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ABSTRACT

Typical approaches for predicting transcription
factor binding sites (TFBSs) involve use of a
position-specific weight matrix (PWM) to statistic-
ally characterize the sequences of the known sites.
Recently, an alternative physicochemical approach,
called SiteSleuth, was proposed. In this approach, a
linear support vector machine (SVM) classifier is
trained to distinguish TFBSs from background se-
quences based on local chemical and structural
features of DNA. SiteSleuth appears to generally
perform better than PWM-based methods. Here,
we improve the SiteSleuth approach by considering
both new physicochemical features and algorithmic
modifications. New features are derived from Gibbs
energies of amino acid–DNA interactions and
hydroxyl radical cleavage profiles of DNA.
Algorithmic modifications consist of inclusion of a
feature selection step, use of a nonlinear kernel in
the SVM classifier, and use of a consensus-based
post-processing step for predictions. We also con-
sidered SVM classification based on letter features
alone to distinguish performance gains from use of
SVM-based models versus use of physicochemical
features. The accuracy of each of the variant
methods considered was assessed by cross valid-
ation using data available in the RegulonDB
database for 54 Escherichia coli TFs, as well as by
experimental validation using published ChIP-chip
data available for Fis and Lrp.

INTRODUCTION

Transcription factors (TFs) are key molecular components
of gene regulatory networks that modulate gene expres-
sion by binding to DNA and affecting the ability of RNA
polymerase to transcribe genes. Thus, methods for

identifying TF binding sites (TFBSs) in DNA can
provide important insights into cell biology and may in
the future help to enable exquisite manipulation of cellular
behavior through synthetic and systems biology
approaches (1,2).
A large number of binding sites for diverse TFs have

been characterized through targeted low-throughput ex-
perimental approaches. Additionally, several high-
throughput methods, such as chromatin immunopre-
cipitation coupled to sequencing (ChIP-seq) and protein
binding microarray (PBM) assays, are now available for
large-volume detection of binding sites (3–5). TFBSs
discovered through both low- and high-throughput
approaches are documented in databases such as
RegulonDB (6) and JASPAR (7). These methods and
the increasing catalog of TFBSs are providing new
insights into the general nature of TF–DNA interactions
and promise to elucidate how TF binding specificity is
achieved (8).
Experimental approaches for characterizing TFBSs are

complemented by computational approaches, which can
provide a level of detail inaccessible experimentally. For
example, ChIP-seq binding sites are limited to a precision
of a couple hundred base-pairs (bp) (9), which is much
longer than actual TFBSs. Computational methods typic-
ally aim to model sets of TFBSs as (sequence) motifs
(5,10), built on the basis of a set of training data. A
motif model can be used to summarize data, to more pre-
cisely localize a binding site within a region of DNA
known to associate with a TF, to design experiments, or
to predict the effect of a mutation on a known TFBS. It
can also provide insights into the features of DNA se-
quences important for TF–DNA recognition.
A common approach to motif representation or motif

modeling involves the construction of a position-specific
weight matrix (PWM) or a consensus sequence (10). There
are many methods, as well as software tools, for modeling
TFBSs in terms of PWMs (11–17), as well as more
advanced techniques that consider dependencies between
nucleotides in different positions (18), but the vast
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majority are based on the assumption that letter repre-
sentations of DNA sequences suitably capture the
physicochemical properties of DNA (and proteins) that
govern the specificity of protein–DNA interactions.
However, the general validity of this assumption is ques-
tionable (19).
The three-dimensional (3D) structure of DNA is

sequence dependent (20,21), and shape readout is an im-
portant mode of recognition used by a large class of TFs
(22–25). However, letter sequence similarity does not
guarantee structure similarity and vice versa: DNA se-
quences can diverge at the level of letter representation
but share a similar structure, and conversely, DNA se-
quences can differ in only one or two bases but have
distinct local structures (20,22,26). There is strong
evidence that TFs that recognize one particular sequence
can also recognize different sequences if the sequences
have similar structural properties, and more generally
that some TFs interact with multiple classes of DNA se-
quences at the level of letter representation (21–24,27–29).
Interestingly, it was recently reported that Hoogsteen base
pairs, which are characterized by a pattern of hydrogen
bonding that differs from that of Watson–Crick base
pairs, are present in free DNA in equilibrium with
Watson–Crick base pairs (30). These discoveries imply
that TF-DNA binding specificity is extremely unlikely to
be described by a simple linear code (31). The simple
reason is that, with this newfound understanding of the
plasticity of DNA structure, a letter code for a DNA
sequence can no longer be taken to have an unambiguous
structural interpretation.
Moving beyond analysis of letter codes, researchers

have made a number of attempts to use structural data
to predict TFBSs (32–42). Some approaches focus on
shape readout, although this is relevant only for some
TFs. A second important mode of recognition is base
readout (22), which involves direct contacts between nu-
cleotides and amino acid residues. In other words, some
TFs scan the chemical signatures of DNA sequences, not
their shapes alone. Methods that rely on atomic structures
of protein–DNA complexes can address these cases but
are computationally more expensive and depend strongly
on the quality of experimental structures (35). In some
cases homology structure predictions can provide some
of these details, but these calculations still require a
degree of expertize in structural modeling.
Although promising results have been obtained by

all-atom approaches in some cases, there is a need for
methods that consider details at an intermediate reso-
lution, between the fine resolution of atomic characteriza-
tion of macromolecular complexes and the coarse
resolution of letter representations of DNA. In particular,
we believe that a method requiring only the sequences of
known binding sites (i.e. the same inputs as standard
PWM approaches) but using physical properties of
DNA to construct a TFBS model could begin to
approach the accuracy of structure-based models while
retaining the accessibility of the usual PWM models.
Recently, we reported a motif modeling approach based

on local structural and chemical features of DNA (26).
This approach, which we called SiteSleuth, maps DNA

sequences to physicochemcial features and uses a
support vector machine (SVM) classifier that discrimin-
ates between known TFBSs and genome background se-
quences. The features considered include structural
features, which characterize the local conformation of a
DNA sequence, and chemical features, which characterize
the thermodynamics of interactions between small func-
tional group probes and a DNA sequence. The SiteSleuth
method typically performs better than commonly used
PWM-based methods (26).

Here, we report an improvement of the SiteSleuth
method obtained by considering both new physico-
chemical features and algorithmic modifications (i.e. vari-
ations on the machine learning approach). We examine
each improvement by implementing them one by one
into distinct motif models, and by comparing to a
standard PWM-based algorithm. In all, we compare six
methods. To evaluate the different motif modeling
approaches, we focused on 54 TFs in Escherichia coli
and their binding sites documented in RegulonDB (6),
measuring the accuracy of each model through cross val-
idation. We also used ChIP-chip binding data available
for the E. coli TFs Fis and Lrp (43,44).

MATERIALS AND METHODS

Our physicochemical motif modeling approach is based
on two essential ingredients: physicochemical features of
DNA, and supervised machine learning, in particular the
use of SVMs to discriminate known TFBSs from back-
ground genome sequences. In this section, we first describe
calculation of the various features used in our motif
models and show how DNA sequences are mapped to
those features. We consider two main classes of
physicochemical features: structural features, which char-
acterize the conformational rigidity and steric properties
of DNA, and chemical features, which characterize the
electrostatic profile around DNA. We also introduce
letter features, which makes the information used in
training an SVM the same as that used in standard
PWM-based approaches. We distinguish the new models
using physicochemical features or letter features by
including PMM or LMM (for physical motif model or
letter-based motif model), respectively, in their name.
Second, we describe the details of the training and predict-
ing aspects of the machine learning approach that we use,
which is based on SVMs. We discuss optimization of SVM
parameters through grid search, the differences between
the linear and radial basis function (RBF) SVM kernels,
improvements in the training step through feature selec-
tion, and improvements in the prediction step through
consensus-based post-processing of the positive predic-
tions. Finally, we discuss the sources of data used for
training and testing.

Definition and use of feature sets

Structural features
Our structural features are based on free DNA properties.
Because structural correlations have been observed
between free and bound TFBSs (45), we expect that
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these properties will be relevant for TFBSs prediction.
First, parameters describing the geometry of base pairs
and bp steps were derived from duplex structures of
short DNA sequences (all possible 3- and 4-mers
embedded between flanking GC dinucleotides), which
were found via molecular dynamics (MD) simulations as
described previously (26). Briefly, for each duplex, the
initial structure was taken to be the standard Watson
and Crick structure for B-DNA. The NAMD program
(46) and the CHARMM27 force field (47–50) were then
used to produce an equilibrium average structure. For the
middle base pair in each of the 64 possible 3-mers, we
used normal mode analysis of the corresponding aver-
age structure to calculate six base-pairing parameters:
shear, stretch, stagger, buckle, propeller and opening.
Similarly, for the middle 2 bp in each of the 256 possible
4-mers, we used normal mode analysis of the correspond-
ing average structure to calculate 6 bp step parameters:
shift, tilt, slide, roll, rise and twist. Features derived
from simulated structures have been shown to correlate
with features derived from experimentally determined
structures (26).

In addition to the geometric parameters described
above, which were considered in earlier work (26), we
also considered a structural profile defined on the basis
of hydroxyl radical cleavage of DNA (20,53,54). This
profile has been shown to correlate with various aspects
of DNA structure (54), as the global structure of a DNA
sequence imposes localized steric constraints on hydroxyl
radical cleavage propensity (20). The ORChID (OH
Radical Cleavage Intensity Database) resource provides
tools for predicting the hydroxyl radical cleavage profile
of a given DNA sequence (53). The profile is calculated by
sliding a 4 bp window across the sequence and averaging
over a database of experimentally measured cleavage
profiles to generate a cleavage propensity at each nucleo-
tide. Within the ORChID tool, the cleavage propensity at
each position is completely determined by the three
flanking nucleotides on each side of a central nucleotide,
so our hydroxyl radical cleavage feature list consists of the
calculated structural profiles for all possible 7-mers
(47=16 384). Each of these 7-mers is associated with
two structural features: the cleavage propensities of the
central nucleotides of the forward and reverse strands.

Chemical features
Structural features characterize the conformation of free
DNA. Here, we introduce chemical features to character-
ize the electrostatic profile around DNA, which can be
expected to influence site-specific protein–DNA inter-
actions. In earlier work, 31 small functional groups were
used as probes, and thermodynamic parameters were
calculated to characterize an array of probe and DNA
configurations (26). Here, we consider the 20 common
amino acids as probes of the DNA electrostatic profile.
For a given probe, different spatial configurations of the
probe and a DNA duplex are generated. Thermodynamic
parameters are calculated for each configuration and an
average over the configurations is determined. Features
based on functional group probes were calculated as
described previously (26). For amino acid probes, a

similar approach is followed, except sampling of configur-
ations is now more extensive because amino acids are rela-
tively large, and as a result, thermodynamic parameters
are more sensitive to configurational aspects of probe–
DNA interaction. These features, which are introduced
in this study, are determined as described below.
Initial structures of amino acids capped by an acetyl

group at the N-terminus and an N-methylamide group
at the C-terminus were obtained using CHARMM34b1
(55). These structures were paired with equilibrated,
average structures of DNA 3-mers (with flanking GC di-
nucleotides), calculated as described above. For each of
the 20� 64 amino acid-DNA duplex pairs, we considered
the following spatial configurations of the two molecules.
As illustrated in Figure 1, for each of the two central nu-
cleotides in the DNA duplex, we considered a 6� 6� 3
grid filling a rectangular box. For each grid, the
a-carbon of the amino acid probe was placed at each of
the 108 grid points. The initial orientation of the amino
acid was arbitrary but consistent across grid points. At
each grid point, we considered 81 distinct whole-molecule
rotations. Each of these rotations was a composition of a
rotation of angle y2 [�p/2, �7p/18, �5p/18, . . . , p/2]
around the x-axis and a rotation of angle f2 [�p, �8p/
9, �7p/9, . . . , p] around the z-axis (9 rotations each). At
each grid point, we also considered fifteen side-chain
rotamers for all amino acid probes except alanine,
glycine and proline. Rotamers of an amino acid were
generated by rotating the side chain around the bond
between the a- and b-carbons (�1 dihedral; additional ro-
tations around �2, �3 etc. were not considered). The
angles of rotations were integer multiples of 2p/15 (see
Figure S1 of the Supplementary Materials for more
details on how the angle increments were chosen). Thus,
for each side of a DNA duplex, we considered a total of
2 256 984 probe-duplex configurations (108� 81�
(17� 15+3)).
For each amino acid-DNA duplex pair (Figure 1),

we estimated the Gibbs free energy at each grid point p
using the expression Gp=�kBTlnZp, where kB is the
Boltzmann constant, T is the absolute temperature,
which we took to be 298 K, and Zp is the partition
function

P
q exp(�Epq/kBT). In the partition function, q

is an index for the elements of the set of all whole-molecule
rotations and all side-chain rotations (if any), and Epq is
the total energy given by NAMD and the CHARMM27
force field with the probe at grid point p in orientation q.
The change in Gibbs free energy caused by interaction
between the probe at a grid point and the DNA duplex,
�Gp, was found by subtracting the Gibbs free energy
obtained when the probe and DNA duplex were separated
by a large distance, G. In other words, �Gp�Gp�G.
To define chemical features, we first split up the grid into

three sub-grids: two 3� 3� 3 grids in the minor and major
grooves of the DNA and a 6� 3� 3 grid outside the DNA
(orange dots, red dots and purple dots in Figure 1, respect-
ively). For each sub-grid, we computed the average (over
all favorable grid points with �G< 0), �Gavg, and
minimum, � Gmin. This procedure resulted in 120 values
for each side of a DNA duplex (minimum and average
�G for each of three sub-grids and 20 amino acids).
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Many amino acids may have similar interaction profiles
with the various 3-mers, so many of these 120 dimensions
are highly correlated across different DNA sequences. To
eliminate correlated feature dimensions while retaining the
essential information about the electrostatic profile
encapsulated in the chemical features, we used principal
component analysis (PCA) to generate orthogonal vectors
that capture the variability of the original feature set; we
normalized each of the 120 dimensions (across all 64
possible 3-mers) to have mean 0 and standard deviation
1 prior to performing PCA. We chose the top 20 principal
components as an abbreviated feature list, which captured
90.5% of the variance. The final feature list was obtained
by concatenating the features for each side of the DNA
duplex. Thus, the chemical features consist of 40 values
(20 for each strand) associated with the center nucleotide
of each DNA 3-mer.

Letter features
The structural and chemical features discussed above are
one facet of SVM-PMM and SiteSleuth that distinguishes
these methods from other TFBSs prediction algorithms,
such as PWM-based methods and other methods based on
letter representations of DNA sequences (11–14). The
other main difference is the use of an SVM classifier.
Because it was previously found that SiteSleuth outper-
forms other TFBSs prediction algorithms (26), we
wanted to measure how much of this improvement can
be attributed to the use of SVM-based classification
versus the use of physicochemical features. To this end,

we created an LMM that uses features designed to encode
letter sequences: orthonormal 4D vectors (1,0,0,0),
(0,1,0,0), (0,0,1,0) and (0,0,0,1) are designated as feature
vectors of the single nucleotides A, C, G and T, respect-
ively. Using letter features, we can independently assess
the effects of using SVM-based classification and
physicochemical features in PMMs. We will use
‘SVM-LMM’ to refer to TFBSs models that take letter
features as input for training.

Mapping DNA sequences to feature vectors
To associate DNA sequences of known or potential
TFBSs with positions in a space of features, in which
negative and positive examples can be separated using
the SVM approach to classification, we map each
sequence to a feature vector of real numbers. Each
scalar component of a feature vector corresponds to a
letter, structural or chemical feature. Although it is time
consuming to calculate the structural and chemical
features of (short) DNA sequences, the mapping proced-
ure described below allows us to pre-calculate and store
sets of features and then to efficiently determine the
physicochemical features of any new given DNA
sequence.

The procedure for mapping a given DNA sequence to a
feature vector is illustrated in Figure 2. Before starting this
procedure, we select a known or potential binding site
sequence (Figure 2A), we add flanking nucleotides at
each end (lower case) in accordance with the genome
sequence, and we identify the sets of pre-calculated

Figure 1. Schematic of amino acid–DNA interaction. The DNA structure for sequence CAG (and two flanking GC pairs on either end) is
superimposed with 108 grid points around the center adenosine nucleotide arranged in a 6� 6� 3 grid and a sample isoleucine structure; the
three sub-grids in the DNA minor groove, major groove and outside the DNA are colored orange, red and purple, respectively. G is colored
green, C blue, A yellow and T red. In the calculations, the a-C of the amino acid is centered at each grid point and rotations and energy calculations
are performed as described in Materials and Methods. The grid is defined by six bounding planes: the bounding planes above and below the grid are
centered halfway between the central A and the adjacent nucleotides C and G above and below, respectively, and are parallel to each other as well as
to the plane of the rings in adenine. The bounding plane on the left is centered between the A and T base-pairing nucleotides and is perpendicular to
the previously defined planes. The bounding plane on the right is placed 20Å from the plane on the left (and parallel to it). The bounding planes in
and out of the page are perpendicular to all previously defined planes and 10Å in or out from the center of the adenine ring. Thus the volume of the
grid is 20� 20�D Å3, where D is the distance between adjacent nucleotides, typically about 3.5 Å. This figure was created using VMD (51,52).
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features for short sequences that will be considered
(Figure 2B). In SVM-PMM, four feature sets are con-
sidered: (i) amino acid–DNA chemical features (ai);
(ii) structural base-pairing features (bi); (iii) structural bp
step features (gi); and (iv) structural hydroxyl radical
cleavage features (di). Within a feature set, K features
are associated with each of the possible DNA sequences
of length N. Set (i) associates 20 features with each of the
possible 3-mers (i.e. ai2R

20, i=1, . . . , 64): Set (ii) associ-
ates six features with each of the possible 3-mers: Set (iii)
associates six features with each of the possible 4-mers:
and Set (iv) associates two features with each of the
possible 7-mers. In the case of letter features (not con-
sidered in Figure 2), four features (three 0’s and one 1)
are associated with each of the four 1-mers.

To map a given DNA sequence to features, we start
with the first nucleotide of the sequence proper (e.g. the
first capital letter in Figure 2A). For each feature set of
interest, we consider the appropriate length N-mer sliding
window across the sequence, illustrated in Figure 2B.
Thus, for Set (i) or (ii), for which N=3, we consider the
first nucleotide and its closest neighbors. The features
associated with this N-mer are then concatenated to the
feature vector for the sequence, as shown in Figure 2C.
The example of Figure 2 is specific to SVM-PMM. The
feature sets considered depend on the motif model under
consideration, and motif models can incorporate different
feature sets.

For a given set of sequences to be used in SVM training,
we linearly scale each feature associated with these se-
quences such that the numerical values associated with a
given feature across all sequences lie between �1 and 1.
The purpose of this normalization step is to avoid differ-
ences in magnitude between feature dimensions over-
whelming the differences within a feature dimension
(56). To scale the features, once all training sequences

are mapped to feature vectors, we examine xi,j (i over all
sequences, j over all features) and determine
Mj�maxj(jxi,jj). We use xi,j/Mj as the components of
feature vectors in SVM training. The values of Mj are
saved and used to normalize components of feature
vectors of test sequences.

Algorithmic details

Machine learning algorithm
Using LIBSVM (56), we train SVM classifiers to discrim-
inate features of TFBSs from features of background
genome sequences. The process is described below.
We are given m feature vectors {x1, . . . , xm}, where

xi2R
n and n is the number of features captured in each

vector (recall that each feature corresponds to a single
scalar quantity.) We are also given the corresponding
m classification values {y1, . . . , ym}, where yi2 {�1, 1}.
The feature vector xi is mapped to a higher dimensional
space through a function f, the form of which depends
on the form of a kernel function. The kernel function
k(zi, zj)=f(zi)�f(zj) defines a similarity measure between
two points zi and zj. For a linear SVM,

kðz1; z2Þ ¼ zT1 z2; ð1Þ

which reflects use of a hyperplane to separate positive and
negative examples. The RBF kernel is

kðz1; z2Þ ¼ exp �� k z1 � z2 k
2

� �
; ð2Þ

where g is a constant. Because positive training examples
are often tightly clustered in feature space, whereas
negative training examples tend to be more broadly
distributed, the RBF kernel often gives more accurate
results. However, training an SVM classifier with an
RBF kernel is significantly more computationally expen-
sive (56). Below, we use ‘SVM’ in the name of a method to

A

B

C

Figure 2. Schematic of feature mapping procedure. For illustration, we demonstrate the mapping with the features used in SVM-PMM. (A) For a
given sequence, we include three flanking sequences (lower case letters) on either side. (B) N-mers of length 3, 4 and 7 are slid across the sequence
(the first 3-mer subsequence is indicated in panel (A)) and the resulting subsequences are mapped to chemical features a, structural bp features b,
structural bp step features g and hydroxyl radical cleavage features d. (C) Those features are concatenated into a feature vector x for the sequence.
The feature vector for this 10-mer will have 334 dimensions (6+20 for each of 10 3-mers, 2 for each of 10 7-mers and 6 for each of 9 4-mers).
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denote use of a linear kernel, and we use ‘SVMR’ in the
name of a method to denote use of an RBF kernel.
In training an SVM, we find a surface with weight

vector w and offset d that separates the positive
examples (i.e. the examples for which yi=1) from the
negative examples (i.e. the examples for which yi= � 1).
This task is accomplished by solving the minimization
problem

min
w;d;�i

1

2
wTwþ Cþ

X
yi¼1

�i þ C�
X
yi¼�1

�i ð3Þ

subject to the constraints

yiðw � fðxiÞ þ dÞ � 1� �i and �i � 0: ð4Þ

The adjustable parameters xi (i2 [1, . . . , m]) are slack vari-
ables that are introduced to account for the fact that it is
generally not possible to perfectly separate the training
data. The C+ and C� parameters, which are called
penalty parameters, are taken to have fixed values.
The minimization problem is solved using quadratic
programming techniques. The solution can be
expressed as

w ¼
X
i

�iyifðxiÞ: ð5Þ

where each ai is a Lagrange multiplier. The separating
surface can be represented as

w � fðxÞ þ d ¼
X

i

�iyifðxiÞ � fðxÞ þ d; ð6Þ

for feature vector x. Thus, given values for C+, C� and g
(if the RBF kernel is being used), the other SVM param-
eters (w, d and xi for i=1, . . . , m) are uniquely determined
by the solution of the minimization problem described
above.
The penalty parameters C+ and C� are introduced to

balance the influences of positive and negative training
data, which is important because we always have available
many more negative examples than positive examples.
Each of the C+, C� and g (if the RBF kernel is being
used) parameters affect the accuracy of a classifier and
should be optimized for best results. Optimization of
these parameters is performed as follows.
For an SVM with a linear kernel, we optimize C+ and

C�. For an SVM with an RBF kernel, we set
C+=C�=C and optimize C and g. In both cases, opti-
mization is performed through a 2D grid search. In this
search, the optimality of a grid point is assessed using a
cross-validation procedure, which is described below. This
approach to SVM parameter optimization is an adapta-
tion of a method recommended in the LIBSVM guide
(56). The search starts out over a coarse grid of points:
C+, C�={2�5, 2�3, . . . , 211} (in the case of a linear
kernel), or C={2�5, 2�3, . . . , 215} and g={2�15,
2�13, . . . , 25} (in the case of a radial kernel). The optimiza-
tion is refined over two progressively finer grids in smaller
increments around the best grid point from the previous
grid (as assessed by the cross-validation procedure). For
example, consider a linear kernel. If (C+, C�)= (25, 2�1) is

the optimal result from the first grid search, the second
grid search would be over C+={23, 24, 25, 26, 27} and
C�={2�3, 2�2, 2�1, 20, 21}. If (C+, C�)= (24, 20) is the
optimal result from the second grid search, the third grid
search would be over C+={23, 23.5, 24, 24.5, 25} and
C�={2�1, 2� 0.5, 20, 20.5, 21}. Refinement stops after
the third grid search.

Each grid point defines a pair of parameters. For each
pair, we perform 3-fold cross-validation: the available
training data are randomly split into three sets (as equal
in size as possible) and each set is used to assess the pre-
diction accuracy of an SVM classifier trained, as described
above, on the other two sets. The accuracy of the classifier
is quantified by the F-measure:

F ¼
2pr

pþ r
; ð7Þ

where p and r are precision and recall, respectively. These
quantities are defined as

p ¼
TP

TPþ FP
and r ¼

TP

TPþ FN
; ð8Þ

where TP, FP and FN are counts of true positives, false
positives and false negatives from the cross-validation
procedure.

Once optimal values for C+ and C� (or C and g) are
obtained through the process described above, these par-
ameter values and all available training data are used to
determine the remaining SVM parameters by solving the
minimization problem described above. The optimal F-
measure obtained after the third grid search (but before
final determination of w, d and xk) is taken to represent the
accuracy of an SVM classifier. Once all SVM parameters
are determined, an SVM classifier can be used for predic-
tion: a test sequence is mapped to a feature vector z and w
� f(z)+d is evaluated (left-hand side of Equation (6)). If
this value is positive (i.e. z is on the same side of the
separating surface as the positive examples), the
sequence is considered to be a binding site.

Feature selection
We evaluated a simple feature selection step to reduce the
dimensionality of feature vectors, which results in
decreased computation time and improved accuracy.
Feature selection is done separately for each TF, with
the aim of selecting the subset of features that most
aptly describes DNA binding for that TF. Our feature
selection step is performed prior to cross-validation and
training of the SVM, so it depends only on the training
data and the feature set used. The procedure is illustrated
schematically in Figure S2A of the Supplementary
Materials.

First, we compute the mutual information MIj
(j=1, . . . , n) between the j-th dimension of the training
data, xi,j, and the training classifications yi; note that as j
indexes the entire feature vector, it covers both the length
of the binding site and all the features for each nucleotide
of the binding site. Mutual information measures the de-
pendence between two variables based on their probability
distributions: a large value indicates greater dependence.
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Finding the distribution of yi is straightforward, as it takes
only the values �1 and 1. After normalization, xi,j is a
continuous variable between �1 and 1. We approximate
its distribution by a discrete histogram with 20 bins of
width of 0.1, which we denote as Bl=[�1+(l� 1)/10,
�1+l/10), for l=1, . . . , 20. The quantity MIj is then
computed as

MIj ¼
X20
l¼1

X
m¼�1;1

Pðxi;j 2 Bl; yi ¼ mÞ�

log2
Pðxi;j 2 Bl; yi ¼ mÞ

Pðxi;j 2 BlÞPðyi ¼ mÞ

� �
:

ð9Þ

where P(xi,j2Bl) and P(yi=m) are the marginal distribu-
tions of xi,j and yi (i.e. distributions computed over the
training data, indexed by i) and P(xi,j2Bl, yi=m) is the
joint distribution.

After MIj has been computed for each feature dimen-
sion, we select the minimal subset of feature dimensions
such that at least 90% of the total mutual information is
retained. In other words, we ‘turn on’ dimensions one at a
time, starting with the dimension with the largest MIj first,
until the sum of all the ‘on’ MIj is at least 90% of the total
(the sum over all j). The list of ‘on’ dimensions is
determined from the training data and saved so that the
same features are retained in the test data. We will indicate
the use of the feature selection step in a method by adding
‘FS’ to its name. Figures S2B and C of the Supplementary
Materials give statistics about the overall percentage of
features retained by feature selection, and how that reten-
tion breaks down over the different types of features,
respectively.

Consensus-based predictions
SVM parameter optimization by cross-validation as
described above results in selection of values for (C+,
C�) or (C, g) that yield good discrimination of negative
and positive training examples. However, in some cases,
there are many combinations of parameter values that
yield approximately the same discrimination. For an
example, compare Figures S3A and B of the
Supplementary Materials, which show the accuracy of
SVM-PMM at different (C+, C�) pairs for DnaA and
NanR, respectively. Because there is a degree of
stochasticity in the cross-validation step introduced by
the random three-way splitting of the training data, the
best parameter pair can change from one training run to
the next. For this reason, we repeated all training and
prediction runs five times to assess the robustness of the
SVM parameter settings that result from the training
procedure.

We can use the extra information from multiple training
and prediction runs by considering the combined results.
Multiple training runs on the same training data generate
similar but different models, because parameter settings
depend on the random splits of training data used in the
cross-validation procedure. We can combine the results of
prediction runs for these related models and focus our
attention on predictions that are made by all or a specified
fraction of the models, thereby filtering out predictions

that are sensitive to degenerate SVM parameter settings.
Thus, in addition to examining the accuracy of the predic-
tion steps individually, we also use a post-processing con-
sensus approach to identify higher confidence binding sites
by requiring that a TFBSs be predicted in all (five) predic-
tion runs.

Data for training and testing

Training data were obtained and used as described previ-
ously (26), except flanking sequences were extended to 3
nucleotides instead of 1. Briefly, we considered binding
sites of 54 TFs documented in RegulonDB (57). Each of
these TFs is associated with at least five TFBSs in
RegulonDB. Binding sites of a given TF are all taken to
have the same length, which is sufficiently long to encom-
pass the binding sites documented in RegulonDB.
Sequences used as positive training examples included
the TFBSs sequences from RegulonDB as well as
flanking nucleotides. Flanking nucleotides were added in
accordance with the E. coli genome sequence, which was
obtained from KEGG (58). Sequences used as negative
training examples consisted of randomly selected
non-coding sequences of the E. coli genome (i.e. sequences
were selected from regions not annotated to contain open
reading frames); the length of the negative training
sequence was taken to be the same as that of a positive
training sequence for that TF, so that the feature dimen-
sions were equal for all training data. A total of 10 000
negative examples were considered for each TF; known
TFBSs were excluded from the negative examples. To
assess the accuracy of motif models, we used the
F-measure obtained from the cross-validation analysis
described above.
To further validate motif modeling approaches, we used

published ChIP-chip data for Fis and Lrp (43,44). These
data include 894 sequences that putatively contain at least
one binding site for Fis and 138 sequences that putatively
contain at least one binding site for Lrp. Data from
RegulonDB include 133 binding sites of Fis and 84
binding sites of Lrp. The sequences from RegulonDB
were used for training (as described above), whereas the
sequences from the ChIP-chip data were used only for
validation. Although the number of training sequences
for Lrp is similar to the number of Lrp-bound sites
detected by ChIP-chip assay, only 11 of the ChIP-chip
sequences contain a binding site documented in
RegulonDB. We define the accuracy of a Fis or Lrp
motif model as the number of ChIP-chip sequences con-
taining a predicted binding site divided by the total
number of predicted binding sites.

RESULTS

As detailed in the Materials and Methods section, we de-
veloped motif models based on physicochemical features
of DNA. Using MD simulations, we generated a tabulated
set of sequence-dependent structural and chemical
features of short DNA sequences. We also obtained em-
pirical structural features from hydroxyl radical cleavage
profiles of DNA using the ORChID resource. Known or
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potential binding sites for a given TF are mapped to
vectors of these structural and chemical features, and
feature vectors of positive and negative examples of
TFBSs were used to train an SVM classifier to discrimin-
ate between true and false binding sites.
Our results span a series of six methods and correspond-

ing motif models: a standard PWM-based method, BvH,
plus five SVM-based methods listed in Table 1 in order of
increasing complexity and accuracy. The different
methods are distinguished by the classifier used to
identify binding sites, the information/features input into
the classifier to describe potential binding sites, and add-
itional algorithmic steps. The advances we discuss in the
Results come from improvements in all three areas: the
use of the radial SVM versus linear SVM classifier (and
the improvement of both over the PWM classifier), the
introduction of new physicochemical features, and the
mutual information-based feature selection step. Finally,
we see additional improvements in the predicted TFBSs
with use of consensus-based post-processing.

Training results assessed using data in RegulonDB for 54
TFs in E. coli

Using F-measure averaged over five independent training
runs and all 54 TFs to assess accuracy (Figure 3), we see
significant effects from both the training algorithm and
the features used in each method; average F-measures
and training times (as well as number of positive
training sequences) are given in Table S1 of the
Supplementary Materials. We see steady improvements
in accuracy from left to right in Figure 3A. First,
although BvH and SVM-LMM use only the DNA letter
sequence information (i.e. the same features), the average
F-measure for SVM-LMM is 67% larger than BvH. Thus,
solely the use of the SVM framework for training and
predicting binding sites constitutes a substantial improve-
ment over standard PWM-based methods. However, just
as much improvement is observed with the introduction of
physicochemical features in SiteSleuth, where the average
F-measure increases further to 0.38 (138% increase over
BvH). Further improvement with the introduction of new
physicochemical features is observed in SVM-PMM,
where the average F-measure increases to 0.39. Finally,
additional improvements from algorithmic changes
(rather than changes of feature sets) are obtained with
the introduction of feature selection (in SVM-PMM-FS),
average F=0.40, and with use of a radial kernel

(in SVMR-PMM-FS), average F=0.43. Although the in-
cremental gains are not always large, there are significant,
repeatable improvements when the 54 TFs are considered
as a whole.

By examining the improvements for each TF individu-
ally in Figure 3B (and studying Table S1 of the
Supplementary Materials) we can gain additional under-
standing for the averaged improvements in Figure 3A.
Some TFs show very marked improvement with the first
introduction of physical features (i.e. SVM-LMM versus
SiteSleuth) and only small improvements thereafter. For
example, the F-measure for MalT increases from 0.079 to
0.529 from SVM-LMM to SiteSleuth, with only a slight
additional increase to 0.606 for SVMR-PMM-FS. Other
TFs are apparently equally well described by the DNA
letter sequence as by physicochemical features: Fis has
an F-measure of 0.29 for SVM-LMM (56% higher than
BvH), but actually a decrease in F-measure for the linear
physicochemical SVM methods (its F-measure for
SVMR-PMM-FS, 0.33, is slightly higher). Although
SVMR-PMM-FS is the most accurate method overall,
the wide distribution of trends for each individual TF
mean that different aspects of this method are important
for accurate predictions for different TFs: in some cases,
the important change is the radial kernel, whereas in other
cases the important change is the physicochemical
features.

The different SVM-based models have different compu-
tational requirements, as can be seen in Supplementary
Figure S4A. Reported training times include (i) mapping
training sequences to feature vectors; (ii) parameter opti-
mization by grid search: and (iii) final training of the
model with optimal parameters. Step (ii) dominates the
overall run time, as it requires training the SVM three
times per parameter pair; the time for training the SVM
scales with the length of the feature vector (which in turn
scales with the number of features and the length of the
binding sites), the number of training examples, and the
SVM kernel. The latter is the main reason for the large
increase in times for SVMR-PMM-FS (although the
initial coarse grid for that method is slightly larger as
well): optimizing Equation (3) is much more computation-
ally expensive for the RBF kernel. However, the increased
time for SVMR-PMM-FS highlights the importance of
the feature selection step, which in addition to a small
increase in accuracy also results in a decrease in training
time, about a 32% speed-up on average. The distribution

Table 1. Summary of SVM-based motif models tested

Name Kernel Features used Additional algorithmic steps

SVM-LMM Linear DNA letter sequence
SiteSleuth Linear Physicochemical features (original)
SVM-PMM Linear Physicochemical features (expanded)
SVM-PMM-FS Linear Physicochemical features (expanded) Mutual information-based feature selection
SVMR-PMM-FS RBF Physicochemical features (expanded) Mutual information-based feature selection

Original physicochemical features were introduced with the SiteSleuth method (26): structural bp features, structural bp step features and chemical
features derived from functional group–DNA interaction energies. Expanded physicochemical features include: structural bp features, structural bp
step features, hydroxyl radical cleavage features and chemical features derived from amino acid–DNA interaction energies.
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of speed-ups is shown in Figure S4B of the Supplementary
Materials, which in some cases is more than 60%. The
training time for BvH is not indicated in Figure 3, as
this time is just the time required to compute a PWM,
which is insignificant compared with SVM training
times. In contrast to the wide distribution of trends in
Figure 3B, changes in training time for different TFs in
Figure S4A of the Supplementary Materials are fairly con-
sistent and mirror the trends of the average training time
in Figure 3A.

We provide additional comparisons of each method
against the most accurate overall method, SVMR-
PMM-FS, in Figure 4. In each panel of Figure 4, we
plot the cross-validation accuracy of TFBSs models
obtained via SVMR-PMM-FS against those of models
obtained via one of five other methods (SVM-PMM-FS,
SVM-PMM, SiteSleuth, SVM-LMM or BvH). Each point
in a scatterplot corresponds to one of the 54 E. coli TFs
under consideration. A point on the diagonal line in a
panel is a point at which the accuracies of two models
being compared would be exactly equal; SVMR-
PMM-FS is the more accurate model for points below
the diagonal line. As algorithmic complexity increases
from Figure 4A (comparing to BvH) to Figure 4E

(comparing to SVM-PMM-FS), fewer points fall far
below the diagonal. Moreover, note than in each panel
of Figure 4, any points above the diagonal still tend to
be close to the diagonal. That is, when SVMR-PMM-FS is
less accurate than the other method being considered, it is
only slightly less accurate. On the other hand, a number of
points are always quite far below the diagonal in each
panel, so there are TFs for which SVMR-PMM-FS
performs much better.
It should be noted that there are six TFs for which all

methods fail (i.e. for which F=0). These TFs are CysB,
GcvA, OxyR, PspF, RcsAB and Rob. In these cases, the
likely cause for the poor performance is that the binding
sites for these TFs can be fairly diverse sequences, but too
few positive training sequences were available for any clas-
sifier to adequately construct a model. GcvA, PspF and
RcsAB have only five positive training sequences (the
minimum number for inclusion in our study), Rob has
only six, CysB has only eight and OxyR has only nine.
A small positive training set alone does not necessarily
mean low F-measure, as GadE and UxuR (both with
only five positive training sequences) have F-measures of
0.89 and 0.58 under SVMR-PMM-FS, respectively;
indeed, the Pearson correlation between number of

Figure 3. Training results for all 54 TFs. (A) Average F-measure and training time. (B) Plots of F-measure for each of the six methods relative to
BvH, in log-scale (for all TFs with F > 0). We do not report training times for BvH in (A), as they are &0. See Figure 4 for scatterplots showing the
full range of F-measures for each method, and Table S1 of the Supplementary Materials for their tabulated values.
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positive training sequences and F-measure for SVMR-
PMM-FS over all 54 TFs is only 0.12.
The fact that some TFs had only 5 positive training

sequences was also our reason for using 3-fold cross val-
idation in the training procedure. To see if any improve-
ment can be obtained from more splits, we tested 5- and
10-fold cross validation for the 7 TFs with at least 80
positive examples, training SVM-PMM-FS. The results
of this analysis are shown in Figure S5 of the
Supplementary Materials. For five of the TFs there was
essentially no change in F-measure from 3- to 10-fold
cross validation. Two of the TFs, Lrp and IHF, showed
slight increases.

Prediction results assessed using ChIP-chip data for Fis
and Lrp

Individual prediction runs
We used the trained models for Fis and Lrp to predict
TFBSs across the entire E. coli genome and compared the
predictions with binding regions from ChIP-chip experi-
ments (43,44). For these data, we defined the accuracy of a
motifmodel as the numberof predictedTFBSs inChIP-chip
regions divided by the total number of predicted TFBSs.
This approach also allowed us to test the consensus-based
approach for identifying predicted TFBSs, wherein we
compare the predicted TFBSs from five independently

A B

C D

E

F SVMR-PMM-FS

F
 (other m

ethod) 0 1

1
0

Fis
Lrp

Figure 4. Scatterplots of F-measure for each method versus SVMR-PMM-FS. For each panel, the horizontal axis is the F-measure for
SVMR-PMM-FS. Vertical axes are F-measures for: (A) BvH, (B) SVM-LMM, (C) SiteSleuth, (D) SVM-PMM and (E) SVM-PMM-FS. The
boxed dots are the Fis F-measures, and the circled dots are the Lrp F-measures.
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trainedmodels and retain only those sites that are predicted
positive by eachmodel; there is no variability in the training
procedure for BvH, so the consensus analysis is not per-
formed for this method. Figure 5A gives the accuracy
from each method for Fis and Lrp, and Figure 5B gives
the number of predicted binding sites from each method.
Note that the F-measures for Fis and Lrp are indicated by
theboxeddots and circled dots, respectively, inFigure 4.We
do not report prediction times for the different methods
under consideration, as prediction time is typically
dominated by the mapping of test sequences to feature
vectors, which is I/O intensive and therefore platform de-
pendent. We also give the DNA sequence logos for Fis and
Lrp, generated by WebLogo (59,60) from the positive
training examples in Figure S6 of the Supplementary
Materials for the reader’s reference.

For Fis, in accordance with cross-validation results
(Figure 4), we see a significant improvement in accuracy
from BvH to SVM-LMM. The improved accuracy can be
attributed to the use of SVM-based classification (and
negative training examples). However, SVM-LMM
performs similarly to SiteSleuth, SVM-PMM and SVM-
PMM-FS; it is only significantly outperformed by SVMR-
PMM-FS (Figure 5A, left set of bars). Correspondingly,
when comparing F-measures for these methods, only
SVMR-PMM-FS outperforms SVM-LMM. These
results suggest that the physicochemical features con-
sidered here may not provide substantially more informa-
tion than that found in the letter-based representations of
Fis binding sites. The accuracy results of Figure 5A are
mirrored in Figure 5B: as accuracy increases, the number
of predicted TFBSs decreases. Thus, improvements in
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Figure 5. Results from verification with ChIP-chip data for Fis and Lrp. Error bars reflect the standard deviation over five independent runs, and
thick horizontal bars are the results of five-way consensus analysis. Shown are (A) accuracy (number of ChIP-regions with a predicted TFBSs over
total number of predicted TFBSs) and (B) the number of predicted TFBSs (in inverted scale). There is no model variability in BvH, so there is no
extra consensus-based result for this method. In panel (A), it should be noted that the bar for SiteSleuth has zero height and that the height of the
bar for SVMR-PMM-FS is actually much taller than depicted. In panel (B), SiteSleuth has 0 predicted TFBSs for all runs, and the SVM-LMM and
SVMR-PMM-FS have 0 predicted TFBSs in the five-way consensus.
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accuracy (e.g. from BvH to SVM-LMM) seem to be
obtained by reductions of the false positive rate.
Starkly different results are obtained for Lrp (Figure 5,

right set of bars). The accuracy of BvH and SVM-LMM
are close to zero, and the accuracy of SiteSleuth is identi-
cally zero. In fact, SiteSleuth was unable to predict any
TFBSs for Lrp; we were surprised by this result, since the
SiteSleuth F-measure for Lrp is greater than the values for
BvH and SVM-LMM. We see comparable accuracy
between SVM-PMM and SVM-PMM-FS, and then sig-
nificant improvement in SVMR-PMM-FS. The latter
method reaches >10% accuracy on average. As in the
case of Fis, improvements in accuracy accompany de-
creases in the number of predicted TFBSs (cf. panels A
and B in Figure 5). The high (average) accuracy of
SVMR-PMM-FS is achieved because of prediction runs
with very small numbers of predicted TFBSs. In 4 of the 5
runs, a few hundred TFBSs were predicted at an accuracy
of about 3%, and in the fifth run only 3 TFBSs were pre-
dicted, 2 of which were correct (67% accurate). Other than
the lack of SiteSleuth predicted TFBSs, the trend of
increasing accuracy from BvH to SVMR-PMM-FS
(Figure 5, right set of bars) is consistent with cross-
validation results (Figure 4).
We computed a P-value for each predicted TFBSs by

comparing its SVM score (computed from Equation (6))
to the distribution of SVM scores from 10 000 randomly
generated DNA sequences with the same GC content as
the E. coli genome; higher (more positive) scores indicate
stronger predictions, so the P-value for a predicted TFBSs
is P(random score > w�f(z)+d). The P-value distributions
are given in Figure S7 of the Supplementary Materials.
The predictions for SVMR-PMM-FS are clearly the
strongest for both Fis and Lrp. The fact that predictions
for Fis from SVM-LMM tend to be slightly more signifi-
cant than those from SiteSleuth, SVM-PMM or
SVM-PMM-FS is consistent with the fact that
SVM-LMM has a larger F-measure and higher accuracy
(before consensus filtering) than these methods, as dis-
cussed above.

Consensus-based predictions
The effects of adding five-way consensus filtering of
TFBSs predictions for Fis and Lrp models are indicated
by the thick horizontal lines in Figure 5. For Fis models
incorporating physicochemical features (SiteSleuth
through SVMR-PMM-FS), there is a fairly consistent
increase in accuracy. In fact, although the individual
runs of SVM-PMM and SVM-PMM-FS were no better
than those runs for SVM-LMM, the consensus predictions
for the PMMs do outperform the consensus prediction for
SVM-LMM. Improvements in accuracy obtained through
the consensus procedure are mirrored by drops in the
number of predicted TFBSs.
For Lrp models, consensus filtering results in a large

accuracy improvement for SVM-PMM. The loss of
accuracy for the SVM-PMM-FS Lrp model is reflected
in the lower F-measure obtained when the feature selec-
tion step is used for Lrp (one of a minority of TFs where
feature selection did not improve accuracy). On the other
hand, consensus filtering reduces accuracy (to zero) for

SVM-LMM and SVMR-PMM-FS: for SVM-LMM
because three training runs produced a model that pre-
dicted no TFBSs, and for SVMR-PMM-FS because one
run only predicted three binding sites, which did not
overlap with the predictions of the other four runs. If we
replace the five-way consensus requirement with a less
stringent two-way consensus, accuracy of SVM-LMM in-
creases to 0.019% (from 0.007% for the case without con-
sensus filtering), and 3.2% accuracy of SVMR-PMM-FS
is obtained, consistent with the results of four of the runs.

We assessed the effect of multiple training and predic-
tion runs on the consensus analysis by performing an add-
itional 15 training and prediction runs for Fis and Lrp
using SVM-PMM-FS, for a total of 20. We used a
bootstrapping procedure to analyze the effect of the
number of runs in the consensus analysis on the
accuracy and number of predicted TFBSs: for a given
number of runs n (allowing n to vary from 2 to 20), we
randomly sampled (with replacement) n sets of TFBSs
predictions out of the 20 total runs. We then performed
the consensus-based post-processing analysis, requiring all
n runs to agree on each prediction. This process was
repeated 10 times for each n, and we computed the
mean and standard deviation of the accuracy and
number of TFBSs. These results are plotted in Figure S8
of the Supplementary Materials.

In the bootstrapping results, we see a steady trend
toward greater accuracy and fewer predicted TFBSs as
the number of runs considered increases, although the
standard deviations are generally fairly large with
respect to the increases in accuracy. We also considered
easing the consensus rule, allowing TFBSs predictions to
pass if fewer than n prediction runs agree, as was necessary
for Lrp predictions from SVM-LMM and SVMR-
PMM-FS. However, for our extra analysis of
SVM-PMM-FS in Figure S8 of the Supplementary
Materials, we found that the best accuracy was almost
always obtained by the most stringent consensus require-
ment (results not shown).

DISCUSSION

We have extended a recently proposed motif modeling
paradigm (26) wherein physicochemical features of
DNA–protein interactions are used to discriminate
TFBSs from background genome sequences. This
approach constitutes a fundamental change from typical
PWM-based motif modeling approaches, which consider
only letter representations of DNA sequences. Here, we
advance the physicochemical motif modeling (PMM)
approach by considering new physicochemical features
of DNA and algorithmic improvements. We implemented
modifications of the motif modeling approach one by one
to illustrate the effect of each modification on accuracy.
The PMM that incorporates all improvements considered
here (both new features and new algorithmic steps),
SVMR-PMM-FS, was found to be the most accurate.
The source code for the software used to generate our
results is freely available at http://dinner-group.uchicago
.edu/downloads.html.
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The foremost difference between PMMs and PWM-
based methods is the use of physicochemical features to
directly capture the important aspects of protein–DNA
interactions. In Figure S9 of the Supplementary
Materials, we compare distances between random DNA
sequences in letter sequence space and feature space to
illustrate the fact that DNA letter sequence alone is not
a complete predictor of the structural and chemical
properties of DNA: DNA sequences may correlate (or
anti-correlate) in ways too subtle to be detectable in the
discrete letter-sequence space. We attempted to recover
these correlations through our chemical features, which
should capture base readout mechanisms of TF binding,
and our structural features (bp, bp step and hydroxyl
radical cleavage), which should capture shape readout
mechanisms.

Our chemical features calculations depended on the
evaluation of amino acid-DNA energies for different
amino acid rotamers. Our strategy for generating these
rotamers involved a fixed angle rotation around �1. We
wanted to examine if there would be any substantial effect
of an approach that considered other side chain rotations
as well (e.g. �2, �3 etc.). To sample additional side chains,
we downloaded the Backbone-Dependent Rotamer
Library of Shapovalov and Dunbrack (61), which
contains joint probabilities for different �n combinations
as a function of the backbone f-c angles. We then
re-computed interaction �G values for arginine,
glutamic acid and tyrosine around the GGG 3-mer: select-
ing the appropriate joint distribution based on the
backbone angles for each amino acid, for each of the
108 grid points shown in Figure 1, we randomly
sampled 50 times from this distribution and performed
whole-molecule rotations and energy calculations as
described in the Materials and Methods. In Figure S10A
of the Supplementary Materials we plot the free energies
from the rotamer library and the fixed �1 rotation as a
function of the 108 grid points. We see good agreement for
arginine and tyrosine; although free energies for glutamic
acid do not always have the same trend across the grid,
they still vary within the same range. Following the
analysis described in the Chemical Features section of
the Materials and Methods, we re-computed the
minimum and average �G for the minor groove, major
groove and outside DNA sub-grids. Remaining differ-
ences between rotamer sampling strategies were typically
much smaller than differences between sub-grids or amino
acids after this step, see Figure S10B of the Supplementary
Materials.

The second principal difference between PMMs and
PWM-based methods is the classifier algorithm used to
determine binding sites. Our use of the SVM is a direct
result of the introduction of physicochemical features, as
discrete (ACGT) DNA sequences are mapped to continu-
ous physical feature vectors. However, improvements may
be due to either aspect of the PMMs, so we quantified the
relative improvement due to the physicochemical features
versus the SVM classifier by introducing a novel LMM in
SVM-LMM. Interestingly, we found a significant im-
provement when comparing this method to a standard
PWM method, BvH. This essentially demonstrates that

the SVM does a better job of integrating the information
in the training data into a predictive model than the
PWM.
The SVM framework leads to additional potential algo-

rithmic improvements. In this study, we investigated a
simple feature selection step and use of an RBF versus
linear kernel in the SVM. We found improvements in
accuracy and training time with the feature selection
step. Training with the RBF kernel resulted in substan-
tially more accurate predictions at the cost of significantly
more training time. We also were able to take advantage
of the stochasticity in the grid search parameter optimiza-
tion step by training multiple models and selecting binding
sites by consensus. The choices we made for these algo-
rithmic changes are not necessarily unique, and others
could be explored in the future. For instance, there are
many possible non-linear kernels for the SVM (56), but
from our understanding of their differences we decided
that the RBF would be the most appropriate for TFBSs
prediction. Alternative feature selection strategies (62,63)
could also be explored.
In principle, feature selection can provide some physical

details about the nature of TF-DNA binding. However, in
practice we see that our routine does not eliminate a large
percentage of features: about 75� 85% of all features are
retained for most TFs (Figure S2B); CRP was an outlier,
with 68% retention (and a corresponding 60% speed-up
with feature selection). We did not see any distinct
patterns distinguishing binding modes from the features
that were selected. Because our feature selection step
chooses the minimal subset of features that retained
90% of the total mutual information, at most 90% of
features can be selected. Since actual selection percentages
are not much smaller than this maximum, we are limited
in our ability to conclusively distinguish different modes
of TF binding via our feature selection procedure.
Nevertheless, we present a short analysis of the features

retained by feature selection. Figure S2C of the
Supplementary Materials gives the frequency of feature
selection for different types of features; frequencies are
computed over the length of the training sequence, as
each feature type is mapped to each nucleotide in the
training sequence. The gray curve shows the average and
standard deviation of feature selection frequency over all
54 TFs. Note that the effect of PCA on the chemical
features can be seen by the high consistency with which
features 1, 2, 21 and 22 are selected: these are the first
principal components for the forward and reverse
strands, respectively, and together capture 42% of the
variance. We do not find any distinct patterns among
the structural features, other than the lower selection fre-
quency for the hydroxyl radical cleavage features.
Thus far we have not discussed the typical application

of TFBSs prediction algorithms, where a specific set of
genomic regions, such as promoters or other cis regulatory
sites (64), are examined and over-representation of pre-
dicted TFBSs in those regions is used to infer probable
binding (65). This typically involves computation of a
P-value for the over-representation of TFBSs in the
surveyed regions versus background regions. However,
when we performed this analysis for the Fis and Lrp
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predictions, we always found significant
over-representation of TFBSs in the ChIP regions for all
six of the methods compared, including BvH and
SVM-LMM. We chose to omit these results because
they fail to clearly distinguish a method that predicts a
large number of false positives, but still more true posi-
tives than would be expected by chance, from a more
discriminating method that predicts far fewer false posi-
tives and obtains higher accuracy.
In addition to considering the P-values for over-

representation of TFBSs in particular genomic regions,
we also considered P-values for each predicted TFBS,
which measure the quality of each site individually. The
distribution of P-values for each method is given in Figure
S7 of the Supplementary Materials, where we see substan-
tially more highly significant predictions for SVMR-
PMM-FS compared with the other methods. It should
be noted that our use of randomly generated DNA se-
quences tends to generate less conservative estimates of
P-values than other approaches, as has been discussed
by Frith et al. (65). A good alternative is to use a large
genomic region as background; however, since we used
our models to make genome-wide predictions, all
genomic regions are already tested, so we felt that
randomly generated sequences constituted the simplest
available approach for estimating P-values. Nevertheless,
our results still demonstrate the relative quality of predic-
tions from different models, and we include the option to
use background sequences for P-value estimation in the
source code available online.
Standard TFBSs prediction approaches use a library of

motif models to identify a subset of TFs that may prefer-
entially bind to the genomic regions of interest. In this
regard, the development of an online database of
PMMs, like JASPAR, RegulonDB or TRANSFAC
(6,7,66) for PWM-based motif models, would be a
valuable resource for researchers interested in applying
PMMs to their own data. Such a database would
contain multiple SVMR-PMM-FS trained models for
each TF to account for variability in the parameter opti-
mization step and for consensus-based predictions.
Although SVMR-PMM-FS was the most computationally
expensive model to train, the model for a TF only needs to
be trained once, as the same output can be used to predict
an unlimited number of test sequences.
We see evidence among our results that, for some TFs,

our PMM features do not necessarily capture any more
information about binding specificity than DNA letter se-
quences do. For example, predictions for Fis (before con-
sensus filtering) by SVM-LMM are just as accurate as the
(linear) PMMs. Studies suggest that Fis specificity is likely
to depend on both direct points-of-contact (direct
readout) and the non-local mechanical properties of its
DNA binding sites (indirect readout): point mutations
have a strong affect on binding affinity (43,67–69), but
Fis-DNA structures also show a distinct bent DNA struc-
ture (69,70) and mutations that are known to affect DNA
structure are among those affecting Fis binding (71).
Properties like flexibility, thermodynamic softness, and
large-scale curvature could be included in a new PMM
and might yield more accurate predictions of Fis TFBSs.

There are a number of additional ways that PMMs
could be further improved. We have focused on
encoding the chemical and structural nature of DNA
and protein–DNA interactions, but there are likely
many other relevant pieces of information in that
regard. Epigenetic structure can play a key role in selecting
TFBSs beyond just DNA sequences. In eukaryotic
genomes, histone markers have been widely linked with
promoter and enhancer regions (64,72–77); experimental
data detailing the relationship between DNA sequence
and histone positioning and modifications could be
translated into chromatin structure features (78). Also,
in many cases, the TFBSs are known to be dependent
on cellular conditions or cooperation with other TFs
(79,80). This information is difficult to include in
existing static motif models, but could possibly be ac-
counted for by defining cell state-dependent features and
grafting those onto the existing features. Ultimately, the
flexible nature of our SVM-based framework allows dif-
ferent features to be substituted easily, which makes it
possible for different researchers to compute and test
features independently.

Also, refinements in the quality of (positive) training
data could also greatly improve accuracy. Although
these binding sites are verified by high quality individual
experiments, the precision of the experiment may not be to
the level of a single bp. Even shifts of 1 or 2 bp could
greatly affect the agreement between different positive
training sequences, in either the space of DNA letter se-
quences or our mapped features. Besides stronger quality
controls in the determination of positive training
examples, adding an alignment step before training
could also enhance agreement among positive training se-
quences in feature space, and thus the quality of the
predictions.

The nature of TF–DNA interactions is one of the most
important features of gene regulation but remains poorly
understood, in that predictions of TFBSs tend to have a
high false positive rate. We have presented a TFBSs pre-
diction method with greatly improved predictive capabil-
ity, and we believe that this tool constitutes an important
step in the advancement of accurate TFBSs prediction. We
have clearly demonstrated the improvements are gained
through the use of physicochemical features, and that
higher quality features yield higher quality results.
Importantly, because the space of possible physical
features is practically limitless, there is much room for
further improvements.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and Supplementary Figures 1–10.
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Hehl,R., Hornischer,K., Karas,D., Kel,A.E., Kel-Margoulis,O.V.
et al. (2003) TRANSFAC

�
: transcriptional regulation, from

patterns to profiles. Nucleic Acids Res., 31, 374–378.
67. Finkel,S.E. and Johnson,R.C. (1992) The Fis protein: it’s not just

for DNA inversion anymore. Mol. Microbiol., 6, 3257–3265.
68. Hengen,P.A., Bartram,S.L., Stewart,L.E. and Schneider,T.D.

(1997) Information analysis of Fis binding sites. Nucleic Acids
Res., 25, 4994–5002.

69. Pan,C.Q., Finkel,S.E., Cramton,S.E., Feng,J.-A., Sigman,D.S. and
Johnson,R.C. (1996) Variable structures of Fis-DNA complexes
determined by flanking DNA-protein contacts. J. Mol. Biol., 264,
675–695.

70. Stella,S., Cascio,D. and Johnson,R.C. (2008) The shape of the
DNA minor groove directs binding by the DNA-bending protein
Fis. Genes Dev., 24, 771–785.

71. Shao,Y., Feldman-Cohen,L.S. and Osuna,R. (2008) Functional
characterization of the Escherichia coli Fis-DNA binding
sequence. J. Mol. Biol., 376, 771–785.

72. ENCODE Project Consortium (2007) Identification and analysis
of functional elements in 1% of the human genome by the
ENCODE pilot project. Nature, 447, 799–816.

73. Barski,A., Cuddapah,S., Cui,K., Roh,T.-Y., Schones,D.E.,
Wang,Z., Wei,G., Chepelev,I. and Zhao,K. (2007) High-resolution
profiling of histone methylations in the human genome. Cell, 129,
823–837.

74. Mikkelsen,T.S., Ku,M., Jaffe,D.B., Issac,B., Lieberman,E.,
Giannoukos,G., Alvarez,P., Brockman,W., Kim,T.-K., Koche,R.P.
et al. (2007) Genome-wide maps of chromatin state in pluripotent
and lineage-committed cells. Nature, 448, 553–560.

75. Guenther,M.G., Levine,S.S., Boyer,L.A., Jaenisch,R. and
Young,R.A. (2007) A chromatin landmark and transcription
initiation at most promoters in human cells. Cell, 130, 77–88.

76. Heintzman,N.D., Stuart,R.K., Hon,G., Fu,Y., Ching,C.W.,
Hawkins,R.D., Barrera,L.O., Van Calcar,S., Qu,C., Ching,K.A.
et al. (2007) Distinct and predictive chromatin signatures of
transcriptional promoters and enhancers in the human genome.
Nat. Genet., 39, 311–318.

77. Bernstein,B.E., Kamal,M., Lindblad-Toh,K., Bekiranov,S.,
Bailey,D.K., Huebert,D.J., McMahon,S., Karlsson,E.K.,
Kulbokas,E.J. III, Gingeras,T.R. et al. (2005) Genomic maps and
comparative analysis of histone modifications in human and
mouse. Cell, 120, 169–181.

78. Segal,E., Fondufe-Mittendorf,Y., Lingyi,C., Thåström,A.,
Field,Y., Moore,I.K., Wang,J.-P.Z. and Widom,J. (2006) A
genomic code for nucleosome positioning. Nature, 442, 772–778.

79. Cui,J.Y., Gunewardena,S.S., Rockwell,C.E. and Klaassen,C.D.
(2010) ChIPing the cistrome of PXR in mouse liver. Nucleic
Acids Res., 38, 7943–7963.

80. Nutt,S.L., Metcalf,D., D’Amico,A., Polli,M. and Wu,L. (2005)
Dynamic regulation of PU.1 expression in multipotent
hematopoietic progenitors. J. Exp. Med., 201, 221–231.

e175 Nucleic Acids Research, 2012, Vol. 40, No. 22 PAGE 16 OF 16


