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Abstract

Motivation: Recent technological advances have led to an increase in the production and availability of single-cell
data. The ability to integrate a set of multi-technology measurements would allow the identification of biologically or
clinically meaningful observations through the unification of the perspectives afforded by each technology. In most
cases, however, profiling technologies consume the used cells and thus pairwise correspondences between datasets
are lost. Due to the sheer size single-cell datasets can acquire, scalable algorithms that are able to universally match
single-cell measurements carried out in one cell to its corresponding sibling in another technology are needed.

Results: We propose Single-Cell data Integration via Matching (SCIM), a scalable approach to recover such corre-
spondences in two or more technologies. SCIM assumes that cells share a common (low-dimensional) underlying
structure and that the underlying cell distribution is approximately constant across technologies. It constructs a
technology-invariant latent space using an autoencoder framework with an adversarial objective. Multi-modal data-
sets are integrated by pairing cells across technologies using a bipartite matching scheme that operates on the low-
dimensional latent representations. We evaluate SCIM on a simulated cellular branching process and show that the
cell-to-cell matches derived by SCIM reflect the same pseudotime on the simulated dataset. Moreover, we apply our
method to two real-world scenarios, a melanoma tumor sample and a human bone marrow sample, where we pair
cells from a scRNA dataset to their sibling cells in a CyTOF dataset achieving 90% and 78% cell-matching accuracy
for each one of the samples, respectively.

Availability and implementation: https://github.com/ratschlab/scim.

Contact: gunnar.ratsch@ratschlab.org or kjong.lehmann@inf.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The ability to dissect a tissue into its cellular components to study
them individually or to investigate the interplay between the differ-
ent cell-type fractions is an exciting new possibility in biological re-
search that has already yielded important insights into the dynamics
of various diseases including cancer (Chevrier et al., 2017; Tirosh
et al., 2016). Recent advances in single-cell technologies enable mo-
lecular profiling of samples with greater granularity at the transcrip-
tomic, proteomic, genomic as well as the functional assays level
(Irmisch et al., 2020; Rozenblatt-Rosen et al., 2017). Each data mo-
dality produces different types and levels of information that need to

be integrated and related to one another to truly grasp the mecha-
nisms at play in the tissue microenvironment and to obtain a more
comprehensive molecular understanding of the studied sample.
Although technologies capable of measuring two modalities simul-
taneously are emerging (Stoeckius et al., 2017; Zhu et al., 2020),
their scalability and widespread use are still limited. While multiple
data integration tools have been developed recently, most
approaches either depend on feature correspondences (Stuart et al.,
2019; Welch et al., 2019) or are limited to a specific input type, for
instance, scRNA and scDNA data (Campbell et al., 2019;
McCarthy et al., 2020). To the best of our knowledge only two
other approaches have been published (Amodio and Krishnaswamy,
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2018; Welch et al., 2017) with similar capabilities to Single-Cell
data Integration via Matching (SCIM). MAGAN (Amodio and
Krishnaswamy, 2018) is a Generative Adversarial Network capable
of aligning the manifold between two technologies that relies on a
feature correspondence loss. MATCHER (Welch et al., 2017) is
based on a Gaussian process latent variable model (GPLVM)
(Lawrence, 2004) that can integrate technologies if their underlying
latent structures can be represented in one dimension, applicable,
for example, to model monotonic temporal processes. Other yet un-
published methods, such as MMD-MA (Liu et al., 2019) and
UnionCom (Cao et al., 2020), rely on large kernel matrices which
limit their scalability when using datasets of the sizes generally pro-
duced by molecular profiling.

Here, we propose SCIM, a method to match cells across different
single-cell ’omics technologies. Our approach is universal, in the
sense that it is in principle applicable to any single-cell technology
and scales to arbitrary numbers of technologies. Further, we do not
assume the existence of paired features between two technologies.
This allows for the integration of technologies that measure for ex-
ample the expression of a disjoint set of genes, or the integration of
gene expression with image features as long as the underlying latent
structure is present in those features. Our approach consists of two
parts. First, we build an integrated latent space where representa-
tions are invariant to their corresponding technologies inspired by a
model proposed previously (Yang and Uhler, 2019) and further
extended in Yang et al. (2019). Then, we apply a cell-to-cell match-
ing strategy that efficiently extracts cross-technology cell matches
from the latent space. SCIM assumes a shared latent representation
between technologies but, unlike other approaches, does not require
one-to-one or overlapping correspondences between feature sets.
Individual technologies often consume samples and thus, the input
material provided to each profiling approach is typically an aliquot
from a common sample cell suspension. Notwithstanding, given
that the technology-specific datasets come from the same sample,
(i.e. cell mix), expecting the same underlying distribution is an ap-
propriate assumption. SCIM scales well in the number of cells in the
input through the use of neural-nets, end-to-end training and an effi-
cient bipartite matching algorithm. The training scheme allows for
the addition of an arbitrary number of technologies, which can be
trained in parallel (see Fig. 1).

2 Materials and methods

SCIM matches cells from a source technology to cells in one or mul-
tiple target technologies in two main steps. First, an integrated,

technology-invariant latent space is produced using an encoder/de-
coder framework based on Yang and Uhler (2019). Then, cells are
paired across different technologies via their latent representations
using a version of the fast bipartite matching algorithm.

2.1 Model
Autoencoders produce low-dimensional representations of data by
learning a pair of encoder and decoder functions, with parameters w
and /, respectively. The encoder maps input data into a lower-
dimensional space, called the latent space, while the decoder tries to
reconstruct the input data from its latent representation. The popu-
lar Variational Autoencoders (VAEs) take a generative approach to
this problem (Kingma and Welling, 2013). Here, / parameterizes
the likelihood of the data given the latent representation p/ðxjzÞ and
w parameterizes the posterior probability of its latent representation
qwðzjxÞ. VAEs jointly learn / and w to maximize a lower bound to
the probability of the data pðx; /;wÞ, achieved in practice by
minimizing

Lvaeð/;w; xÞ ¼ �log p/ðxjẑÞ þ DKLðqwðzjxÞjjpðzÞÞ (1)

where ẑ � qwðzjxÞ; DKL is the Kullback–Leibler (KL) divergence,
and p(z) is a prior distribution over latent representations. Often
p(z) and qwðzjxÞ are restricted to Gaussian forms since the KL diver-
gence then has a closed-form solution.

2.1.1 Constructing a technology-invariant latent space

SCIM encodes datasets into a shared latent space, which has ideally
two properties. As in the VAE, inputs should be able to be recon-
structed from their latent representations. In addition, the latent rep-
resentations of each technology should be integrated well such that
they are indistinguishable from each other. In a successful integra-
tion the resulting latent space will have corresponding cells across
all technologies represented in close proximity.

To construct an integrated latent space, SCIM uses the fol-
lowing networks: a pair of encoder (wk) and decoder (/k) net-
works for each technology k and a single discriminator network
(c) acting on the latent space. The discriminator is a binary classi-
fier trained to identify the latent representation of a source tech-
nology from latent representations of all other technologies using
a binary cross entropy loss.

SCIM yields an integrated latent space by minimizing the recon-
struction error while adversarially fooling the discriminator. For
notational brevity, we now let wk and /k also represent the probabil-
ity distributions they parameterize. Given the measurements of a

Fig. 1. SCIM performs a pairwise matching of cell across multiple single-cell ’omics technologies. We assume that the input of each technology comes from the same (or simi-

lar) heterogeneous cell mix, depicted on the left. Technologies generate a set of single-cell ’omics datasets (violet polygons) in parallel (e.g. XA, XB, XN). These datasets are rep-

resented as matrices of cells-by-features, where features are specific to the profiling technology, but could be gene expression, protein levels, etc. SCIM proceeds to map cells

into a technology-invariant latent space (left box) using an autoencoder framework and an adversarial term to keep technologies well integrated. Here, the latent representa-

tions capture the underlying structure in the cell mix (colored clouds) and analogous cells from different technologies (colored polygons) are placed in proximity. To integrate

datasets, a fast bipartite matching scheme is applied, matching cells pairwise among datasets to cross-technology analogs, using their latent representations (right box)
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batch of cells from the target technology, xt, and the (fixed) latent
representations of a batch of cells from the source technology,
ẑs � wsðxsÞ, SCIM minimizes the following objective

Lðxt; ẑs; wt;/tÞ ¼ Lnllðxt; wt;/tÞ þ bLadvðẑs; ẑt; wtÞ (2)

Lnllðxt; /t;wtÞ is the negative log-likelihood of the inputs under their
reconstruction. Ladv is the discriminator’s classification error when
trying to classify the latent representation samples ẑs/ẑt as the
source/target technology. b is a hyperparameter weighing the influ-
ence of the adversarial loss. At the same time, c is trained to correct-
ly classify the technology of the ẑs and ẑt samples.

More intuitively, this framework can be seen as learning a VAE
on each technology where the prior distribution is defined by the la-
tent representations of the other technologies. Ladv can be inter-
preted as a divergence measure where, through the use of
adversarial techniques, samples may be used in lieu of their poten-
tially intractable probability distributions. Thus, the framework is
equivalent to a set of Adversarial Autoencoders (Makhzani et al.,
2015) or Wasserstein Autoencoders (Tolstikhin et al., 2017) which
share a single discriminator.

2.1.2 The orientation of latent space

Correctly orienting the latent space in an unsupervised manner is a
challenging task (Locatello et al., 2018; Yang and Uhler, 2019).
Consider, for example, a simple monotonic temporal process. The
latent representations for one dataset could be oriented from start to
end, while another could be oriented from finish to start (Welch
et al., 2017). Equation 2 is satisfied, the representations are well
integrated and inputs can be correctly reconstructed from them, yet
the inter-dataset relationships are misaligned.

Makhzani et al. (2015) address a similar problem by concatenat-
ing one-hot representations of labels reflecting intra-technology
structure (e.g. cell type is an appropriate choice for ’omics datasets)
to the discriminator inputs, showing that this supervision is neces-
sary to orient the latent space. Recently, Locatello et al. (2019)
argued that only a small number of labels are actually needed to
achieve orientation. To this end, we adopt a semi-supervised ap-
proach by adding a ‘censored’ label and randomly relabel cells in the
training set.

2.1.3 Model architecture

Unless specified otherwise, we adopt the following architecture set-
tings. All networks use the ReLU activation. We set the latent di-
mension of all models to eight, but observed this choice to be
flexible. We use discriminator networks with two layers and eight
hidden units each. The Spectral Normalization framework (Miyato
et al., 2018) is used during training, which has been argued to stabil-
ize discriminator training by effectively bounding its gradients. We
use a Gaussian activation for all decoders, a 2 layer architecture
with 64 hidden units for all simulated data networks, a 2 layer archi-
tecture with 8 hidden units for all CyTOF networks and a 2 layer
architecture with 64 hidden units for all scRNA networks.
The number of features and complexity of data is considered when
choosing capacity and depth.

2.1.4 Optimization

Optimization proceeds by iteratively fixing one technology as the
source and one technology as the target. In the case of more than
two technologies, the technology corresponding to the discrimina-
tor’s positive class must either be the source or target technology.
The codes of the source technology are fixed and Equation 2 is mini-
mized with gradient updates to the encoder and decoder, wt and /t,
of the target technology using gradients computed on the batch xt.
After each update, the discriminator is trained to correctly classify ẑs

and ẑt. All networks in SCIM are optimized using the ADAM algo-
rithm (Kingma and Ba, 2014).

We initialize SCIM by first training a VAE (Kingma and
Welling, 2013) on a single source technology, and use the latent rep-
resentations as the first set of ẑs. Unless specified otherwise the VAE

is trained for 256 epochs using b ¼ 0:01 and a learning rate of
0.0005. A small value of b is needed for structure to be retained in
the latent representations.

2.1.5 Latent space evaluation and model selection

Due to the min–max nature of adversarial training, model compari-
son is challenging since one cannot directly compare the minimized
objective functions of converged models (Lucic et al., 2017). The
computer vision community has introduced a number of metrics
specific to the image domain to help compare models (Heusel et al.,
2017; Salimans et al., 2016). Here, we need to validate the quality
of a set of lower-dimensional latent representations.

Therefore, we use a k-Nearest Neighbor (kNN)-based diver-
gence estimator (Wang et al., 2009) to quantitatively evaluate the
quality of the integrated latent space. The divergence score between
two sets of codes Zs and Zt is calculated as:

D̂ðZsjjZtÞ ¼
1

2
D̂KLðZsjjZtÞ þ

1

2
D̂KLðZtjjZsÞ (3)

where

D̂KLðPjjQÞ ¼
d

jPj
X

pi2P

log
�kðpiÞ
qkðpiÞ

þ log
jPj

jQj � 1
(4)

where �kðpiÞ and qkðpiÞ are the distances from pi to the kth nearest
neighbor in the sets P and Q, respectively and all pi 2 Rd. This esti-
mator approximates a symmetric variant of a KL divergence, a
measure of how much two distributions differ, using only empirical
data. The divergence estimate is computed between the latent repre-
sentations of the source technology and the target technology to
measure the alignment of codes from the two technologies. Model
selection can proceed at scale by selecting parameter configurations
that align technology distributions and have low reconstruction
error.

This approach draws inspiration from a proposed framework
from Yang and Uhler (2019), where expression profiles are decoded
from the latent space. We were able to utilize a kNN based diver-
gence estimator (Wang et al., 2019), to address typical problems in
adversarial training. Further, SCIM does not decode values from la-
tent space, but the low-dimensional representation is used solely to
match the cells. Thus, the true observed marker abundances per cell
pair, measured with different technologies, can be used for any
downstream analysis. Moreover, the latent space matching may
compensate for sub-optimal integration, providing an additional ad-
vantage over bare decoding.

2.2 Bipartite matching of latent representations
The obtained shared latent representation can be used for finding
corresponding cells across technologies. Each cell is now character-
ized by a low-dimensional vector of latent codes, which are in one-
to-one correspondence across technologies. First, the data is repre-
sented as a graph, where the nodes correspond to cells and edge
weights correspond to the Euclidean distances between the cells in
the latent space. To find the best pairwise matching efficiently, we
phrase the task as a combinatorial bipartite matching problem
(Ahuja et al., 1993; Dell’Amico and Toth, 2000). In other words,
the task is to identify edges connecting the cells that would result in
a minimal total cost of all matches. In order to achieve this, we build
a k-Nearest Neighbors (kNN) graph to identify a set of potential
matches and reduce the complexity of the problem. Then, we extend
the graph to account for single-cell data characteristics and solve the
bipartite matching within a general framework of Minimum-Cost
Maximum-Flow problems (Ahuja et al., 1993; Klein, 1967).

2.2.1 k-nearest neighbor approximation

Given the large number of cells in single-cell datasets, we reduce the
search space to the k most likely potential matches. Two kNN
graphs are built: (i) using source data queried by the target technol-
ogy cells, and (ii) using target data queried by the source technology
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cells. A union of the established connections is used for further ana-
lysis. The sparsity of connections, regulated by the choice of hyper-
parameter k, corresponds to the trade-off between the
computational performance (memory usage, run time) and the
matching accuracy.

2.2.2 Bipartite matching via Minimum-Cost Maximum-Flow

Based on a Euclidean cost matrix, we aim at finding the maximum
number of cell pairs with minimum cost. This corresponds to finding
a maximum flow that can be pushed through the graph, where each
edge between cells has capacity 1, while minimizing the overall cost.
To solve the Minimum-Cost Maximum-Flow problem in a compu-
tationally efficient way we use an implementation of the network
simplex algorithm (Király and Kovács, 2012).

2.2.3 Relaxation of one-to-one matching by graph extensions

Bipartite matching approach makes the assumption that each cell
has one and only one direct corresponding sibling in the other tech-
nology. To allow for mismatches due to expected variation in cellu-
lar composition, we expand the kNN graph with sparse connections
by adding a densely connected null node with high capacity and
high assignment cost. This allows to capture potentially poorly
matched cells. The magnitude of the null match penalty corresponds
to a given percentile p of the overall costs and is a hyperparameter.
The extended graph structure is depicted in Figure 2, where R and S
refer to the root and sink nodes, respectively. Furthermore, to ac-
count for differences in the number of cells between modalities (n,
m), we allow for one-to-many matches by increasing the capacity of
the edges incoming to the sink (ui for i 2 f1; . . . ;mg), assuming the
nodes linked to the sink correspond to the smaller dataset (m � n).
To prevent all matches from collapsing onto a very small set of
nodes, we constrain the incoming sink capacities, excluding the null
node, to equal the cardinality of the bigger dataset divided by the
cardinality of the smaller dataset, with the capacities distributed uni-
formly across the sink edges. If more than two data modalities are
present, the bipartite matching is solved sequentially by obtaining
pairwise matches between technologies.

2.2.4 Matching evaluation

The quality of matching is evaluated on several levels. First, the ac-
curacy corresponding to the fraction of true positives with regards
to cell-type label is reported. Cell types can be determined in a
technology-specific manner and the accuracy is reported on a com-
mon denominator. If more fine-grained cellular information is avail-
able, such as pseudotime, a direct comparison of this quantity is

carried out. Furthermore, in real-world data settings we utilize the
raw marker expression to investigate correspondence of the matched
cells. Namely, Spearman’s and Pearson’s correlation coefficients are
computed between the expression values across matches.

3 Data

3.1 Simulated data
Using PROSSTT (Papadopoulos et al., 2019), we generate three
single-cell ’omics-styled technologies which share a common latent
structure without direct feature correspondences. PROSSTT param-
eterizes a negative binomial distribution given a tree representing an
underlying temporal branching process. By using the same tree and
running PROSSTT under different seeds, we obtain three datasets
with a common latent structure yet lacking any correspondences be-
tween features. We used a five branch tree with different branch
lengths (Fig. 3). Each dataset contains 64 000 cells with 256
markers. The simulated datasets are available under http://tu-
pro.ch/download/scim//.

3.2 Single-cell profile of a melanoma patient
The motivating dataset for our research questions is generated by
the Tumor Profiler (TuPro) Consortium (Irmisch et al., 2020) as
part of a multi-center, multi-cancer study comprising metastatic
tumors from a cohort of deeply phenotyped individuals. Each
patient’s data is analyzed with multiple technologies, including
scRNA-sequencing (Tang et al., 2009) and Cytometry by Time Of
Flight (Bandura et al., 2009, CyTOF), all capable of dissecting the
tumor microenvironment and providing single-cell level, comple-
mentary information about the sample of interest. Although cell
identity is lost throughout the experimental process, the cells investi-
gated by both technologies stem from the same population (i.e. were
obtained from an aliquot of a common cell suspension).

3.2.1 CyTOF data preparation

The patient’s sample was profiled with CyTOF using a 41-markers
panel designed for an in-depth characterization of the immune com-
partment of a sample. Data preprocessing was performed following
the workflow described in Chevrier et al. (2017, 2018). Cell-type as-
signment was performed using a Random Forest classifier trained on
multiple manually gated samples. To investigate the utility of SCIM,
we considered a subset comprising B-Cells and T-Cells only, for a
total of n ¼ 135 334 cells (see Table 1). This dataset is further
referred to as target dataset.

3.2.2 scRNA data preparation

A second aliquot of the same patient sample was analyzed by
droplet-based scRNA-sequencing using the 10� Genomics platform.
A detailed description of the data analysis workflow is beyond the
scope of this work and will be published elsewhere. In brief, stand-
ard QC-measures and preprocessing steps, such as removal of low
quality cells, as well as filtering out mitochondrial, ribosomal and
non-coding genes, were applied. Expression data was library-size
normalized and corrected for the cell-cycle effect. Cell-type identifi-
cation was performed using a set of cell-type-specific marker genes
(Tirosh et al., 2016). Genes were then filtered to retain those that
could code for proteins measured in CyTOF channels, the top 32 T-
Cell/B-Cell marker genes, and the remaining most variable genes for
a final set of 256. The total number of B-Cells and T-Cells (see
Table 1) in this dataset amounts to m ¼ 4683. The scRNA dataset is
used as source dataset throughout the manuscript.

3.3 Single-cell profile of human bone marrow
Oetjen et al. (2018) used several bulk and single-cell technologies to
comprehensively characterize human bone marrow. The data was
obtained from 20 healthy donors, whereas all data modalities were
acquired for 8 samples. For our application we consider the single-
cell transcriptome profile as well as CyTOF measurements of sample

Fig. 2. Fast bipartite matching using a customized Minimum-Cost Maximum-Flow

framework. Nodes correspond to cells with technology represented by shape, i.e.

hexagons and decagons. R and S represent root and sink nodes. Edges correspond to

the sparse connections between the cells, resulting from a kNN search. Edge labels

indicate matching cost (first value) and edge capacity (second value). Many-to-one

matches in unbalanced datasets are enabled by increasing the capacities ui (for

i 2 1; . . . ;m). The null node, colored in gray, captures matches of cells (from the big-

ger dataset on the left-hand side of the graph) that lack a close enough analog in the

other technology. Its capacity equals the cardinality of the bigger dataset and the

cost c�0, i.e. null match penalty, is relatively high. The thicker lines linking the nodes

represent the actual matches selected by the algorithm.
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O from this dataset, that were carried out with the objective of
describing in detail a T-Cell population. The data was preprocessed

as described in Oetjen et al. (2018). The cell-type information for
scRNA data was obtained directly by the courtesy of the authors,
whereas CyTOF cells were manually gated using the strategy pre-

sented in Supplementary Figure S8. A subpopulation of CD8 naive
T-Cells was filtered out due to a very small number of cells. The pre-

processed data of the analyzed sample included several T-Cell sub-
types (see Table 2).

4 Experiments

4.1 Three technology simulated data
We apply SCIM to integrate the three simulated datasets. The dis-

criminator is trained to classify the source technology and is fully
supervised using the branch label. The latent space is initialized by
training a VAE on the source technology. The latent representations

of the source technology are fixed, and the two target technologies
are trained for 256 epochs. Bipartite matching is performed for each

pair of datasets, using k¼64 and a null match penalty set to the
95th percentile of edge costs.

4.2 Integration of scRNA and CyTOF patient data
We apply SCIM to integrate two sets of scRNA/CyTOF data, one

set corresponds to a melanoma tumor from the Tumor Profiler pro-
ject (Irmisch et al., 2020) and the other one to a human bone mar-
row sample from Oetjen et al. (2018). The scRNA technology was

chosen both times as the source technology, and the latent space is
initialized by training a VAE. SCIM is trained for 64 epochs to inte-

grate the CyTOF technologies. The discriminator is trained in both
cases to classify the source technology. We used a semi-supervised
strategy and use only 10% of the cell-type labels to help orienting

the latent space. Bipartite matching is performed in both cases using
k¼50 and a null match penalty set to the 95th percentile of edge
costs.

5 Results

We evaluate the SCIM framework on a simulated dataset based on
PROSSTT (Papadopoulos et al., 2019) as well as two real-world set-
tings, where we match cells from CyTOF and scRNA measurements

taken from a single sample analyzed within the Tumor Profiler pro-
ject (Irmisch et al., 2020) and from a human bone marrow sample

(Oetjen et al., 2018). We provide an implementation of the proposed
approach in python using TensorFlow (Abadi et al., 2015).

5.1 SCIM aligns substructure in simulated data
Branches in PROSSTT define an overarching structure that mimics
cell-types, while the temporal component, i.e. pseudotime, provides

a continuous interpolation from one branch to another as described
by the tree (Fig. 3). In latent space, the branch structure within the

data produces large clusters, while the pseudotime structure pro-
vides orientation within each cluster as well as a global smoothing
of the manifold. SCIM is run to integrate the three simulated data-

sets producing a technology-invariant latent space (see Fig. 4).
SCIM embeddings capture the branching process and furthermore

correctly orient the substructure of most branches (see Fig. 3). We
report 86% of matches retained the branch label and strong correla-
tions among pseudotime (Pearson: 0.86, Spearman: 0.83) using a

null node penalty of 95th percentile that controls the false/true posi-
tive trade-off (see Supplementary Fig. S3). Furthermore, most
branch mismatches occur at the nodes of the tree, where the label is

ambiguous due to the continuous nature of the temporal process
(see Supplementary Table S3).

The SCIM framework can be applied to a many-technology set-
ting, and we demonstrate this by obtaining pairwise matches be-

tween all three datasets. SCIM successfully aligns the cells, based on
evaluations on pseudotime (see Supplementary Fig. S1) as well as
branch label (see Supplementary Tables S4 and S5), even when using

codes from such an extended latent space.
These results demonstrate that SCIM is capable of accurately

identifying the best matching cells across multiple technologies,
based on the shared latent representations in the presence of an
underlying branching process but in the absence of paired features.

Fig. 3. Evaluation of cross-technology cell matches made by SCIM on the simulated data. The tree defining the temporal branching process underlying the simulated data is

shown on the left. Cells are matched across datasets pairwise using the bipartite matching scheme and the results are depicted on the right hand-side. The Results are shown as

a density plot of pseudotime values across matched cells between the source technology (x-axis) and the target technology (y-axis). Cells matched to the same branch label are

colored according to the branch-color scheme (accuracy: 86%), while mismatches are depicted in gray and appear mostly in the branching points. Marginal distributions of

cell pseudotime for each branch are shown at the bottom (source technology) and left (target technology) of the density plot. We report a correlation of 0.83 (Spearman) and

0.86 (Pearson) for pseudotime label pairs
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5.1.1 MATCHER comparison: capturing complex latent structure

We compare SCIM to MATCHER (Welch et al., 2017), which is, to
the best of our knowledge, the only other published work that can
integrate multi-modal ’omics datasets in the absence of direct feature
correspondences. MATCHER, however, assumes a one-dimensional
latent structure that cannot capture hierarchical relationships, such
as the ones exhibited in the simulated PROSSTT data, and frequent-
ly found and studied in single-cell datasets. Moreover, MATCHER
is built around a GPLVM (Lawrence, 2004), which limits its scal-
ability. To this end, we set a budget of 48 h compute time and limit
memory consumption to 40 Gb. Using the latent representations
generated by MATCHER, we solve the bipartite matching problem
setting the same hyperparameter configuration. MATCHER is un-
able to model the PROSSTT branching structure and is outper-
formed by SCIM with respect to matching (see Supplementary
Tables S6 and S7 and Supplementary Fig. S2).

5.2 Universal divergence scales model selection in

SCIM
To evaluate the performance of SCIM on real data and to gain a bet-
ter understanding of the individual components of our framework,
we apply SCIM on a melanoma tumor sample from the Tumor
Profiler Consortium (Irmisch et al., 2020). Model selection in the
adversarial setting with real-world data is challenging since there is
no metric that captures model performance, nor does one have ac-
cess to any ground truth data to evaluate on. To help model selec-
tion, we use a universal divergence estimator (Wang et al., 2009) to
evaluate the quality of the integrated latent space (see Section 2,
Supplementary Fig. S6). This score measures how well two sets of
points are mixed, and it is computed pairwise between source and
target technologies. An optimization is defined as successful if the
divergence and reconstruction errors are below the empirically set
thresholds. This allows the evaluation of many model settings at
scale despite operating in the adversarial setting. We find that per-
formance depends on tuning b and the learning rates for the discrim-
inator and encoder/decoder networks (see Supplementary Table S2).

5.3 Modified bi-partite matching is scalable
Due to the large number of cells profiled with each individual tech-
nology per sample, we precede our bipartite matching with a kNN
search (see Section 2.2). This reduces the problem complexity by a

priori discarding redundant edges in the graph. Experiments on the
real-world melanoma sample investigating the level of sparsity, gov-
erned by a hyperparameter k, show that using even a small number
of neighbors provides good matching accuracy and performance sat-
urates past k>100 (see Supplementary Fig. S4, Supplementary
Table S1). This is in line with our expectations since a match to an
extremely distant neighbor is hard to justify. In order to maintain a
high degree of sparsity, without sacrificing matching accuracy, we
use k¼50 in all further experiments.

5.4 SCIM pairs cells across scRNA and CyTOF in a

melanoma sample
Integrating data from scRNA and CyTOF technologies applied to a
melanoma sample allows a multi-view perspective on cell dynamics
and, thus, will eventually lead to a more thorough understanding of
the underlying biological processes. Therefore we have evaluated the
aforementioned melanoma sample with the SCIM framework. The
bipartite matching on the latent codes has a 90% accuracy in recov-
ering the cell-type label, calculated as the fraction of true positives
over all matches. A more fine-grained visual evaluation is performed
by inspecting the matches on a tSNE embedding of the integrated la-
tent space marked by gray lines (see Fig. 5). Given different cell-type
proportions in the data, a certain number of mismatches is expected,
which corresponds to the lines joining points across the two cell
types. The latent representation is explored thoroughly as 98%, and
99.9% of cells are matched to their analogs, from CyTOF and
scRNA datasets, respectively. In comparison, a simple data-space
matching approach would only utilize 29% of the scRNA cells (see
Table 3 and Supplementary Fig. S5). To evaluate the latent space
matching further, we used a more fine-grained information of mark-
er expression correlation, to quantitatively assess the latent-space
matching quality. We used the correlation coefficients between the
expression of immunomarkers CD20 and CD3. Both markers are
characteristic for a subset of our data, as they are used to differenti-
ate B-Cells and T-Cells, respectively. We found that matching using
shared latent representations provides relatively high correlation
coefficients (Pearson: 0.63 CD20 and 0.51 for CD3 marker, see
Supplementary Fig. S7), given the expected low correlation between
RNA expression and protein abundance. In conclusion, even in the
presence of a subset of paired features across the technologies, using

Fig. 4. Integrated latent space of three synthetic datasets. Three single-cell ’omics datasets (Source, Target A and Target B) are generated (Papadopoulos et al., 2019) from a

shared underlying temporal branching process (as defined in Fig. 3). The same branching process was used in all three cases, but the parameters governing their feature distribu-

tions are drawn with different seeds. Hence, their latent structure is the same, yet they share no correspondences between features. SCIM is run, fully supervised using the

branch label, and all datasets are embedded into a shared latent space. tSNE embeddings (Maaten and Hinton, 2008) are computed and visualized on the combined latent rep-

resentations from all three datasets. Each column shows only the cells from a single technology. In the top row cells are colored by their branch label, as indicated on the le-

gend. In the bottom row, the cells are colored by their pseudotime, as indicated on the color bar on the right-hand side
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the shared latent representations proves beneficial for finding cell
analogs.

5.5 SCIM recovers T-cell subpopulations across multi-

modal human bone marrow data
We use SCIM to integrate T-Cells derived from one sample in the
Human Bone Marrow study, profiled with scRNA and CyTOF tech-
nologies. The tSNE embedding based on the latent space codes
implies good integration across technologies while preserving the
cell-subtype structure Supplementary Figure S9. We evaluate the
quality of matches using fine-grained labels indicating one of the T-
Cell subtypes identified in gating: CD8 effector, CD4 naive, CD4
memory (see Section 3.3). In a fully supervised approach, using the
labels to orient the latent space, we achieve an accuracy of 83% with
less than 8% of matches directed to the null node. Nevertheless,
when utilizing only 10% of the labels in the semi-supervised ap-
proach, we note only a slight drop in performance, obtaining 78%
correct matches with less than 8% of cells directed to the null node.
Evaluating on higher-level labels of CD8 versus CD4 T-Cells
improves the accuracy to 91 and 86% for the fully supervised and
semi-supervised approach, respectively. As expected, distinguishing
cellular subtypes (e.g. CD4 naive versus CD4 memory) is more chal-
lenging due to high similarity between the cell populations, but over-
all SCIM is capable of accurately recovering even such subtle
differences between cell types and states.

6 Discussion

We have developed SCIM, a new technology-invariant approach
that pairs single-cell measurements across multi-modal datasets,
without requiring feature correspondences. This development ena-
bles real multi-modal single-cell analysis, and opens up new oppor-
tunities to gain a multi-view understanding of the dynamics of
individual cells in various disease or developmental states. The

underlying autoencoder framework, combined with a customized bi-
partite matching approach, ensures scalability even to large numbers
of cells.

We demonstrate that our model performs well on simulated
data as well as on real-world melanoma and bone marrow samples
profiled with scRNA and CyTOF. The SCIM framework is pre-
sented here on two and three data modalities and easily extends to
additional technologies, providing a new and effective solution to
the multi-level data integration problem. Integration of Image
Mass Cytometry (Giesen et al., 2014) or single-cell ATAC-seq data
(Buenrostro et al., 2015) for example, could enable the spatial ana-
lysis of regulatory and global expression changes not just in cancer
but also in other diseases such as multiple sclerosis, where detailed
spatiotemporal information has already been shown to provide
relevant insights (Ramaglia et al., 2019). Notably, SCIM allows for
the integration of cell populations undergoing branching processes,

Fig. 5. Integrated latent space and matches of scRNA and CyTOF cells from a melanoma sample from the Tumor Profiler Consortium. Discriminators are semi-supervised

using 10% of the cell-type labels. Cells are colored by their cell-type label and shaded by their technology (dark shades: CyTOF, light shades: scRNA). Matches produced by

SCIM are represented by gray lines connecting cells. tSNE embeddings (Maaten and Hinton, 2008) are computed on the whole dataset and then 10 000 matched pairs are

sampled at random for visualization

Table 3. The fraction of the cells from the source (scRNA) and tar-

get (CyTOF) datasets in TuPro that are matched using the

Minimum-Cost Maximum-Flow algorithm

Space No. of cells

matched

Fraction No. of cells

matched

Fraction

(source) (source) (target) (target)

Latent 4680 0.999 133 130 0.98

Data 1342 0.29 28 178 0.21

Note: Only non-null matches are considered. The matching is performed

using the shared latent codes or the corresponding features in the data space.

The data-space matching results in all the matches collapsing onto very few

cells (29% of the source dataset). Using latent codes allows for exploration of

the whole space and providing best matches for almost all the cells.

Table 1. Characteristics of the preprocessed dataset derived from

the melanoma sample

Dataset No. of markers No. of cells T cells B cells

CyTOF 41 135 334 70% 30%

scRNA 256 4683 73% 27%

Table 2. Characteristics of the preprocessed dataset derived from

the human bone marrow sample

Dataset No. of

markers

No. of

cells

CD8

effector

CD4

naive

CD4

memory

CyTOF 34 98 799 57% 26% 17%

scRNA 256 2388 46% 31% 23%
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enabling the study of temporal phenomena, such as developmental
and cell fate determination. The scalability of our framework
ensures applicability beyond single samples, facilitating the study
of large cohorts or the integration of SCIM into analytical
workflows.

As the low-dimensional representation of the data produced by
SCIM is used solely to perform cell matching, it can be combined
with any other analytical methods. The truly observed signals per
cell pair measured with different technologies can be used for any
downstream analysis. By adopting a divergence measure (Wang
et al., 2009), we addressed common constraints in adversarial train-
ing, such as training instability and convergence problems. To en-
sure scalability, we used a modified bipartite matching solution to
efficiently match corresponding cells across technologies. Our exten-
sions guarantee wider applicability of SCIM, since shifts in cell-type
composition across disjoint aliquots, even coming from the same
sample, can be expected. Furthermore, the introduction of the null
node ensures a higher quality of matches by avoiding forced mis-
matches and thus, improving confidence in the cell-to-cell assign-
ments. With increasing data dimensionality, the number of nearest
neighbors (k) should also rise, since more ties are likely to occur.
Nevertheless, the difference in the number of true positives across
various values of k for the same dataset remains within 6% in our
experiments. Hence, we can state that performance is robust against
the choice of this hyperparameter. Depending on the actual data,
bounded or unbounded edge capacities (nearest neighbor approach)
may be preferable. For completeness, we provide the corresponding
results with unbounded edge capacities in the Supplementary
Material (Supplementary Tables S8–S15). Furthermore, SCIM is it-
self inherently modular, and other matching strategies that may be
more suitable to other data types or experimental designs can be eas-
ily deployed on the integrated latent codes.

SCIM helps bridge the gap between data generation and integra-
tive interpretation of diverse multi-modal data in the rapidly
expanding field of single-cell biology, providing users with an easily
scalable algorithm designed to maximize the information it provides
and not limited to fit a particular analytical approach.
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Pedro3, Ficek Joanna2,5,14,24, Frei Anja L29, Frey Bruno10, Goetze Sandra6,

Grob Linda7,14, Gut Gabriele34, Günther Detlef4, Haberecker Martina29,

Haeuptle Pirmin1, Heinzelmann-Schwarz Viola15,21, Herter Sylvia13,

Holtackers Rene34, Huesser Tamara13, Irmisch Anja26, Jacob Francis15,

Jacobs Andrea33, Jaeger Tim M9, Jahn Katharina3, James Alva R2,5,14,24,
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