%)

and 50.5% for volume, and 2.57/hr (102%) and 94.7% for

absorption constant, respectively. The half-life 6 standard

deviation was 25.2 6 7.7 h, similar to observations in

patients treated for a variety of infectious diseases.1,15,21

Implementation of MARS identified the results shown in

Table 2. The table shows that patient weight, age, and

blood urea nitrogen (BUN) were identified and ranked as

important covariates. Table 2 also shows the final MARS

model equations describing the effects of the three covari-

ates on each of three one-compartment model pharmacoki-

netic parameters. The most important predictor in MARS

model in Table 2 was set at 100% and the predictors

remaining in the model after backward elimination weighed

relative to the primary or most important predictor. Multiple

variables that scored at 100% mean that they were equally

important. Thus, in Table 2, for the absorption constant

(Ka), BUN is the primary predictor but weight contributes to

the variance of dapsone Ka by 44% relative to the BUN.

With regard to systemic clearance, patient’s weight and age

equally contributed to the clearance variance. On the other

hand, for volume, only patient weight contributes to the

variability.
In the final equations (numbers 2–4) shown in Table 2,

the covariates are given as BFs. Figure 3 shows the

Figure 1 Distribution of weight, BMI, and height in study participants. We tested the demographic factors that are part of the definition
of overweight and obesity status for normality using the D’Agostino K2 normality test. (a) BMI was not normally distributed, based on
P < 0.05. This reflected that we had succeeded in the experimental study design of recruiting participants whose BMIs were equally
spread out between the 40 and 150 kg range. (b) Similarly, weight was not normally distributed, based on P 5 0.007. (c) However,
height, which is part of the definition of BMI, was found to be normally distributed.

Table 1 Demographic and clinical characteristics of 35 study participantsa

Demographic variable All Female Male P-value

Study participants 35 (100) 18 (51) 17 (49)

Self-identified race n (%)

White 29 (83) 15 (83) 14 (82) 0.94

Non-white 6 (17) 3 (17) 3 (18)

Co-morbid conditions n (%) 24 (69) 12 (67) 12 (71) 0.80

Metabolic syndrome n (%) 10 (29)

Overweight or obese (BMI>525) n (%) 24 (69) 12 (67) 12 (71) 0.80

Age (median [range]) years 36 (21–77) 31 (21–57) 43 (23–77) 0.10

Weight (median [range]) 85.1 (70.8–130.5) 79.2 (58–112.9) 89.2 (74.8–138.4) 0.18

BMI (median [range]) 30.2 (23.6–43.9) 30.05 (22.9–43.7) 30.2 (24.4–43.9 0.70

Serum creatine (median [range]) 0.83 (0.68–0.99) 0.71 (0.63–0.76) 0.99 (0.9–1.06) <0.001

Blood urea nitrogen (median [range]) mg/dl 13.0 (7–28) 12 (9–20) 13 (7–28) 0.07

aFigures in parenthesis denote n 5 absolute number, () are percent, unless stated otherwise. Laboratory reference values: serum creatinine: men, 0.7–1.3 mg/

dL; women 0.6–1.1 mg/dL; blood urea nitrogen: 6–20mg/dL.
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relationship between weight and volume of distribution,

reflecting BF8 [max(0, Weight – 69.8)] and BF10 [max (0,
Weight – 74.8)]. The figure shows multiple hinges delimiting

different slopes in the relationship, a perfect example the

nonlinearity. A positive coefficient for a BF means that

higher values of the covariate leads to higher values for the

pharmacokinetic parameter, as shown for example in Fig-

ure 4. However, a negative coefficient means two things:

either there is a reduction in the slope between the covari-

ate and the dependent variable or there is a negative corre-

lation between covariate and dependent variable

(pharmacokinetic parameter).
The second form of a BF is shown in Figure 4, which

depicts BF3 in Table 2 for absorption constant (Ka),

whereby the BF is a product of hinge functions or of hinge

functions and a BF. BF3 is the product of a weight vs. Ka

hinge function (max (0, 63.7 – Weight)) and BF1 (i.e., max

(0, BUN – 7)). This BF is shown in the 3D covariate interac-

tion plot of Figure 4. The expressions are conditional on

the hinges from the parent BF. The interaction detection

and selection of predictors is further shown in Table 3. The

r2 reported in Table 3 were obtained after general cross-

validation and thus give both reliability of the parameter

estimates and robustness of the final model. As shown,

weight explained 64% of the variance in dapsone volume.
In bivariate analysis, the median (interquartile) dapsone

volume was significantly lower in women (66.43L; 39.89,

84.77) than men (86.60L; 71.7, 92.45), P 5 0.027. However,

this gender difference was lost in multivariate analyses of

dapsone volume and therefore is not shown in the BF

shown in Table 3. In addition, gender differences were not

revealed when clearance and absorption constant values

were examined in bivariate analyses. Median (interquartile)

clearance was 1.92 (1.59, 2.26) L/h in females and 2.07

(1.95, 2.14) L/h in males.

DISCUSSION

Artificial intelligence algorithms, especially machine learn-

ing, are being increasingly employed to examine biological

data.29–39 We started utilizing these for pharmacometric

analyses almost 10 years ago.3,7,10 One of the algorithms,

MARS, was used here to provide an agnostic (i.e., non-

prespecified) identification of covariates responsible for

interindividual variability of dapsone absorption, volume,

Figure 2 Concentration–time profile of dapsone in 35 participants. (a) All patients received the same dose of 100 mg a day. However,
the concentrations achieved at each timepoint varied widely, so that the peak concentrations varied 1,000% between the lowest and
highest concentrations. The median is shown, and illustrates why measures of central tendency such as median and mean 6 standard
deviation (which was 1.63 6 1.03 mg/L) are poor descriptors of drug concentration estimates and their variability. Indeed, at no time-
point (except 24 h timepoint; P 5 0.08) were the concentrations even normally distributed based on the D’Agostino and Pearson omni-
bus normality test. (b) Observed vs. predicted dapsone concentrations for a one-compartment model, showing an r2 5 0.91. The slope
was 0.90 6 0.02, and thus differed slightly from 1.00.

Table 2 Basis functions used to model the population pharmacokinetics of dapsone in adults.

Outcome (Y)

Variable importance

Basis functions definitions Model equations*Variable Rank

Ka (hr21) BUN (mg/dL) 100% BF1 5 max (0, BUN – 7); Y5 3.967 – 0.062*BF3 1 0.162*BF5 (2)

Weight 44% BF3 5 max (0, 63.7 – Weight)*BF1;

BF5 5 max (0, 74.8 – Weight)

Clearance (L/hr) Weight 100% BF2 5 max (0, 77.2 – Weight); Y 5 2.048 – 0.002BF3 – 0.005BF4 (3)

Age 100% BF3 5 max (0, Age – 27)*BF2;

BF4 5 max (0, 27 – Age)*BF2;

Volume (L) Weight 100% BF8 5 (0, Weight – 69.8); Y 5 36.648 1 8.894BF8 – 8.818BF10 (4)

BF10 5 max (0, Weight – 74.8);

BUN, blood urea nitrogen levels in mg/dl on initial blood sampling; weight, patient’s weight in kg; variable importance denotes the weighted value of each vari-

able in predicting the given dapsone pharmacokinetic parameter; the model equation is given by linear combination of basis functions. Up to a maximum of 15

basis functions were derived from the data allowing for a minimum of 3 (�10%) of observations per knots and a maximum of 2nd order interactions; then a

backward step elimination selection process was used in the regression with moderate penalty for model complexity.
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and clearance, as well as their slopes. MARS evaluates

both linear and nonlinear relationships simultaneously, as

well as high-order interactions of covariates among them-

selves and with primary pharmacokinetic parameters. In

addition, it allows for regions where the relationships are

discontinuous, or do not exist. Thus, MARS is able to iden-

tify multiple hinges delineating different slopes of the rela-

tionship between pharmacokinetic parameters and covariates

for monotonic and nonmonotonic functions. Moreover, the

main goal of machine-learning methods such as MARS is

predictive accuracy, and its use of cross-validation techni-

ques is highly reproducible in independent samples.25 We

propose its routine use as a simplification of methods to

identify significant covariates in general population pharma-

cokinetic analyses in a nonbiased and nonlinear fashion.

This approach has important implications for the design of

early phase clinical studies. Sample size, and thus risk of

adverse events to patients, can be limited by application of

optimal experimental design strategies, and the application

of methods such as MARS for covariate selection. Further

precision in estimating pharmacokinetic parameters would

come from applying optimal sampling theory, which mini-

mizes the number of samples to be drawn while improving

accuracy, which could also reduce the patient sample size.
Using this approach, we found weight to be a significant

covariate for dapsone absorption, volume, and systemic

clearance. In the past, the role of weight has been exam-

ined assuming specific fractal geometry considerations for

several antiinfective agents.8–10,17–20,22 Our current

approach with MARS bypasses the need to fix particular

power laws with weight, by virtue of the fact that the final

MARS equation derives its own coefficients, similar to let-

ting exponents in fractal geometry “float.” In other words,

we did not fit any specific power law. Thus, it was our aim

to be able to interpret both the model coefficients for infer-

ence and for predictions. Up to now, the understanding had

been that dapsone systemic clearance increases linearly by

0.03 L/hr and volume by 0.7 L for each kg increase above

62 kg.15 Here we show that there were multiple hinges for

the relationship between weight and systemic clearance

(77.2 kg) and with volume (69.8 kg and 74.8 kg), which

relationships were modified (i.e., interacted) by different

hinges of age; the effect of weight on absorption constant

was conditional on BUN. Interestingly, the weight hinges

are all within close range of the value of 66.3 kg; the rea-

sons are unclear. Thus, weight is an important covariate of

primary dapsone pharmacokinetic parameters, but the rela-

tionships are complex and modified by the effect of age

and renal function. To optimally treat obese patients with

dapsone, therefore, we will need to personalize dosing rec-

ommendations by the patient’s weight in order to account

for their unique ability to absorb, distribute, metabolize, and

eliminate this compound. One approach, which utilizes

engineering simulations to achieve that, has been detailed

before with other antiinfective agents.40,41

Dapsone systemic clearance had a hinge at the age of

27 years. This illustrates one of the advantages of the

agnostic approach we took. First, BF3 and BF4 interact

(modify) the effect of weight and are shown as multiplied

with BF2. Second, BF3 and BF4 are termed mirror BFs:

there is a reversal of slope below the hinge age of 27 years

compared to above, and are thus nonlinear. Third, the

hinge age of 27 years differs from the usual, and somewhat

arbitrary, categorization of children as below 18 years old,

and old age as beginning in the 60s. In pharmacokinetic

terms, MARS avoids an arbitrary “typical” value for covari-

ate, and instead identifies it from the data. Thus, one of the

advantages of MARS is identification of such threshold val-

ues for covariates, without prior assumptions based on

social and political categorization. Thus, the age at which a

pharmacokinetic parameter changes is driven by the data

for that pharmaceutical compound for that patient group,

without the need for prior assumptions that categorize

patients into convenient but arbitrary age groups.
Our study has strength and several limitations. The

machine-learning algorithms we used do not infer causality

or mechanism. However, when combined with an experi-

mental design, the approach gives insights into important

nonlinear interactions that can be explored further as

Figure 3 Depiction of basis functions of weight vs. volume of dis-
tribution. The figure illustrates two basis functions, BF8 and
BF10, in Table 3. Depicted are hinges at patient weights of
�70 kg and 75 kg, illustrating different slopes for the relationship
between weight and volume.

Figure 4 The joint contribution of blood urea nitrogen and
weight to dapsone absorption constant. The 3D plot demon-
strates the interaction of hinge function and basis function for
interaction of weight (WT) and blood urea nitrogen (BUN) to
affect the absorption constant (Ka).
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primary hypotheses. In this prospective clinical experiment,

by design we recruited equal numbers of patients into differ-

ent weight bands (as opposed to recruitment of all comers),

deliberately recruited equal numbers for either gender, and

the pharmacokinetic sample number and sampling times

were identified using optimal sampling theory and D-

optimality in ADAPT. Another limitation was that in our study

design, a single dapsone dose was administered to persons

without active disease. The pharmacokinetic parameters of

dapsone could be altered by the disease process it is admin-

istered to treat, by disease severity, and at steady state.

However, the pharmacokinetic parameter estimates in our

base model are similar to those observed by other investi-

gators using multiple doses and/or evaluating patients with

active disease.15,16 We also did not evaluate routes of dispo-

sition or the effect of dapsone metabolites, so that we did

not evaluate the physiological reasons why obese patients

have higher drug metabolism.
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