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Background. This study examines the surface activity and resistance to phospholipase degradation of a fully-synthetic lung
surfactant containing a novel diether phosphonolipid (DEPN-8) plus a 34 amino acid peptide (Mini-B) related to native
surfactant protein (SP)-B. Activity studies used adsorption, pulsating bubble, and captive bubble methods to assess a range of
surface behaviors, supplemented by molecular studies using Fourier transform infrared (FTIR) spectroscopy, circular dichroism
(CD), and plasmon resonance. Calf lung surfactant extract (CLSE) was used as a positive control. Results. DEPN-8+1.5% (by wt.)
Mini-B was fully resistant to degradation by phospholipase A2 (PLA2) in vitro, while CLSE was severely degraded by this
enzyme. Mini-B interacted with DEPN-8 at the molecular level based on FTIR spectroscopy, and had significant plasmon
resonance binding affinity for DEPN-8. DEPN-8+1.5% Mini-B had greatly increased adsorption compared to DEPN-8 alone, but
did not fully equal the very high adsorption of CLSE. In pulsating bubble studies at a low phospholipid concentration of
0.5 mg/ml, DEPN-8+1.5% Mini-B and CLSE both reached minimum surface tensions ,1 mN/m after 10 min of cycling. DEPN-8
(2.5 mg/ml)+1.5% Mini-B and CLSE (2.5 mg/ml) also reached minimum surface tensions ,1 mN/m at 10 min of pulsation in the
presence of serum albumin (3 mg/ml) on the pulsating bubble. In captive bubble studies, DEPN-8+1.5% Mini-B and CLSE both
generated minimum surface tensions ,1 mN/m on 10 successive cycles of compression/expansion at quasi-static and dynamic
rates. Conclusions. These results show that DEPN-8 and 1.5% Mini-B form an interactive binary molecular mixture with very
high surface activity and the ability to resist degradation by phospholipases in inflammatory lung injury. These characteristics
are promising for the development of related fully-synthetic lipid/peptide exogenous surfactants for treating diseases of
surfactant deficiency or dysfunction.
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INTRODUCTION
Endogenous pulmonary surfactant contains a complex mix of

ester-linked glycerophospholipids and specific apoproteins that

interact biophysically to produce the surface properties needed for

functional activity at the alveolar interface [1]. Current exogenous

surfactant drugs used to treat lung disease or injury in pediatric

and adult patients also contain a substantial content of ester-linked

glycerophospholipids including dipalmitoyl phosphatidylcholine

(DPPC). The surface activity of endogenous or exogenous

surfactants becomes compromised if DPPC or other essential

glycerophospholipids are chemically degraded or structurally

altered in the alveoli. One important cause of such effects is

through the action of phospholipases in the lungs during

inflammatory injury [2–9]. Phospholipase-induced degradation

of lung surfactant glycerophospholipids not only reduces the

concentration of active components, but also generates reaction

products such as lysophosphatidylcholine and fluid free fatty acids

that can further decrease surface activity by interacting biophy-

sically with remaining surfactant at the alveolar interface [10–12].

Synthetic exogenous surfactants containing novel lipids resistant

to degradation by phospholipases have the potential to maintain

high activity when these lytic enzymes are present in the

inflammatory response during clinical acute lung injury (ALI)

and the acute respiratory distress syndrome (ARDS) [13–17]. The

incidence of ALI has been estimated as 20–65 cases per 100,000

persons per year in the United States, with approximately 50–

150,000 adults developing ARDS (all patients with ARDS also by

definition have ALI) [18,19]. Surfactant dysfunction from physical

or chemical interactions with endogenous inhibitors during acute

pulmonary injury has been extensively documented (e.g., [1,20,21]

for review). Although the pathophysiology of ALI/ARDS is

complex and includes inflammation, vascular dysfunction and

cell/tissue injury in addition to surfactant dysfunction, the latter is

an important contributor to respiratory failure in many patients

and provides a rationale for therapy with exogenous surfactants.

Synthetic exogenous surfactant preparations have significant

potential advantages as pharmacologic products compared to

animal-derived clinical surfactants, including improved composi-
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tional and activity reproducibility, easier and less-costly quality

control, freedom from prions or other biologic agents, and reduced

ethnographic (cultural/religious) concerns relating to animal

species. This paper investigates the surface activity of a novel

fully-synthetic exogenous surfactant that contains DEPN-8,

a phospholipase-resistant C16:0 diether phosphonolipid analog

of DPPC reported previously by Notter, Schwan, Turcotte, and

co-workers [22–24]. The synthetic surfactant studied also contains

Mini-B, a 34 amino acid peptide designed to retain major

amphipathic regions of highly-active human surfactant protein

(SP)-B [25]. The molecular interactions of Mini-B and DEPN-8

are defined here by Fourier transform infrared (FTIR) spectros-

copy, circular dichroism (CD) and plasmon resonance binding

affinity, and the surface activity of DEPN-8+1.5% Mini-B is

assessed in adsorption experiments and by measurements on both

the pulsating and captive bubble surfactometers. These two bubble

surfactometers are specifically designed to define the overall

surface tension lowering activity of lung surfactant dispersions in

physical systems that incorporate a range of relevant surface

behaviors including dynamic film compression, spreading, and

adsorption to the air-water interface [1]. Comparative surface

studies investigate calf lung surfactant extract (CLSE), which has

documented high activity in reversing states of surfactant

deficiency in mammalian lungs, and is the substance of the

clinical surfactant InfasurfH [1,21,26].

RESULTS

Circular dichroism (CD) and FTIR spectroscopy on

Mini-B in TFE or DEPN-8
CD spectroscopy was used to examine the conformation of Mini-B

in phosphate buffered trifluoroethanol (TFE, pH = 7.4), a solvent

environment that partially mimics the polar/amphipathic region

near the aqueous interface of a bilayer membrane [27]. A

representative CD spectrum for Mini-B in TFE in the wavelength

region between 185 and 260 nm is shown in Figure 1A. The

spectrum shows a double minimum at approximately 208 nm and

222 nm, consistent with a substantial a-helical content. Analysis of

the CD spectrum by the methods of Sreerama et al [28] indicated

mean percent conformations of about 41.4% a-helix, 22% turn/

bend, 14.3% b-sheet, and 22.3% disordered structures (Table 1).

Additional CD spectra for Mini-B in multilayers of DEPN-8 in

phosphate buffered saline exhibited low signal/noise ratios due to

excessive light-scattering (data not shown), and were not analyzed

Table 1. Mean proportions of different aspects of secondary
structure for Mini-B in structure-promoting TFE solvent or in
deuterium-hydrated DEPN-8 multilayers based on CD and
FTIR spectroscopic analysis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sample * % Conformation disordered

a-helix turn/bend b-sheet

Mini-B in TFE (CD) 41.4 22.0 14.3 22.3

Mini-B in TFE (FTIR) 37.1 33.5 10.6 17.8

Mini-B in DEPN-8 (FTIR) 27.2 43.6 10.5 18.7

*CD spectra for Mini-B in TFE were analyzed for secondary structure using the
methods of Sreerama et al [28], and FTIR spectra were analyzed for secondary
conformation based on deconvolution of the amide I band (Methods). FTIR
spectra for Mini-B in deuterium-hydrated DEPN-8 multilayers were done at
a molar ratio of 10:1 lipid:peptide. Tabulated results are means from four
closely-reproduced separate determinations for each condition and spectral
type.

doi:10.1371/journal.pone.0001039.t001..
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Figure 1. Spectroscopic behavior of Mini-B and DEPN-8. Panel A: CD
spectrum for Mini-B in trifluoroethanol (TFE); Panel B: FTIR spectrum for
DEPN-8; Panel C: FTIR spectral differences for Mini-B in DEPN-8 (dashed
line) compared to Mini-B in TFE (solid line). In Panel A, mean residue
ellipticity (MRE) averaged over eight scans is plotted against
wavelength for Mini-B in 4:6 (v:v) TFE:10 mM phosphate buffer, pH
7.4. The double minimum at ,208 and 222 nm is indicative of a high a-
helical content. In Panel B, the spectrum for DEPN-8 multilayers (100 mg
lipid, arbitrary absorbance units) has a ‘‘C-O-C’’ ether linkage-associated
absorption band centered at a wavenumber of 1072 cm21. In Panel C,
the IR spectrum of Mini-B in TFE (solid line) has a peak at 1655 cm21

indicating high a-helix levels, while the peak at 1658 cm21 and high-
field shoulder at 1678 cm21 for Mini-B in DEPN-8 (dashed line) indicates
an increase in turn/bend conformation with a decreased but still
prominent a-helix content. See text for discussion.
doi:10.1371/journal.pone.0001039.g001
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for conformation. Instead, Mini-B in the presence of DEPN-8 was

studied using FTIR spectroscopy, which is not subject to light-

scattering artifacts. FTIR was also used to assess DEPN-8 in the

absence of Mini-B.

Multilayers of DEPN-8 exhibited a strong C-O-C absorption

band between wavenumbers of 1004–1157 cm21 (peaking at

,1072 cm21, Figure 1B), consistent with behavior previously

shown for phospholipids with ether-linked alkyl chains [29].

DEPN-8 multilayers also had an absorbance peak at wavenumbers

of ,1220 to 1260 cm21 indicative of the asymmetric stretching

frequencies of the polar headgroup, as well as contributions from -

CH2- scissoring absorption in the spectral region of 1462 to

1473 cm21. Dominant absorptions for the alkyl chains that

included antisymmetric and symmetric stretching bands around

2917 and 2850 cm21 were also found (Figure 1B). DEPN-8

multilayers did not exhibit absorption in the region of 1710–

1740 cm21, which is characteristically associated with the C = O

stretch of normal ester linkages in glycerophospholipids.

FTIR spectra for Mini-B in TFE and in DEPN-8 were similar,

with substantial overlapping regions but some small variations

(Figure 1C). The FTIR spectrum of Mini-B in TFE had a major

amide I band centered at 1655 cm21, indicating a predominant a-

helical conformation. FTIR spectral deconvolution analysis in-

dicated mean secondary structure percentages for Mini-B in TFE

of 37.1% a-helix, 33.5% turn/bend, 10.6% b-sheet, and 17.8%

disordered. This structural distribution is similar to that obtained

from the CD spectrum of Mini-B in TFE (Table 1), with the

largest difference being a higher percentage of turn/bend

structures in the FTIR analysis compared to the CD analysis.

Deconvolution of the FTIR spectrum of Mini-B in DEPN-8

indicated a further increase in the proportion of turn/bend

elements relative to the FTIR spectrum of Mini-B in TFE (an

increase in turn/bend structures to 43.6% indicated by a minor

shoulder centered at ,1678 cm21, with a decrease in a-helix to

27.2% indicated by a peak shift to 1658 cm21) (Figure 1C;

Table 1). These FTIR results indicate direct interactions between

Mini-B and DEPN-8 at the molecular level.

Biacore plasmon resonance binding affinities of

Mini-B for lipids
Molecular binding affinities (associations) between chip-linked

films of Mini-B peptide and liposomes of DEPN-8 or DPPC were

measured at 37uC using a Biacore apparatus. Results showed that

Mini-B had a substantial binding (association) affinity for both

DEPN-8 and DPPC based on a high uptake rate constant (kon) and

a low dissociation rate constant (koff) (Table 2). DEPN-8 had

a slightly higher kon rate for Mini-B compared to DPPC, but the

diether lipid also had a higher mean koff rate. Values for the mean

equilibrium dissociation constant (KD = koff/kon) were low and

similar for DEPN-8 (104 nM) and DPPC (89 nM), showing that

both lipids had substantial molecular affinity for the chip-linked

Mini-B monolayer (Table 2).

Resistance of synthetic surfactants containing

DEPN-8+1.5% by weight Mini-B to degradation by

phospholipase A2 (PLA2)
The structural resistance of DEPN-8 to degradation by phospholi-

pases is a potential advantage for this compound as a constituent in

novel exogenous surfactants for use in inflammatory lung injuries

where lytic enzymes of this kind are released. Mixtures of DEPN-

8+1.5% Mini-B were incubated in vitro with 0.1 Units of PLA2, and

completely resisted degradation from this enzyme based on thin

layer chromatographic analysis (Table 3). In contrast, CLSE is

significantly degraded by PLA2, with a substantial decrease in its

content of phosphatidylcholine and a substantial increase in

lysophosphatidylcholine as reported in our prior work [30].

Adsorption and pulsating bubble surface activity of

synthetic lung surfactants containing DEPN-8+1.5%

by weight Mini-B peptide
Combining Mini-B with DEPN-8 in a binary mixture significantly

improved adsorption to the air-water interface (Figure 2). DEPN-8

alone reached adsorption surface tensions of 67.460.6 mN/m (at

1 min) and 57.861.2 mN/m (at 20 min) when injected into

a stirred subphase. In contrast, DEPN-8+1.5% Mini-B reached

much lower surface tensions of 43.760.8 mN/m and

38.160.7 mN/m after 1 and 20 min of adsorption, respectively.

The greatest adsorption was exhibited by CLSE, which reached

surface tensions of 23.660.7 mN/m at 1 min and 21.560.5 mN/

m at 20 min following injection into the subphase (Figure 2).

DEPN-8+1.5% Mini-B and CLSE both exhibited very high

dynamic surface activity in studies on the pulsating bubble

surfactometer (Figure 3). At a low phosphonolipid concentration

of 0.5 mg/ml, DEPN-8+1.5% Mini-B reached minimum surface

Table 2. Mean association and dissociation kinetic rate
constants (kon, koff) and equilibrium dissociation constant KD
calculated from plasmon resonance measurements for
liposomes of DEPN-8 or DPPC flowing past a chip-linked Mini-
B monolayer.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lipid compound* kon (1/Ms) koff (1/s) KD (nM)

DEPN-8 12.56104 1361023 104

DPPC 11.96104 9.961023 83.2

*Liposomes of DEPN-8 or DPPC in running buffer (10 mM HEPES, 150 mM NaCl,
3 mM EDTA, 0.005% Surfactant P20, pH 7.4) were flowed past a monolayer of
Mini-B linked via Cys4 and Cys27 to a C5M sensor chip in a Biacore 3000 system
(Methods). Mean kinetic rate constants (kon, koff) and the equilibrium
dissociation constant (KD = koff/kon) were determined from curve fitting
analyses of plasmon resonance results at six different lipid concentrations (0.1,
0.2, 0.3, 0.4, 0.5, and 0.6 mg/ml for each lipid).

doi:10.1371/journal.pone.0001039.t002..
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Table 3. Resistance of DEPN-8+1.5% by weight Mini-B to
degradation by phospholipase A2 (PLA2) compared to calf
lung surfactant extract (CLSE).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lipid Class CLSE CLSE+PLA2

DEPN-
8+1.5%
Mini-B

DEPN-8+
1.5% Mini-
B+PLA2

Lysophosphatidylcholine 0.460.2 29.562.4

Sphingomyelin 1.060.2 1.260.5

Phosphatidylcholine 84.460.4 55.163.2 100 100

Phosphatidylinositol 4.060.6 3.860.7

Phosphatidylethanolamine 3.760.7 3.861.0

Phosphatidylglycerol 4.760.3 4.160.6

Residue 1.860.2 2.560.2

Data are mean6SEM for n = 3. DEPN-8+1.5% by weight Mini-B was incubated in
vitro with PLA2 (0.1 Units/ml) for 30 min at 37uC, and degradation was assessed
by measuring lipid classes in weight percent based on phosphate analysis of
bands on thin layer chromatography. Results for CLSE in the presence and
absence of PLA2 utilized identical methods as reported previously by Wang et al
[30].
doi:10.1371/journal.pone.0001039.t003..
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tensions of 461 mN/m (at 5 min of pulsation) and ,1 mN/m (at

10 min of pulsation) (Figure 3A). CLSE (0.5 mg/ml) had equivalent

minimum surface tension values of 762 mN/m and ,1 mN/m at

these times of bubble pulsation (Figure 3A). When surfactant

concentration was raised to 2.5 mg/ml, dynamic surface activity was

increased for all surfactants (Figure 3B). At 2.5 mg/ml, DEPN-

8+1.5% Mini-B and CLSE reached minimum surface tensions of

,1 mN/m by 2 min and 0.5 min of bubble pulsation, respectively.

In comparison, DEPN-8 alone at 2.5 mg/ml had a minimum

surface tension of 1462 mN/m at 2 min, and required 15 min of

bubble pulsation to reach values of ,1 mN/m (Figure 3B). Although

minimum surface tension is a primary indicator of lung surfactant

activity, maximum surface tensions were also assessed in pulsating

bubble studies. Maximum surface tension values for DEPN-8+1.5%

Mini-B during cycling on the pulsating bubble apparatus were 9–

20 mN/m higher than those of CLSE at a given surfactant

concentration (data not shown). Detailed values of maximum

surface tension during cycling for DEPN-8+1.5% Mini-B and CLSE

are shown later for studies on the captive bubble surfactometer.

Ability of DEPN-8+1.5% Mini-B and CLSE to reach

minimum surface tensions ,1 mN/m in the

presence of serum albumin on the pulsating bubble
Albumin is an important endogenous plasma protein known to

biophysically inhibit the activity of endogenous and exogenous

lung surfactants (e.g., [11,21,31]). At a surfactant phospholipid

concentration of 2.5 mg/ml, both DEPN-8+1.5% Mini-B and

CLSE had a prolonged timescale of surface tension lowering in the

presence of serum albumin (3 mg/ml) (Figure 4). However, the

overall activity curves for the two surfactant preparations were

very similar, with both reaching minimum surface tensions of

,1 mN/m by 10 min of bubble pulsation (Figure 4). The ability

of synthetic DEPN-8+1.5% Mini-B to exhibit comparable surface

tension lowering to CLSE in the presence of 3 mg/ml albumin is

a positive finding, since prior work has established that CLSE is

more resistant to this plasma protein than several other current

clinical exogenous surfactants [1,32–34].

Surface-active behavior of DEPN-8+1.5% or 3% by

weight Mini-B on the captive bubble surfactometer
The interfacial behavior of DEPN-8+1.5% or 3% Mini-B is shown

during 10 successive cycles of compression/expansion on the

captive bubble surfactometer in Figures 5 and 6. Both of these

Figure 2. Adsorption of DEPN-8 with and without 1.5% (by wt) Mini-B
compared to calf lung surfactant extract (CLSE). Adsorption surface
tensions are plotted following the addition of a bolus of DEPN-8, DEPN-
8+1.5% Mini-B, or CLSE to a stirred subphase (10 mM HEPES with 0.15M
NaCl and 1.5 mM CaCl2 at pH 7.0) in a TeflonH dish at time zero. Final
subphase surfactant concentration was uniform at 0.0625 mg lipid/ml.
Data are Mean6SEM for n = 3–5. See text for details.
doi:10.1371/journal.pone.0001039.g002

Figure 3. Dynamic surface activity of DEPN-8+1.5% (by wt) Mini-B compared to CLSE on the pulsating bubble surfactometer. Panel A: 0.5 mg/ml
phosphonolipid (phospholipid); Panel B: 2.5 mg/ml phosphonolipid (phospholipid). Surface tension at minimum bubble radius (minimum surface
tension) for DEPN-8+1.5% Mini-B and CLSE is graphed as a function of time on a pulsating bubble surfactometer (37uC, 20 cycles/min, 50% area
compression). Data are Mean6SEM for n = 3–5. See text for details.
doi:10.1371/journal.pone.0001039.g003
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synthetic mixtures were equivalent to CLSE in reaching minimum

surface tensions of ,1 mN/m on all ten recorded cycles of captive

bubble compression/expansion at either a quasi-static rate

(Figure 5) or at a dynamic rate (Figure 6). However, maximum

surface tension values for DEPN-8+1.5% or 3.0% Mini-B for all

cycles were greater than those of CLSE at the quasi-static and

dynamic compression rates studied on the captive bubble (Figures 5

and 6, respectively).

DISCUSSION
The results of this study show that a binary synthetic lung

surfactant containing DEPN-8+1.5% by weight Mini-B peptide

had substantial surface activity that in several aspects approached

the clinically-relevant bovine surfactant extract CLSE. Moreover,

DEPN-8+1.5% Mini-B was fully resistant to chemical degradation

when incubated in vitro with PLA2 (Table 2), while CLSE was

severely degraded by this enzyme [30]. Mini-B and DEPN-8 had

direct intermolecular interactions based on plasmon resonance

binding affinity (Table 2) and on deconvolution analyses of FTIR

spectra indicating a modified peptide secondary structure in

multilayers with DEPN-8 (Fig. 1, Table 1). The adsorption of

DEPN-8+1.5% Mini-B was greatly increased compared to DEPN-

8 alone, although adsorption of the binary synthetic surfactant was

less than that of CLSE (Fig. 2). DEPN-8+1.5% Mini-B had overall

dynamic surface tension lowering ability in pulsating bubble

studies that was similar to CLSE at a low surfactant phospholipid

concentration of 0.5 mg/ml, with both surfactants reaching

minimum surface tensions of ,1 mN/m after 10 min of cycling

(Fig. 3A). DEPN-8+1.5% Mini-B and CLSE also had comparable

activity in reaching minimum surface tensions ,1 mN/m in the

presence of serum albumin at a surfactant concentration of

2.5 mg/ml on the pulsating bubble (Fig. 4). Complementary

Figure 5. Quasi-static surface activity of DEPN-8+1.5% or 3% Mini-B
compared to CLSE on the captive bubble surfactometer. Minimum
and maximum surface tensions are shown for DEPN-8+1.5% or 3% by
weight Mini-B compared to CLSE on a captive bubble surfactometer
during slow compression (10 cycles over 90 min including a 2 min
pause between each cycle). Surface tension values are Mean6SEM for
at least three separate experiments. See text for details.
doi:10.1371/journal.pone.0001039.g005

Figure 4. Surface activity of DEPN-8+1.5% (by wt) Mini-B and CLSE in
the presence of bovine serum albumin. Surface tension at minimum
radius (minimum surface tension) is graphed as a function of time for
DEPN-8+1.5% Mini-B and CLSE in the presence of bovine serum
albumin (3 mg/ml) on a pulsating bubble surfactometer (37uC, 20
cycles/min, 50% area compression). Surfactant concentration was
2.5 mg/ml of phosphonolipid (phospholipid). Data are Mean6SEM for
n = 4–5.
doi:10.1371/journal.pone.0001039.g004

Figure 6. Dynamic surface activity of DEPN-8+1.5% or 3% Mini-B
compared to CLSE on the captive bubble surfactometer. Minimum
and maximum surface tensions are shown for DEPN-8+1.5% or 3% by
weight Mini-B and CLSE on a captive bubble surfactometer during 10
cycles of rapid compression (20 cycles/min) following slow compression
as in Figure 5. Surface tension values are Mean6SEM for at least three
separate experiments. See text for details.
doi:10.1371/journal.pone.0001039.g006
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captive bubble studies showed that DEPN-8+1.5% or 3% Mini-B

and CLSE all reached minimum surface tensions ,1 mN/m

when compressed under either quasi-static (Fig. 5) or dynamic

(Fig. 6) conditions. However, maximum surface tension values for

DEPN-8+1.5% Mini-B were higher than for CLSE on both the

pulsating and captive bubble surfactometers. The sum of these

findings show that DEPN-8 and Mini-B form an interactive and

highly surface-active binary mixture, and support the continued

development of related fully-synthetic exogenous lung surfactants

containing novel lipids and SP-B peptides.

We have previously reported the high surface activity and

inhibition resistance of model surfactants containing DEPN-8 or

a C16:0 sulfur-containing ether analog (SO2-lipid) combined with

1.5% by weight of column-isolated bovine SP-B/C [30,35–37].

These prior studies with purified native SP-B/C provide a proof of

concept for the current work using Mini-B in a fully-synthetic

binary lipid/peptide surfactant with DEPN-8. Mixtures of DEPN-

8 or SO2-lipid+1.5% bovine SP-B/C rapidly reduce surface

tension to ,1 mN/m in the presence of albumin or C18:1

lysophosphatidylcholine (LPC) [30,35–37]. DEPN-8+1.5% bovine

SP-B/C has surface activity equal to CLSE when exposed to

albumin, and surface activity superior to CLSE when exposed to

PLA2 or LPC [30,37]. The ability of DEPN-8+1.5% bovine SP-B/

C to resist inhibition by PLA2, albumin or LPC to an equal or

greater extent than CLSE in these prior studies is impressive, since

this calf lung surfactant extract is known to have high activity in

mitigating surfactant deficiency and/or dysfunction in animal

models and patients ([1,20,38] for review). Results here showed

that DEPN-8+1.5% Mini-B also had similar surface activity to

CLSE in the presence of albumin (Fig. 4), indicating that related

inhibition resistance characteristics can be achieved by a fully-

synthetic lung surfactant. Further studies extending these findings

to include inhibitors like LPC and also investigating other lipid/

peptide synthetic surfactants will be important for future work.

In developing optimal fully-synthetic lung surfactants, it is

challenging to substitute for the highly active full-length native

surfactant proteins, which have strong molecular interactions with

phospholipids. Among the surfactant apoproteins, SP-B is known

to be particularly active in improving the adsorption and film

behavior of lipids [1,39–47]. The Mini-B used here was designed

to maintain several important structural features of full-length

human SP-B [25]. The N- and C-terminal domains of full-length

SP-B are active sites of interaction with surfactant lipids [48–51],

and Mini-B incorporates residues 8–25 and 63–78 of human SP-B

that contribute to these amphipathic helices. Critical N- and C-

terminal regions are joined in Mini-B via a b-sheet/loop domain.

Peptide folding during synthesis is facilitated by specific solvents to

produce the requisite helix hairpin structure stabilized by

oxidation of cysteine residues, allowing Mini-B to form disulfide

connectivities between Cys-8 and Cys-78 and Cys-11 and Cys-71

analogous to those in native SP-B (residue numbers refer to the

full-length sequence of human SP-B) [25]. FTIR analyses and

plasmon resonance binding affinity studies here confirmed that the

structure of Mini-B had molecular interactions with DEPN-8

(Fig. 1, Table 2). This molecular biophysical behavior was

consistent with the surface activity findings that 1.5% Mini-B

increased the adsorption of DEPN-8 (Fig. 2), and enhanced its

overall dynamic surface activity on the pulsating bubble (Fig. 3).

Raising the content of Mini-B from 1.5% to 3% by weight relative

to DEPN-8 did not lead to further increases in surface activity in

captive bubble studies (Figs. 5, 6).

Although our current results show that DEPN-8+1.5% Mini-B

has high overall surface activity, it is very likely that the lipid/

peptide composition of synthetic exogenous surfactants can be

optimized even further. Multiple chemical constituents interact to

maximize surface activity in endogenous surfactant, and by

analogy this is also true for related synthetic surfactants. In terms

of lipid constituents, DEPN-8 and other disaturated PC analogs

like SO2-lipid [35,36] are designed with primary structural

analogy to DPPC, the most prevalent single phospholipid in

endogenous surfactant. However, endogenous surfactant also

contains anionic components (phosphatidylglycerol, phosphatidy-

linositol, and phosphatidylserine) capable of interacting with

positively charged amino acid residues in surfactant apoproteins.

We have recently defined the synthesis of novel diether PG analogs

(two phosphoglycerols and one phosphonoglycerol compound) for

potential combination with DEPN-8 or SO2-lipid in synthetic

exogenous lung surfactants [52]. These PG analogs are all

structurally resistant to phospholipases A1 and A2, and the

phosphonoglycerol is also resistant to phospholipase D. Initial

surface activity assessments show that these PG analogs can

increase the surface activity of DEPN-8 [52], and they are

important candidates for further optimizing the lipid composition

of synthetic surfactants containing DEPN-8 or SO2-lipid. In

addition to modifying lipid headgroups, fatty chains can also be

altered to include one or more double bonds as opposed to the

16:0 moieties in DEPN-8. One of the foregoing diether PG analog

compounds incorporates a 16:1 chain to increase molecular

fluidity in analogy with unsaturated glycerophospholipids in native

surfactant [52].

In terms of optimizing the peptide composition of synthetic lung

surfactants, the 34 amino acid Mini-B construct studied here

retains important structural analogies to endogenous SP-B as

noted earlier. However, this peptide does not incorporate all the

molecular groups and interactions in the 79 amino acid primary

sequence of human SP-B. Although DEPN-8+1.5% Mini-B had

high dynamic surface activity and inhibition resistance to albumin

(Figs. 3–6), maximum surface tension values were higher than

those of CLSE during cycling on both the pulsating and captive

bubble surfactometers (e.g., Figs. 5, 6). In addition, although

DEPN-8+1.5% Mini-B had greatly increased adsorption com-

pared to DEPN-8 alone (Fig. 2), the binary synthetic surfactant did

not reach the same high level of adsorption achieved by CLSE

(Fig. 2). Several modifications of Mini-B are being considered to

further improve peptide activity, including focused amino acid

substitutions or additions to increase molecular interactions with

synthetic phospholipids and phosphonolipids. This includes

specific changes in the primary sequence of Mini-B in the N-

and C-terminal regions that, coupled with the addition of new

synthetic lipids to DEPN-8, could significantly increase overall

adsorption and dynamic surface activity in modified synthetic

surfactants. Moreover, the synthesis of new SP-B-related peptides

designed to form oligomers in analogy with native SP-B is also

currently under active development, and synergy between SP-B

peptides and novel SP-C/SP-A peptides in synthetic surfactants

with lipid analogs is also being examined.

Conclusions
This study documents that a fully-synthetic binary lung surfactant

containing the diether phosphonolipid DEPN-8 combined with

1.5% (by weight) of the 34 amino acid Mini-B construct had very

high overall dynamic surface activity on both the pulsating and

captive bubble surfactometers. Mini-B interacted strongly at the

molecular level with DEPN-8 based on plasmon resonance

binding affinity studies and on FTIR analyses indicating that the

peptide altered its relative content of a-helical and turn/bend

conformation in DEPN-8 multilayers. DEPN-8 (0.5 mg/ml)+1.5%

Mini-B had surface tension lowering ability similar to the active

Synthetic Lung Surfactant

PLoS ONE | www.plosone.org 6 October 2007 | Issue 10 | e1039



bovine surfactant extract CLSE (0.5 mg/ml) on the pulsating

bubble, reaching minimum surface tensions of ,1 mN/m at 10 min

of bubble pulsation (20 cycles/min, 37uC, 50% area compression).

DEPN-8 (2.5 mg/ml)+1.5% Mini-B and CLSE (2.5 mg/ml) also

were comparable in reaching minimum surface tensions of ,1 mN/

m in the presence of serum albumin (3 mg/ml). Adsorbed films of

DEPN-8+1.5% or 3% Mini-B and CLSE also were shown to reach

low minimum surface tensions ,1 mN/m during 10 successive

cycles of quasi-static or dynamic compression on the captive bubble

surfactometer. In addition, DEPN-8+1.5% Mini-B was chemically

resistant to degradation by PLA2 in vitro, while CLSE was severely

degraded by this enzyme. The high surface activity, albumin

inhibition resistance, and phospholipase resistance of DEPN-

8+1.5% Mini-B supports the continuing development of related

fully-synthetic exogenous surfactants for treating inflammatory lung

injuries such as ALI/ARDS.

MATERIALS AND METHODS

(6)-trimethyl(3-phosphonopropyl)ammonium,

mono(2,3-bis(hexadecyloxy)propyl) ester (DEPN-8)
DEPN-8 was synthesized and purified as described previously by

Schwan, Notter, and co-workers [30,36]. The chemical scheme for

preparing DEPN-8 was based on the conversion of (6)-1-

hexadecyloxy-2,3-propanediol to (6)-2,3-bis(hexadecyloxy)-1-pro-

panol by way of hydroxyl protection at the 3-position, alkylation at

the 2-hydroxyl group, and deprotection [30,36]. Phosphonocho-

line placement involved treatment of (6)-2,3-bis(hexadecyloxy)-1-

propanol with 3-bromopropylphosphono-di-chloridic acid pre-

pared from 3-bromopropylphosphonic acid and PCl5 [30],

followed by reaction with Me3N in CHCl3:MeOH:H2O

(10:10:1). After concentration, the crude lipid was exposed to

AmberliteH and subjected to flash chromatography with

CHCl3:MeOH:H2O (60:35:5) as the elution solvent. Final

purification of DEPN-8 was through recrystallization from

CHCl3/acetone [30], as verified by both 13C and 1H NMR

spectroscopy. In the former, only peaks expected for the product

were observable, and 1H NMR exhibited a lone trimethylammo-

nium resonance. DEPN-8 also gave a single spot on thin layer

chromatography using a solvent system of 30:9:25:7:25 (by

volume) chloroform:methanol:2-propanol:water:triethylamine (sol-

vent system C of Touchstone et al [53]).

Mini-B peptide
The 34 amino acid primary sequence of Mini-B is: NH2 -

CWLCRALIKRIQAMIPKGGRMLPQLVCRLVLRCS -

COOH [25]. Mini-B synthesis was done in a stepwise process

starting with assembly as a linear sequence on an Applied

Biosystems ABI 431A solid-phase peptide synthesizer configured

for FastMocTM chemistry [54]. A low substitution (0.3 mmole/

gm) pre-derivatized Fmoc-serine (tBu) resin was used to minimize

the formation of truncated sequences during synthesis, and all

residues were double-coupled to the resin to insure optimal yield

[25]. To facilitate the appropriate pairing of disulfide residues,

cysteine residues at positions 1 and 33 were coupled using acid-

labile Fmoc-Cys trityl [Fmoc-Cys(Trt)], and acid-resistant Fmoc-

Cys acetamidomethyl (ACM) side chain-protecting groups were

used for cysteine insertion at positions 4 and 27 [25]. Fmoc

Gln(DMCP)-OH, which had greater solubility in coupling solvent

[55], was used for the Glutamine residues as opposed to more

conventional Fmoc-Gln(Trt)-OH. After synthesis of linear se-

quence, the crude peptide was cleaved from the resin and

deprotected using a mixture of 0.75 gm phenol, 0.25 ml

ethanedithiol, 0.5 ml of thioanisole, 0.5 ml of deionized water

and 10 ml trifluoroacetic acid per gram of resin [25,56]. The

cleavage-deprotection mixture was chilled to 5uC and added to the

resin, and then allowed to come to 25uC with continuous stirring

over a period of 2 hrs to insure complete deprotection [25]. The

crude peptide was removed by vacuum-assisted filtration, followed

by washing the resin on a medium porosity sintered glass filter with

trifluoroacetic acid and then dichloromethane to remove residual

peptide. The filtrate was precipitated with ice cold tertiary butyl

ether and separated by centrifugation at 20006g for 10 min

(several cycles of ether peptide precipitation and centrifugation

were used to remove cleavage-deprotection byproducts). The

crude peptide in the reduced state was dissolved in trifluoroethanol

(TFE):10 mM HCl (1:1, v:v) and freeze-dried, followed by further

purification using preparative scale HPLC [25]. The mass of final

purified peptide was confirmed by MALDI TOF mass spectrom-

etry, and peptide concentrations in physical studies were de-

termined by UV absorbance at 280 nm [57].

CLSE
CLSE was prepared by chloroform:methanol extraction of the

large aggregate fraction of lung surfactant obtained by centrifu-

gation (12,5006g for 30 min) of saline lavage from the intact lungs

of freshly-killed calves as detailed previously [58–60].

Phospholipase A2 (PLA2) and serum albumin for

inhibition studies
PLA2 (Sigma Chemical, St. Louis, MO) was suspended in 0.15 M

NaCl and 1.5 mM CaCl2 and incubated with surfactants dispersed

in the same solvent for 30 min at 37uC (final enzyme

concentration was 0.1 Units/ml) [3,61]. Chemical degradation

was assessed by determining phosphate levels [62] in thin layer

chromatographic bands [53]. Albumin (Bovine serum, Fraction V,

Sigma Chemical, 3 mg protein/ml) was combined with dispersed

surfactants in 1.5M NaCl+1.5 mM CaCl2 and allowed to incubate

at room temperature for 15–30 min prior to activity measure-

ments on the pulsating bubble surfactometer.

Lipid-Peptide Binding by Plasmon Resonance

(Biacore)
Binding affinities of Mini-B for DEPN-8 and DPPC (Avanti Polar

Lipids, Alabaster, AL) were measured with a Biacore 3000 system

(Biacore, Uppsala, Sweden). Mini-B films were chemically linked

to a CM5 sensor chip (BR-1000-14, research grade, containing

a carboxymethylated dextran matrix covalently attached to a gold

film) by ligand thiol-coupling of Cys 4 and Cys 27 in the peptide

sequence. The chip surface was initially activated with 1:1 EDC/

NHS (EDC: 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide hy-

drochloride; NHS: N-hydroxysuccinimide), and the reactive

disulfide groups were introduced using PDEA (2-(2-pyridinyl-

dithio)ethaneamine hydrochloride). Mini-B was then introduced to

the chip for the linkage reaction, which was subsequently

deactivated by excess Cys/NaCl. Liposomes of DEPN-8 or of

DPPC in running buffer (10 mM HEPES, 150 mM NaCl, 3 mM

EDTA, 0.005% Surfactant P20, pH 7.4) were then flowed over the

chip-linked peptide monolayer at a flow rate of 50 ml/min to

determine binding affinity at 37uC. Binding associated with

control medium containing no liposomes was subtracted from

final affinity curves, and mean ‘‘on’’ and ‘‘off’’ rate constants (kon

and koff) and the dissociation equilibrium constant (KD = koff/kon)

were calculated using BIAevaluation Software Version 4.1 based

on curve fitting from measurements at six different lipid

concentrations (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 mg/ml).
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FTIR and CD spectroscopy
Infrared spectra were recorded at 25uC using a Bruker Vector

22TM FTIR spectrometer (Pike Technologies) with a DTGS

detector, averaged over 256 scans at a gain of 4 and a resolution of

2 cm21. Lipid and peptide samples were initially freeze-dried

several times from 10 mM HCl to remove any interfering counter

ions. Films of DEPN-8 or DEPN-8:Mini-B (10:1 mole:mole) for

FTIR were prepared by air-drying from chloroform:TFE (1:1, v:v)

onto a 5062062 mm, 45 degree ATR crystal [27,51], and

hydrated by passing deuterium-saturated nitrogen gas through the

sample chamber for one hour prior to spectroscopy. Films of Mini-

B alone were air-dried from TFE onto the ATR crystal surface,

and then carefully overlaid with TFE to insure solvent saturation

of the peptide. Proportions of a-helix, turn/bend, b-sheet, and

disordered conformations were determined by Fourier self-

deconvolutions for band narrowing and area calculations of

component peaks of the FTIR spectra using curve-fitting software

supplied by Galactic Software (GRAMS/32, version 5; Galactic

Industries Corp., Salem, NH). The FTIR frequency limits used for

the different structures were: a-helix (1662–1645 cm21), b-sheet

(1637–1613 and 1710–1682 cm21), turn/bend (1682–

1662 cm21), and disordered or random (1650–1637 cm21) [63].

CD spectra (185–260 nm) were also made for Mini-B in 4:6 v:v

TFE:10 mM phosphate buffer (pH 7.4) using a JASCO 715

spectropolarimeter (Jasco Inc., Easton, MD) fitted with a thermo-

electric temperature controller and calibrated for wavelength and

optical rotation using (+)-10-camphorsulphonic acid [64]. Peptide

samples in 0.01 cm pathlength cells were scanned at a rate of

20 nm/min (sample interval 0.2 nm) at 25uC. CD spectra for

Mini-B were baseline-corrected by subtracting spectra for control

peptide-free solutions, and absorbance was expressed as mean

residue ellipticity (MRE). Quantitative estimates of the secondary

structural contributions from CD spectra were made with

SELCON 3 [28] using the spectral basis set for membrane

proteins implemented in the Olis Global WorksTM software

package (Olis Inc., Bogart, GA).

Adsorption apparatus
Adsorption experiments were done at 3760.5uC in a TeflonH dish

with a 35 ml subphase (0.15 M NaCl+1.5 mM CaCl2 ) stirred to

minimize diffusion resistance as described previously [65,66]. At

time zero, a bolus of surfactant containing 2.5 mg lipid in 5 ml of

0.15 M NaCl+1.5 mM CaCl2 was injected into the stirred subphase,

and adsorption surface pressure (surface tension lowering below that

of the pure subphase) was measured as a function of time by the force

on a partially submerged, sandblasted platinum Wilhelmy slide

[65,66]. The final surfactant concentration for adsorption studies

was uniform at 0.0625 mg phospholipid/ml (2.5 mg surfactant

phospholipid/40 ml of final subphase).

Pulsating bubble surfactometer methods
The pulsating bubble surfactometer (General Transco, Largo, FL;

formerly Electronetics Corporation, Amherst, NY) used in activity

studies was based on the original design of Enhorning [67].

Surfactant preparations (DEPN-8+1.5% Mini-B or CLSE) were

dissolved in chloroform, dried under nitrogen, and dispersed in

either 0.15 M NaCl+1.5 mM CaCl2 or 0.15 M NaCl. Dispersion

was by probe sonication on ice with 3–4 bursts of 15 sec duration

each (W220F Sonicator, 40 watts power). A 40 ml volume of

dispersed surfactant was added to a plastic sample holder mounted

on the pulsator unit of the bubble surfactometer. A small air bubble

was then formed and pulsated at a physiological rate of 20 cycles/

min between maximum and minimum radii of 0.55 and 0.4 mm

(50% surface area compression for a truncated sphere) [67]. The

pressure in the liquid phase was measured with a precision

transducer, and surface tensions at minimum and maximum bubble

radius (minimum and maximum surface tensions) were calculated as

a function of time of pulsation from the measured pressure drop

across the air-water interface using the Laplace equation for a sphere

[67,68]. Surfactant concentration was 1.0 or 2.5 mg phosphonoli-

pid/ml. Measurements were made at 3760.5uC.

Captive bubble surfactometer
The captive bubble instrument used was a fully computerized

version of that described in detail elsewhere [42–44]. In brief, the

sample chamber of the apparatus was cut from high-quality

cylindrical glass tubing (10 mm inner diameter). A TeflonH piston

with a tight O-ring seal was fitted into the glass tubing from the top

end, with a plug of buffered 1% agarose gel inserted between the

piston and the surfactant solution that was added through

a stainless steel port from the other end of the sample chamber.

The chamber and piston were vertically mounted in a steel rack,

the height of which was regulated by a precision micrometer gear.

In a typical experiment, the chamber was filled with a buffered salt

solution (140 mM NaCl, 10 mM HEPES, 2.5 mM CaCl2, pH 6.9)

containing 10% sucrose. One ml of surfactant solution containing

35 mg of lipid was added to this subphase, which was stirred by

a small magnetic bar at 37uC. The subphase volume in the sample

chamber averaged 0.7 ml (0.5–1 ml), resulting in a final average

surfactant lipid concentration of 50 mg/ml (35–75 mg/ml). An air

bubble approximately 7 mm in diameter (,200 ml in volume) was

then introduced within the sample chamber and subjected to

cyclic volume (surface area) changes by systematically varying the

height of the steel rack following a 5 min pause to allow adsorption

to the air-water interface. The ionic composition of the buffered

agarose plug minimized bubble adhesion to the plug during

cycling, so that an uninterrupted bubble interface was maintained.

Surface studies utilized a compression ratio of approximately 5:1

(maximum area/minimum area) and two sets of cycling condi-

tions: (1) initial quasi-static compression/expansion (10 cycles over

90 min including a 2 min pause between each cycle) followed by

10 cycles of dynamic compression/expansion (20 cycles/min).

During quasi-static cycling, bubble size was varied in a stepwise

fashion involving a 3-s change in volume followed by a 4-s delay

while the film was allowed to ‘‘relax’’. Compression cycles were

halted when bubble height no longer decreased as bubble volume

was decreased. In dynamic cycling studies, bubble size was

smoothly varied over the same size range as in the quasi-static

studies. Bubble images were continuously monitored during

compression-decompression using a digital video camera (PUL-

NIX Model TM-200, Pulmix America Inc, Sunnyvale, CA) and

a professional video recorder (Panasonic AG-1980P, Secaucus, NJ

07094) coupled to a computer with an Intel Pentium 4 processor.

Selected single frames stored in RAM were subsequently subjected

to image processing and analysis [69]. Bubble areas and volumes

were calculated by an original algorithm relating bubble height

and diameter to areas of revolution, and bubble surface tension

was determined by the method of Malcolm and Elliot [70].
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