
RESEARCH ARTICLE

Connecting single-cell properties to collective

behavior in multiple wild isolates of the

Enterobacter cloacae complex

Sean Lim1☯, Xiaokan Guo1☯, James Q. BoedickerID
1,2*

1 Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United

States of America, 2 Department of Biological Sciences, University of Southern California, Los Angeles,

California, United States of America

☯ These authors contributed equally to this work.

* boedicke@usc.edu

Abstract

Some strains of motile bacteria self-organize to form spatial patterns of high and low cell

density over length scales that can be observed by eye. One such collective behavior is the

formation in semisolid agar media of a high cell density swarm band. We isolated 7 wild

strains of the Enterobacter cloacae complex capable of forming this band and found its prop-

agation speed can vary 2.5 fold across strains. To connect such variability in collective motil-

ity to strain properties, each strain’s single-cell motility and exponential growth rates were

measured. The band speed did not significantly correlate with any individual strain property;

however, a multilinear analysis revealed that the band speed was set by a combination of

the run speed and tumbling frequency. Comparison of variability in closely-related wild iso-

lates has the potential to reveal how changes in single-cell properties influence the collective

behavior of populations.

Introduction

Linking collective behaviors of bacterial populations to the rules followed by constituent cells

is an important challenge in biology [1–3]. An intriguing manifestation of collective behavior

exhibited by some motile species is the formation of a “swarm band,” a conspicuous grouping

of cells into a migrating region of high cell density [4, 5]. In either semisolid or liquid media,

the band forms and propagates as a result of the self-organization of cells that dynamically

respond to gradients in chemoattractants or changes in cellular energy levels [6–11]. Many

studies on the mechanisms of band formation also attribute the band’s behavior, a macro-

scopic property, to the motility dynamics of single cells [4, 8, 12]. Several studies have exam-

ined how individual motion of cells relates to properties of the collective [13, 14]. However,

there have been limited experimental studies investigating differences in collective behavior

between closely related strains of bacteria [15].

Genetic variations between strains have been previously shown to impact macroscopic

behavior by acting on several motility subsystems [16, 17]. To move, bacteria rely on a series of
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“runs” (unidirectional swimming) and “tumbles” (sharp reorientations) to translocate them-

selves in space using helical, whip-like structures called flagella [12, 18, 19]. Food consumption

and signal production generate molecular gradients in environments that were initially uni-

form. Cells detect these gradients and perform a biased random walk in the direction of a

gradient [20]. In this way, cell movement and activity potentially drive populations to chemo-

tactically self-organize in space [9, 21]. Thus, natural genetic variation among wild-type strains

in their growing and swimming faculties may result in varying degrees of macroscopic migra-

tory behavior. A recent study by Fu, X., Kato, S. et al. has shown variability in tumbling bias

within genetically identical population can result in distinct migration speeds [22]. However,

studies are often limited to single species in Enterobactericae, such as Escherichia coli or Salmo-
nella typhimurium, for which most experiments and theoretical models on collective motility

behavior have been performed for [5, 8, 23–27]. Examination of natural, subtle variation in

both collective and single-cell properties should yield new insights as to how these two scales

of behavior are interrelated.

Here, we examined self-organization manifesting itself in the band formation of wild iso-

lates of another member of the Enterobactericae family. By screening for wild coliform bacteria

in freshwater samples, we identified 7 strains of bacteria belonging to the Enterobacter cloacae
complex (Ecc) that exhibited self-organized, collective migration. Each strain formed a band

several hundred microns in width composed of a dense concentration of swimming cells on

nutrient-supplemented semisolid agar [5]. Enterobacter cloacae are rod-shaped, facultative

anaerobic bacteria belonging to the coliform group [28]. Strains of the Ecc are often implicated

in infectious diseases in agriculture and healthcare settings [29–32]. Across wild strains, we

observe a diversity of band propagation speeds, ranging from 2 mm/hr to 5 mm/hr. Due to the

natural variability of band propagation speeds, these wild strains were an ideal system to exam-

ine how variability in collective behavior stems from differences in single-cell behavior. Ecc

strains, being a non-laboratory model strain, also offer the opportunity to test whether our

understanding and models of bacterial collective migration can be extended to bacteria beyond

Escherichia coli. By characterizing each strain’s run-and-tumble behavior and growth rates, we

identify a range of individual properties underlying the collective motion. These strains were

perturbed by the exclusion of a single amino acid from the migration media to observe the

change in both collective and single-cell behaviors. Surprisingly, we found a heterogeneous

response, with some strains reducing their band speeds more than others. Together, the analy-

sis of multiple strains under these two conditions revealed run speeds and tumbling frequency

together set the speed of the swarm band.

Results

Enterobacter wild isolates form swarm bands of varying propagation speeds

Traveling waves of high cell density, swarm bands, have been observed in other members of

the Enterobactericiae family such as Salmonella typhimurium and E. coli [5, 23, 26] (see Fig A

in S1 File for growth curves). To compare formation of swarm bands in closely related strains,

we isolated a variety of bacteria strains from freshwater sources. To select strains of the Entero-
bactericiae family, we utilized HardyChrom™ ECC selection plates to collect multiple strains of

the Enterobacter cloacae complex from the wild. Each isolate was screened for band formation

and the 16S rRNA region was sequenced.

Following previous studies, we inoculate 10μL of bacteria culture grown overnight onto

migration media, an M9 Minimal Salts-based semisolid agar (0.26%) [5, 23, 26]. The agar con-

centration of our media is slightly lower than the minimum concentration (0.3%) that required

for surface swarming motility of bacteria [33]. Agar media at 0.26% is a porous medium whose
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matrix presents cells with obstacles for movement [8]. We observe bacterial migration over 2

days at 25˚C using a custom setup (Fig B panel A in S1 File). Before migration commences, the

cells grow into a dense colony at the point of inoculation (Fig 1A, S1 Movie). About 12–18

hours after inoculation, the swarm band coalesces at the center of the colony and begins to

radiate outward as a ring [5]. The ring is visible by eye and can be tracked easily without mag-

nification through time-lapse imaging (Fig B panel B in S1 File). Starting out slowly, the ring

then attains a near-constant propagation speed held over the next 1–2 days (Fig 1B). The band

maintains its shape until it has completely propagated to the other side of the well. Our custom

Fig 1. Propagation of the bacterial swarm band formed by strains of the Enterobacter cloacae complex in

semisolid (0.26% agar) migration media. (A) The bacterial swarm band begins at the inoculation point (as denoted

by the star) and travels along the channel. See also S1 Movie. (B) A representative position vs. time plot of the band

from 3 different Enterobacter strains. The band speeds are nearly constant and differ from strain to strain. (C) Band

speeds of each strain represented as mean ± SEM (n�5 independent experiments). See also Fig B panel C in S1 File.

https://doi.org/10.1371/journal.pone.0214719.g001
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setup allowed for rapid simultaneous quantification of the migration patterns of several bacte-

rial strains (Fig B panel A in S1 File).

We turned our attention to assess the variation of band speeds in wild Enterobacter. To

compute average velocity for a specific strain, band positions were collected every 30 minutes

using manual tracking starting 1.5 cm away from the inoculation point. A linear fit gave the

band velocities, and in replicate experiments, the band speed was reproducible within about 1

mm/hr (Fig B panel C). For the several isolates compared, the average of the band speeds ran-

ged on average from 2 mm/hr to 5 mm/hr, which is on the order of 1 cell length per second

(Fig 1C). Such variation between strains was the motivation for us to subsequently investigate

the motility and growth of each strain and their relationship to band speed.

Band Speed is not correlated with any individual strain property

To explore the correlations between the observed variation in macroscopic band speed and

several strain properties, we analyzed both single-cell motility and the growth rate of each

strain. For motility, we used time-lapse microscopy on cells in a microfluidic chamber

(C-Chip DHC-S02-2, INCYTO) where we recorded the run-and-tumble behavior of each

strain. Microfluidic devices with thin chambers have previously been used to capture the

motility of cells by constraining cell motion to a plane and to prevent net movement of fluid,

allowing for longer observation times [17, 34]. The cells, after a 100-fold dilution from over-

night culture, were grown at 25˚C to early exponential phase in M9 medium. Cells were

diluted to a density which gives approximately 300 cells/mm2 in the chip and then injected

into the chip’s microchamber with a depth of 20 μm. 5-minute movies of the cells were

recorded in phase contrast illumination with a 40X microscope objective.

We characterized the run-and-tumble behaviors to each strain (Fig 2A) [4, 8, 12, 17]. Sin-

gle-cell trajectories were compiled using the TrackMate plugin of the image processing pro-

gram ImageJ [35]. We collected trajectories from 3 separate areas of the microchamber for

Fig 2. Strain properties and their correlations with band speed. (A) Example trajectory showing tumbling events. The bottom trajectory is from a

non-swimming cell. See also Fig C panel A in S1 File. Correlations are shown between the band speed and (B) the run speed, (C), the tumbling

frequency, (D) the proportion of swimming cells, and (E) the growth rate. Plotted is the mean band speed ± SEM, with n�5 independent experiments.

Each strain property is the mean ± SEM, with n = 3 independent measurements. See also Fig D panel A in S1 File.

https://doi.org/10.1371/journal.pone.0214719.g002
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each strain. Trajectories less than 5 seconds long were discarded, giving more than 140 trajec-

tories per location. Following analysis of trajectories presented in [34], we measured the angu-

lar velocity of each cell over time. We detected tumbling events of cells using an algorithm

comparing local maxima to neighboring minima of angular velocity (see Trajectory Feature

Detection in Materials and Methods). A run event was defined as any trajectory segment

between two tumbling events that was at least 0.5 seconds long.

To quantify strain properties, we calculated the run speed as the average speed of all run

events captured in a video. The tumbling frequency is the inverse of the average run time

between two tumbling events [34] (Fig C panel A and Fig D panel B in S1 File). We utilized

Spearman’s rho rank correlation coefficient to assess how monotonic the quantitative connec-

tions are between a strain property and the band speed [36]. With the critical value of Spear-

man’s rho 0.786 for 7 samples at 5% significance level, Fig 2B and 2C show no strong

correlation between the run speed and the band speed, or between the tumbling frequency and

band speed. Therefore, an examination of one motility property by itself was not adequate to

explain increasing band speeds.

We found similar weak trends between band speeds and other properties of the strains that

may also contribute to the band speed. Previous studies have shown differences in the fraction

of motile cells between strains of the same species [37, 38]. Theories on collective behavior also

propose the key role of the mixture of non-swimming and swimming cells in governing collec-

tive motility [39–41]. We found a subpopulation of non-swimming cells for each strain. The

proportion of swimming cells was calculated as the average amount of cells observed with an

average speed larger than 0.32 μm/s, which is a tenth of their body length per second. The

non-swimming cells (with average speed less than 0.32 μm/s) are cells that are not be able to

swim efficiently in liquid media (Fig C panel B in S1 File). Although the difference between

swimming and non-swimming cells is not clear, previous studies have reported a few mecha-

nisms of motility regulation in bacteria. Motility in some species is regulated by environmental

conditions [42–44], and the production of flagella can be regulated by a genetic switch [45].

Non-swimming cells were not stuck to chamber surfaces, as all cells migrated multiple cell

lengths during the data acquisition period. Strains assessed here had low proportions of swim-

mers, ranging from less than 10% to a little over 40% (Fig 2D). However, the band speed was

not correlated with fraction of swimmers. Although non-swimming cells would contribute to

the shape and dynamics of chemotactic gradients, it seems reasonable that non-swimming

cells would not strongly influence the band speed. Many studies have shown that fraction of

motile bacterial cells is usually low (about 10%) in natural environment, and may vary a lot

(5% to 70%) depending on environmental factors [12, 42, 44, 46, 47].

Cells growth rate has been shown to contribute to the band speed [41], and a standard model

of band formation, Keller-Segel model, predicts a dependence of band speed on growth rate

(Fig F and Table A in S1 File). We measured the exponential growth rates of all Enterobacter
strains in the same migration media and temperature as the band speed experiments. Although

varying between strains, growth rate also lacks a monotonic relationship with increasing band

speeds (Fig 2E). We also correlated every strain property we measured to each other and also

found no striking monotonic relationships (Fig D panel A in S1 File, blue scatter). In summary,

these results suggest that no single single-cell property is dominant in setting the band speed.

Band speed and strain properties are perturbed by exclusion of methionine

from media

As a variety of strain properties underlie band propagation speeds, we then aimed to perturb

these properties in each strain. Methionine or its metabolites are believed to be involved in
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tumbling process of bacterial cells. Previous studies have characterized cells grown without

methionine and found cells have a reduced frequency of tumbling in chemotactic response

[48–50]. Apart from cell motility, methionine, as a required amino acid for growth, can also

influence the growth rate. Synthesizing methionine has been shown to be an energy-consum-

ing process that delays growth [51]. Given methionine is a modulator of both motility behavior

and growth, we removed methionine from the media to determine how this perturbation

would impact both single-cell properties and the band speed of each strain.

We conducted migration experiments as shown in Fig 1A but without methionine added to

the migration media. The band speeds of Enterobacter strains in an initially methionine-free

environment are compared to the band speeds with methionine as shown in Fig 3A. The

response to the removal of methionine was heterogeneous among the seven wild isolates; some

band speeds decreased to a variable extent while others remained unchanged (Fig 3A). Simula-

tions based on Keller-Segel model reveal similar changes of band speed as observed in experi-

ments (Fig F in S1 File). We then assessed single-cell swimming behavior and growth rates in

Fig 3. Removal of methionine from migration media altered both strain properties and band speed. (A) The band speeds of all Enterobacter strains

shown in Fig 1 are compared to the band speeds when cells are grown on migration media without methionine. Band speeds of each strain represented

as mean ± SEM (n�3 independent experiments). (B) Single-cell motility properties and exponential growth rates also changed upon removal of

methionine from the media. Strain properties represented as mean ± SEM (n = 3 independent measurements).

https://doi.org/10.1371/journal.pone.0214719.g003
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the absence of methionine to better understand which of these properties may be associated

with the alteration of band speed (Fig 3B). There is no universal pattern of the effect of methio-

nine on the run speed and proportion of swimming cells of each strain. However, 6 out of 7

Enterobacter strains tumble less frequently in environment without methionine, and growth is

slower for all isolates in the absence of methionine (Fig 3B). Therefore, comparing Fig 3A and

3B, the growth rate and tumbling frequency might seem to be a positive contributor to the

band speed as their shifts are most similar.

Although band speed shows no significant correlation with growth rate as shown in Fig 2E,

in the absence of methionine, all growth rates decrease whereas band speeds also decreased by

variable amounts. Nevertheless, the shifts of other strain properties are not monotonically

associated with the shift of band speed.

Run speed and tumbling frequency in combination determine band speed

We then considered the band speeds of strains in environments with and without methionine

as response variables and the four strain properties as predictor variables. To examine whether

combinations of predictor variables were correlated with the response variable, we applied

multiple linear regression (MLR) to infer the regression coefficient of each property. Since

different properties have different units and magnitudes, we defined the rescaled sensitivity as

the regression coefficient of a property multiplied by the average value of that property of all

strains analyzed in conditions, both including and excluding methionine.

Fig 4A shows the rescaled sensitivities of run speed, tumbling frequency, proportion of

swimming cells, and growth rate. Only two parameters were significantly non-zero, run speed

and tumbling frequency (Fig 4B). This has also been verified by simulation based on Keller-

Segel model (Fig F in S1 File). The p-value for each property was calculated using a null

hypothesis that the corresponding coefficient is equal to zero. Both run speed and tumbling

Fig 4. Multiple linear regression reveals band speed is connected with run speed and tumbling frequency. (A) The

rescaled sensitivity found from multiple linear regression is the regression coefficient of the single-cell characteristic

multiplied by the average value of that characteristic of all strains. The results indicate run speed and tumbling

frequency are the dominant factors that influence the band speed. Error bars indicate rescaled standard error. (B) The

p-values for F statistic of all characteristics. The values are 0.019, 0.016, 0.762, and 0.929 for run speed, tumbling

frequency, proportion of swimming cells, and growth rate respectively.

https://doi.org/10.1371/journal.pone.0214719.g004
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frequency were positively correlated with band speed and were nearly equally predictive of the

band speed.

Given the rescaled sensitivities and p-values of all properties, the run speed and tumbling

frequency both significantly contribute to the band speed to a similar extent. This conjecture is

supported by a linear combination of both properties with the coefficients found in MLR to

the band speed (Fig E panel B in S1 File). The proportion of swimming cells and the growth

rate, even in combination with other strain properties, were not as strong as the combination

of run speed and tumbling frequency (Fig E panel B in S1 File). This analysis shows that the

band speed is equally influenced by two single-cell properties, run speed and tumbling fre-

quency, and that the strain-to-strain variability in both parameters modulates the collective

motility of populations. The nearly equal contributions of run speed and tumbling frequency

also explains why the band speed is not strongly correlated with either property, as high run

speed might be randomly paired with low tumbling frequency, and vice versa. Amongst the 7

strains studied, similar band speeds were detected in strains with different combinations of

run speed and tumbling frequency, as shown in Fig 5. Fig 5 also shows that band speed was

similar for closely related strains, as measured by 16S rRNA comparison. Closely related

strains Ecc5 and Ecc6 had fast band speeds, while the more distantly related strain Ecc2 had

the slowest band speed.

Discussion

Here we examine the band speed within a set of closely related natural isolates of the Entero-
bacter cloacae complex (Ecc). The band that propagates in semisolid media has been previously

Fig 5. Related Enterobacter strains have distinct combinations in strain properties and band speeds. A spectrum of strain properties underlies the

band speed in nutrient-supplemented semisolid media (Row 1: with methionine, Row 2: without methionine). Each strain’s property has an associated

Z-score from the mean value of that property across the 7 strains analyzed in this study. The red circle represents a Z-score of 0 (no deviation from the

mean), and each gray concentric circle is an increment of a Z-score of 1. The band speed is the color of the plot. Below, the phylogenetic tree from 16S

sequences are plotted. E. coli K-12 MG1655 is provided as a reference outgroup. The scale bar represents 0.01 changes per base pair.

https://doi.org/10.1371/journal.pone.0214719.g005
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examined experimentally and modeled in several species, notably E. coli and Salmonella typhi-
murium [5, 24, 52, 53]. Here for the first time we have described the band speed in the Ecc.

Unlike the collective behavior of some E. coli or Salmonella typhimurium, this band does not

break up into smaller “droplets” or “spots,” which are regions of bacteria aggregation [23] (Fig

1A). The band resembles the radiating structure observed by Adler, for which he associated

with propagating glucose or oxygen gradients [5]. These bands move at speeds of 2 mm/hr to 5

mm/hr, which is comparable to strains in other migratory studies in semisolid agar [53] (Fig

1B). This means the population of cells perform a collective unidirectional motion at about 1

cell length per second. We demonstrate that a strain with both high run speed and tumbling

rate may increase how fast strains move as a group, which may help to understand migration

in environments such as host tissue or soil [54–56].

Another novel report is our comparison of varying band speeds formed by closely-related

wild strains (Fig 1C). As the traveling band is composed of a large number swimming bacterial

cells, the study of single-cell motility from a microscopic perspective is essential for a better

understanding of the band speed. Despite having high genetic similarity, the differences in

band speed across strains varied by more than a factor of 2 (Fig 5). These phenotype differ-

ences have previously been elucidated by genetic knockout studies in a single strain [16, 17,

24], revealing that collective motility is a complex phenotype influenced by many genes and

microscopic properties of the strain. By comparing variability of both band formation and sin-

gle-cell level properties across several closely-related wild strains, we sought to better under-

stand how the band speed is set by the behavior of individual cells.

Intrigued by the natural variability of band speed, we took an in-depth look at the proper-

ties of the different Ecc strains. The strain properties we measured were the average run speed,

tumbling frequency, proportion of swimming cells, and exponential growth rate. Runs, tum-

bles, and number of swimming cells are quantities that pertain to single-cell motility, and we

obtain these quantities from measuring individual cells in a population. Upon comparison, no

obvious correlation was found between the band speed and any one strain property, despite

recent study showing that the band speed is negatively correlated with tumbling frequency

[22], suggesting that the band speed is a complex property and dependent on multiple factors

(Fig 2B–2E and Fig E panel A in S1 File). Multiple linear regression revealed that a combina-

tion of both run speed and tumbling frequency is the most significant predictor of the band

speed (Fig 4B). In our strains, no individual characteristic predicted the rank ordering of the

band speeds, possibly because in the relatively small number of strains uncorrelated variance

of tumbling frequency and run speed obscured trends that may be visible in larger datasets or

experiment with synthetic systems in which only a single factor was varied at a time. In the

wild strains, variability of multiple factors between strains and the fact that two characteristics

strongly contributed to setting the band speed prevented single factor correlations from identi-

fying key parameters.

Here we focused on properties previously shown to resolve single-cell motility differences

between closely-related strains (19, 36, 49). Other strain properties not measured here may

strongly contribute to collective behavior, such as the average tumbling angle, chemotactic

adaptation rate, as well as intracellular parameters such as metabolic rate, pH, and membrane

potential (62–67). Further studies are needed to connect the band speed to additional single-

cell properties to determine if additional strain properties are needed to predict the band speed

in other systems. In addition, as we only examined 7 Enterobacter wild strains, whether our

conclusions and approaches can be applied to other species remains to be tested.

Previously, it was found that collective migration was proportional to tumbling rate, which

is consistent with our findings [8, 24, 57]. Our results emphasize that, for complex behaviors

such as band formation, analysis within a variable set of related cell types may be necessary to
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resolve relationships between single-cell and collective behaviors. High run speed and high

tumbling rate may facilitate cells to successfully “reverse-out” of and escape such dead-ends in

gel matrices, allowing swimming cells to collectively move at a higher rate [8, 53, 58]. Tum-

bling frequency is also an essential component of chemotaxis as shown by studies with E. coli
[59, 60]. In certain ranges, higher basal tumbling frequency or run speed may allow cells to

more efficiently climb chemical gradients [14, 61, 62].

It should be noted that, in previous proposed physical models, growth rate is often posi-

tively associated with faster colony expansion [63–65]. Indeed, the exclusion of methionine

attenuated growth rate for all strains while also reducing the band speed of some strains (Fig

3). It is not clear why in our strains growth rate was not significantly correlated with the band

speed. Naively, one might expect that an increased growth rate would increase the rate at

which chemoattractant gradients change over time, thereby increasing the band speed. Per-

haps the larger variation in the tumbling frequencies and run speeds (both varying over a fac-

tor of 2) as compared to growth rate differences (varying by 20%) led to growth rate not being

a dominant factor in setting in the band speed of these strains. Cells found in front of the high

density band, as seen in S1 Movie, would help shape the chemotactic gradients responsible for

the dynamics of the high density swarm band. This leading edge of cells is predicted by the

Keller-Segel model, although the connection between the leading edge of cells and the band

speeds was not examined here. The Keller-Segel model does predict that growth rate should

help set the band speed, with measurable band speed differences even at 20% variation (Fig F

in S1 File). The attempt to relate single-cell characteristics to the band speed using the Keller-

Segel model revealed that the model could not accurately predict the wide variation of band

speeds and did not capture the true sensitivity of the band speed to single-cell properties.

Although the Keller-Segel model was able to reproduce the formation of the swarm band, even

predicting the speed of the band within a factor of two of experimental measurements, the

model could not predict the finer details of the seven bacterial strains measured in experiment.

Part of these discrepancies could lie in the fact that model parameters were largely based on

previous work with E. coli, whereas the experimental measurements here use seven wild vari-

ants of a different bacterial strain, Enterobacter cloacae, which has not been characterized as

extensively as E. coli. For example, the chemotactic response of these strains to individual

media components was not quantified. Here, the model makes the assumption that the added

amino acids are the chemoattractant rather than the glucose that was added as part of migra-

tion media. The model was extended to include the influence of gel pore size on the restricted

movement of bacteria, see Fig F panel B in S1 File, however even in the small pore size limit

the range of observed band speeds and their rank ordering could not be reproduced by model

simulations. Although the version of the model implemented here could not account for the

experimentally measured variation in the band speeds in the wild strains, it is not clear that

agreement with a model of this form would be an impossibility. The Keller-Segel model has

shown good agreement with experimental data in prior work, see for example (22), so it is pos-

sible that further characterization of each strain variant combined with a more comprehensive

exploration of variations of the Keller-Segel model may identify key strain characteristics and

model parameters that account for the observed variation of band speeds.

Connecting single-cell properties with collective behavior is a necessary stepping stone

for synthetic biology [66, 67]. Wild strains that demonstrate complex behaviors, such as the

formation of a swarm band, are influenced by a combination of single-cell properties. Some

properties are more dominant in setting collective behaviors [12, 21]. In the Ecc strains charac-

terized here, the combination of run speed and tumbling frequency was sufficient to explain

the overall band speed (Fig 4). Although, as shown in Fig 5, some strains have evolved different

combinations of tumbling frequency and run speed to achieve the same band speed. In
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engineering collective behaviors of cellular networks, it may be possible to take advantage of

different combinations of properties to achieve the same behavior, or it may be more efficient

to build off of an existing combination of properties found in the wild. Each property likely

has consequences on other cell behaviors, enabling simultaneous optimization of multiple phe-

notypes. Although, in this context, we only examined a simplified system with 7 wild isolates

of the Enterobacter cloacae complex and 4 most-likely related strain phenotypes, introducing

multiple phenotypic states into bacterial populations may be a useful approach to engineer

other collective properties [37, 66, 68, 69]. Our results highlight the importance of comparing

the characteristics of similar strains to untangle the connections between single-cell and collec-

tive behaviors. Environmental isolates are a good natural source of such variability and should

serve to deepen our understanding of complex cellular phenotypes.

Experimental procedures

Migration screening

Enterobacter strains used in this study are listed in Table B in S1 File. Ecc1 was a member of a

collection of wild isolates in a previous study [70]. To search for additional isolates that can

form similar migration patterns, freshwater samples were collected from lakes and ponds in

Los Angeles County. For isolation, samples were grown on HardyCHROM™ ECC selection

plates. Six of these colonies were selected and identified to form a swarm band. After re-streak-

ing the colonies on a fresh LB plate, the strains of interest were grown in LB media overnight

and stored as frozen glycerol stocks at -80˚C. 16S rRNA sequencing revealed the strain to be

most closely related to members of the Enterobacter cloacae complex (Table B in S1 File).

For assessing each strain’s migration pattern, strains were inoculated from frozen glycerol

stocks and grown to saturation overnight in M9 minimal salts (BD) supplemented with 2mM

MgSO4, 0.1mM CaCl2, and 0.25% glycerol as the carbon source, as in [71]. Incubation condi-

tion was 200 rpm orbital shaking at 37˚C Celsius. The following day, stationary phase cultures

were diluted to an OD600 of 0.2. 10μL of this culture (about 106 cells) was inoculated on the

migration medium at this density for each experiment.

Band visualization

Strains migrated on 4-well Rectangular plates (Nunc; ThermoScientific) at 25˚C. Each well’s

inner dimensions measured 80mm by 30mm, containing 6mL of migration media in semisolid

agar, whose thickness is about 2.5 mm after settling. The migration media consisted of 0.26%

agar, and M9 minimal salts (BD), 2mM MgSO4, 0.1mM CaCl2, 22mM (0.4%) glucose, 3mM

sodium succinate, and 20μg/mL (0.002%) each of the amino acids histidine (0.13mM), methio-

nine (0.13mM), threonine (0.17mM), and leucine (0.15mM) as previously utilized in similar

experiments [24]. Components were excluded as noted. The liquefied gel, after being poured,

was allowed to set on the benchtop for 1 hour. Then, at the lateral side of the major axis of the

well, 10μL of bacteria culture at 0.2 OD600 was inoculated, following previous procedures [5,

23, 26]. Plates were lidded and sealed on all sides with parafilm to slow evaporation. To track

the progress of the migration, each plate was mounted right-side up inside an enclosed imag-

ing apparatus which held 4 plates at a time. The sole source of illumination were two white

LED light fixture placed bilaterally on the same level as the plates. To avoid image aberrations

from the lid, the camera (HD Pro C920; Logitech) imaged plates from the bottom. Time-lapse

images over several days were recorded (VideoVelocity3; CandyLabs).

Changes in the bacterial cell density were shown as whiter pixels due to the contrast against a

black background (Fig 1A). The position of the band could be easily tracked manually on ImageJ

without further image processing. Coordinates of the band were measured at the center of band.
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Speeds of the bands were obtained by applying linear regression on the positions of the bands at

30 minute intervals and extracting the slope. Slopes were calculated for positions between 1.5

cm to 6 cm from the inoculation point to reduce boundary effects at the edge of the well.

Tracking single-cell trajectories

In order to associate strain swimming properties at exponential phase to the band velocity

observations, videos of cells in liquid media in a microfluidic device were obtained and ana-

lyzed for their trajectory features. Trajectories were not monitored during band propagation

due to difficulty in obtaining long, single-cell trajectories within the band. Cells were grown

overnight at 25˚C in migration media described above without agar with orbital shaking at 200

rpm and diluted the next day 100-fold in fresh migration media. Cells were gently pipetted and

not subject to vortexing in order to reduce flagella shearing. Cells were harvested at early expo-

nential phase (3–4 hrs) and diluted again with fresh migration media to obtain tens of cells

were field of view. The number of cells on screen (about a 0.15 mm2 area) was kept at about 50

cells to discourage cells from overlapping each other. This culture was injected into a 20μm

high microfluidic chamber in a C-Chip (DHC-S02-2; INCYTO) and subsequently sealed with

wax. The thin, sealed chamber was used to prevent directional fluid drift and to restrict the tra-

jectories in a quasi-2D plane [17]. Before imaging, cells were incubated in the channel for at

least 5 minutes to adapt to the fresh media. To avoid catching interaction of the swimming

cells with the walls of the device, cells in the device were imaged as far away as possible (10μm)

from the upper and lower walls of the chamber. Videos at 10 fps with a 40X Objective were

taken for 5 minutes with an inverted phase-contrast microscope (Ti Eclipse; Nikon). At least 3

videos were taken at different areas of the chamber. A rolling paraboloid was used to accentu-

ate the position of each cell by lowering the intensity of the background. Cell trajectories were

obtained using the ImageJ plugin TrackMate, which detects positions of cells using a Gaussian

profile fitter and subsequently forms links between spots that are proximal in position [35].

Trajectory feature detection

Feature detection of runs and tumbles were performed following a previous study [34]. All tra-

jectories shorter than 5 s were discarded. The percent of trajectories that were used for analysis

after filtering for each strain was 20% to 33%, and the length of trajectories on average were 20

to 80 seconds long (Table C in S1 File). The time interval Δt of recorded positions is 0.1 s.

A tumble was defined as previously described based on sudden changes in direction [34].

We calculated the angular change Δφ at time t as the angle between two vectors around t (t–Δt
to t and t to t+Δt). We defined the time of local maximum angular change as tmax and the

times of two neighboring minima as t1 and t2. If any angular change Δφ during t2 − t1 satisfied

jDφj > g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Drðt2 � t1Þ;

p
ð1Þ

in which γ = 5 and Dr = 0.1 rad2s−1, the cell was identified as in turning state. Within the time

interval, a tumbling event at time t was defined as when

φðtmaxÞ � φðtÞ � 0:5Dφ ; ð2Þ

where

Dφ ¼ max½φðtmaxÞ � φðt1Þ;φðtmaxÞ � φðt2Þ�: ð3Þ

By this definition, a trajectory segment with a smoothly curving path would not have tumbles

associated with it.
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Other studies report tumbling as either run time [59] or tumbling frequency [7]. After

extracting these features from the trajectories in each video, distributions of each feature type

were compiled for each strain. The tumbling frequency was then defined as the inverse of the

average time length between two tumbling events. The run speed was calculated as the average

speed of trajectory segments longer than 0.5 s between two successive tumbling events. The

run time was calculated for all trajectory segments longer than 0.5 s. In calculating the average

and standard deviation of the run time, data was fit to an exponential function to account for

run times for run times than 0.5 s.

Swimming cells for each frame were counted by the number of cells in the frame with an

average trajectory speed of at least 0.32 μm/s. The proportion of swimming cells in a frame was

then calculated as the swimming cell number divided by the total number of trajectories in

that frame. The proportion of swimming cells as a strain property was the average proportion

of swimming cells per frame of the video.

Growth curves

Cultures were grown in M9 media overnight, and the following day the cells in stationary

phase were diluted to an OD600 of 0.01 in fresh M9 migration media. 200μL of each diluted

culture was distributed in triplicates for each nutrient condition into 96 well plate (Costar).

Edge wells were not used but rather were filled with water to prevent evaporation from the

center wells. OD600 was read every 10 minutes at 25˚C with 7 minutes of orbital shaking

(Tecan M200; Tecan Group Ltd.). Exponential growth rates for each strain were obtained by

considering an OD600 between 0.25 and 0.7 (between x and y cells for each strain), the range

where the semilogarithmic plot of the growth curve was most linear. That means at least 10

absorbance measurements were used to calculate the growth rate. The experiment was

repeated with the same settings for a total of 3 independent replicates. Plate counts were per-

formed to calibrate absorbance measurements using the drop plate method [72].

Multiple linear regression

Multiple linear regression has been widely used as a general approach for a variety of research

problems [73–77]. The model for multiple linear regression, given the band speed as response

variable and bacterial properties as predictor variables, is

BS ¼ b0 þ b1RSþ b2TF þ b3PSþ b4GR; ð4Þ

where BS, RS, TF, PS, GR are band speed, run speed, tumbling frequency, proportion of swim-

ming cells, and growth rate respectively. β1, β2, β3, β4 are regression coefficients of predictor

variables, and β0 is the intercept.

The band speeds of all Enterobacter strains with and without methionine were analyzed,

and corresponding bacterial properties into the design matrix. The equation can be written as

BS1þ

BS1�

..

.

BS7þ

BS7�

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

¼

1 RS1þ TF1þ PS1þ GR1þ

1 RS1� TF1� PS1� GR1�

..

. ..
. ..

. ..
. ..

.

1 RS7þ TF7þ PS7þ GR7þ

1 RS7� TF7� PS7� GR7�

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

b0

b1

b2

b3

b4

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð5Þ

with 1 to 7 stand for Ecc1 to Ecc7, + stands for with methionine, and—stands for without
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methionine. The regression coefficients and p-values were inferred using fitlm in MATLAB

(MathWorks, Natick, MA).

The rescaled sensitivity was defined as the regression coefficient multiplied by the corre-

sponding average measurement of all strains to make different properties comparable. For

example, the rescaled sensitivity of run speed is

b1 �meanðRS1þ;RS1� ; : : :;RS7þ;RS7� Þ ð6Þ

16S tree construction

For Ecc1 to Ecc6, genomic DNA was extracted using a DNeasy UltraClean Microbial Kit (Qia-

gen) and sequenced via Illumina HiSeq 2500 (UPC Genome Core; USC). The short reads were

assembled by SPADES with a coverage depth of at least 100, and from the resulting contigs the

16S sequence was recovered [78]. For Ecc7, the 16S rRNA gene was amplified using colony

PCR with the 8F and 1492R primers [79] and was sent for purification and Sanger sequencing

(Laragen; Culver City). The 16S tree was constructed using base pairs 93 through 1436 of the

16S rRNA reference sequence of E. coli K-12 MG1655 on the online platform phylogeny.fr

[80] and re-visualized using MATLAB’s Bioinformatics Toolbox. These strains were assigned

to the Enterobacter cloacae complex by their similarity to Enterobacter strains using the EZBio-

Cloud online platform [81] (Table B in S1 File). Ecc1 and Ecc4 seem to have identical 16S

rRNA sequences over the analyzed region, although comparison of other genomic regions

revealed these strains are not genetically identical.

Statistical methods

To detect a monotonic relationship between two strain properties, a Spearman’s rho rank coef-

ficient was computed [36].

Supporting information

S1 File. Includes Figs A-F, Tables A-C, and related text.

(PDF)

S1 Movie. Propagation of the Swarm Band in Semisolid Agar. Related to Fig 1. Growth of

an inoculation of a strain and then a propagation of a band. Grayscale video is played back at

30 fps, where the time between each frame is 10 minutes. The band speed is taken from a linear

regression of band positions between 1.5 cm and 6 cm from the site of inoculation.
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